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GEOMETRIC ASPECTS OF PRIMARY LATTICES

BENNO ARTMANN

The incidence structure derived from a primary lattice with
a homogeneous basis of three ^-cycles is a Hjelmslev plane
of level n. A desarguesian Hjelmslev plane H{R) is of level
n if and only if R is completely primary and uniserial of
rank n.

Introduction* The classical correspondence between vector spaces,
projective spaces and complemented modular lattices was extended to
finitely generated modules over completely primary and uniserial rings
and primary lattices by Baer [5], Inaba [7] and, recently, by Jόnsson
and Monk [8]. In these extensions, however, an analogue to the
classical projective space is missing. It is shown in the present paper,
that the appropriate concept is that of a Hjelmslev space as defined
by Klingenberg [9], [10] and by Luck [11]. To be correct, this is
only shown for the case of a plane geometry, namely Hjelmslev planes
of level n, corresponding to primary lattices with homogeneous basis
of three ^-cycles, and to free modules R\ Also, we have the complete
correspondence only in the desarguesian case. The restriction to this
case is justified, as the author believes, by the fact it is well known
to be typical for higher dimensional spaces in the classical theory.

In the non desarguesian case, there is a coordinatization theory
for Hjelmslev planes of level n given by Drake [6], but this does not
seem to lead to a construction of a lattice from the plane. Every
primary lattice with a homogeneous basis of three π-cycles, however,
leads to a Hjelmslev plane of level n (Theorem 2.13). Planes of level
1 (ordinary projective planes) and of level 2 (uniform Hjelmslev planes)
can be shown to be obtainable from lattices. For uniform planes,
this was done by the author in [2]. A combination of Theorem 2.13
with results of [4] shows that a desarguesian Hjelmslev plane £έ?(&)
is of level n if and only if & is completely primary and uniserial
of rank n.

0* Definitions*

0.1. Let <%* — (p, ©, /) be an incidence structure consisting of a
set p of points, a set © of lines and an incidence relation J S j j x ® .
We say that two points p, q of έ%f are neighbors, p ~ q, if there
are two different lines G, H such that p, q IG, H. Neighborhood for
lines is defined dually. A mapping φ: Sίf —* £έf* is a morphism of
incidence structures, if it maps points on points, lines on lines and
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pIG implies φpIφG.
An incidence structure J%^ is called a projective Hjelmslev plane,

short if~plane, if it satisfies the axioms [9, Def. 0]:
(i ) For all points p, q of Sίf there exists a line G of Jg^ such

that p, qIG.
(ii) For all lines G, H of 3^ there exists a point p of £ϊf such

that pIG, H.
(iii) There exists an ordinary projective plane & and an epi-

morphism a: H—> ^ such that ap — aq is equivalent to p ~ q, and
aG = aH is equivalent to G ~ H.

Using (iii), we see that neighborhood is an equivalence relation and
the factor structure £ίf\~ — £>ίfτ is a projective plane isomorphic to &.
We call 2ίf' the canonical epimorphic image and the projection
φ: Sίf —* £ίf* the canonical epimorphism of ^f\ In [9] it is shown that
this set of axioms is equivalent to the ones used in [1] to define Zf-planes.

0.2. We deal with modular lattices with universal bounds N and
U. The lattice operations are denoted by V, Λ and we make the
convention that Λ shall bind closer than V, that is a V b Λ c = αV
(5 Λ c). L(a, b) is the interval of elements x such that a ^ x ^ 6.
We use a \> b to denote independent join, i.e. to indicate a Λ b — N.
A cycle a e S^ is an element such that L(N, a) is a chain. A cycle
of dimension k is a fe-cycle.

Definition [8, Def, 4,2 and Def. 6.1]: A lattice S^f is said to be
primary, if:

( i ) Sf is modular of finite dimension.
(ii) Every element of ^f is the join of cycles and the meet of

dual cycles.
(iii) Every interval in ^f that is not a chain contains at least

three atoms.
Furthermore, we make the assumption
(iv) There are three independent ^-cycles alf α3, α3 such that U —

&i C" ̂ 2 N> α3 for the greatest element U of ^f. This means that J^
is of type (0, •••, 0, 3) in the sense of [8, Def. 4.10]. By [8, Lemma
6.4] it follows, that the a{ are pairwise perspective. Hence they form
a homogeneous basis of order three of J^f (for a definition of that
concept, see [1, Def 1]). Since the dual J5P of a primary lattice Sf
is again primary [8, Cor. 6.2], and the type of Sf is equal to the
type of 5 ^ [8, Cor. 4,11], we may use duality in deriving results
from (i)—(iv).

For the rest of this paper, ^ will always denote a lattice satis-
fying (i)—(iv), i.e. a primary lattice with a homogeneous basis of
^-cycles al9 α2, α3. For {ΐ, j , k) = {1, 2, 3} we put A{ = a5 ^ ak. Since
the geometric dimension of ^f [8, Def. 5.1] is three, £? may be
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non-arguesian.

1* The i ΐ plane &?{£?).

1.1. Points and lines in S^ * Let q be the set on ^-cycles of
&, and

p = {p e =2̂  | there is i e {1, 2, 3} such that p ^ A{ = U} .

Every p e p is perspective to some ai9 hence is w-cycle. For an w-cycle
q, assume qΠAi^Nφqf] Ak. Then we have q A At A Ak = g Λα^ ^
JV since g is a cycle, and by the same reason q A A3 = N. Therefore
L(q, q V Aj) has dimension n and q </ Aj — U. Hence we have p = q.

By duality, we get: The set of dual cycles of ^f of codimension
n is equal to the set

G = {Ge£f\ there is i e {1, 2, 3} such that G ^ α i = 17} .

We call p the set of points of £f and © the set of lines of £f.

1.2. Geometric elements. Every Element of c^7 which is the
join of independent points is said to be geometric [8, Def. 5.1]. By
definition, aly α2, α3 and Al9 A2, Az are geometric. From [8, Thm. 5.2]
we derive (FC) (a) For every b e {aly a2, α3, Al9 A2, A3} and every

x e £f with x Ab = N, there exists # ^ α? such that y χ> 6 = Z7.

Since the dual (b) of (a) is true as well, ^f satisfies the condition
(FC) of [1, p. 77].

Let G be a line of J*f, say G C- α< = ^ and r = G Λ -4̂ . and s =
G Λ Ay. We claim that r and s are points such that G = r ^ s.
Obviously we have α< Λ (r V s) = JV. Then, a^V r = diV G Λ Ak =
(α̂  V (?) Λ i i = A&, so that r and a3- are perspective with center α*.
Hence r and s are points. From α̂  V (r V s) = Afc V A3 = Z7 and r V
s ^ G w e get r V s = G by the indivisibility of complements.

In particular, every line of Sf is geometric.
Since the independent join of three points is U, and it is easy to

see that the independent join of two points is always a line (by (FC)
and [1, Lemma 8]), points and lines make up all geometric elements
of £f except for N and U.

1.3. For a line G and a point p ^ G, the interval L(p, G) is a
chain. Proof: Consider two points r, s such that r </ s — G. For
at least one of them, say r, we have r Λ p — N. Then r ^ p = G
and we have L(p, G) = L(JV, r), the assertion.

1.4. Neighbors of p on (?. Again let p be a point, G a line and
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p ^ G. We use < to denote the covering relation in £f. Let N —
z0 < zλ < < zn = p be the chain of elements less than or equal to
p, and let p = y0 ^ S yn — G be the chain of elements between
p and G.

L E M M A . For every i e {0, l , n} there exists a point c^^^G such
that yi = p V ct and zn_i = p A c*.

Proof. For every i, p is a maximal cycle contained in y{ [8, Cor.
4.7]. By [8, Thm. 4,8] p has a relative complement Xι in L(N, y^)
and by [8, Lemma 6.4] there exists a cycle c{ such that yi = p ^
xi = p v a = Xi \> Ci. Since cf and p are perspective, c{ is an ^-cycle,
hence a point. Counting the relative dimensions shows p /\ c{ — zn_^

1.5. Let G and if be two lines and p a point such that p ^
G Λ H. By the last lemma, there is a point q ^ G such that p V
q = G A H. This and the dual statement yield

(S) (a) For points p, q of Jsf and a line G with p V q ^ G there
exists a line ϋ such that pV q = G Λ H.

(b) For lines G, H of ^ and a point p ^ G Λ H there exists a
point q such that p V q = G A H.

1.6. In [1, p. 77/78] it was defined: A modular lattice with a
homogeneous basis of order three consisting of cycles is called an H-
lattice, if it satisfies (FC) and (S). By 1.2 and 1.5, ̂ f is an iϊ-lattice.
From an ίZ-lattice an incidence structure (p, ©, I) is derived by defining
p and @ as in 1.1 and incidence by the ordering of the lattice. Using
Theorem 1 of [1], we can now state:

PROPOSITION. J^f is an H-lattice and the incidence structure
£ίf — ̂ f{£^) = (p, ®, I) derived from £^ is a protective H-plane.
Two points p, q of J^f are neighbors in 3ίf if and only if p A q > N,
two lines G, H are neighbors if and only if G V H < U.

More information about ^f will be given in the next section.

2. ^( jSf) is of level n.

DEFINITION 2.1. (cf. [3] and [6]) Let £ί? and ̂ T7* be iί-planes with
canonical epimorphisms φ: ̂ f —> 3έff and fc: £%f*—+(^f*)f onto ordinary
projective planes. Let ψ: 5ίf-+3ίf* be an epimorphism and λ: {3ίf*)r-*
^ff an isomorphism. If φ = Xitψ we say C9^ has a refined neighbor pro-
perty defined by ψ: <^f—>έ/έf *. We define p = q by ψp = ψq and G =
H by ψG = ψH. Then = is called a refined neighbor relation in
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We say = is minimal provided the following conditions hold:
(M) Let p, q be points on G and p on H.
(a) If p = q and G ~ H, then q is on H.
(b) If p ~ g and G = H, then g is on iϊ.
(c) There exist distinct points a and 6 and distinct lines A and

B such that α == b and A ^ B.

DEFINITION 2.2. The ordinary protective planes make up the
class of protective iϊ-planes of height 1. Suppose Sff is an iϊ-plane
with a minimal neighborhood defined by ψ: £ίf -+ Sίf*, where §ίf* is
of height n - 1. Then one calls 3ίf an iί-plane of height n.—It is
suitable to denote an ίf-plane of height n by Jgζ and by ^ _ i the
plane and by ψn-19 φn-ί9 ^n~ι the maps which define the minimal neigh-
borhood in <%%,. Proceeding thus we obtain, for every ϋf-plane of
height n, the following commutative diagram

ψn-2 ψl

ψn \ψn-l \ψl

λn-l λn-2 λl

We set μk = ψk ψ^ψ^ and take μn to be the identity on
We denote by (~ k) the refined neighborhood defined by μk: <§ίfn

in

DEFINITION. 2.3. If Jg^ is an H-plane of height n, then the H-
planes ^f{ in the defining sequence of £(?» are of height ί. The notion
of (~ ^-neighborhood is defined in <%? as in Jgζ. A fc-segment in Stf\
is the nonempty intersection of a line with a class of (~ fc)-neighbor
points. An ίZ-plane £ίfn of height n is called of level n, if the follow-
ing axiom of reciprocal segments holds in every plane <%% of the
defining sequence of Jgζ:

(RS) (a) For all lines G, H of ^ , the set of common points of
G and H is a ^-segment, for some ke{l,2, , i).

(b) G(~ Λ)Jϊ if and only if the set of common points of G and
H contains an (i — &)-segment.

REMARK. For the change of (N) [3, p. 175] to (RS), see [4].

2.4. If the cycles α, of ^f are of dimension 1, then £if(£^) is
an ordinary projective plane (an ff-plane such that two points p, q
are neighbors if and only if p = q), hence an ff-plane of level 1. If
the α< are bicycles, that is of dimension 2, then by 1.5 every point
of 3tf{Ji?) has at least one proper neighbor and by [2, Satz 3],
is a uniform iί-plane, that is of level 2 [3, p. 179].
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We are going to apply induction to show that £{f{£?) is of level
n if the a{ are ^-cycles. We may assume n > 2. First we have to
show that 3ίf(£f) is of height n.

2.5. Let di cover bt and B — bι V b2 V b3. Then δx, ί>3, δ3 form a
homogeneous basis of JS^* = L(iSΓ, 5) (cf [8, Cor. 4.13]). By [8, Cor.
4.4] J?f* satisfies (i) and (ii) of Def. 0.2. Moreover, every interval
of Jzf* is an interval of ^f, so £f* satisfies (iii) as well. Hence
££** is a primary lattice with the homogeneous basis bl9 b2, 63 of three
(n - l)-cycles. Let the derived H-plane be ^ T * = <^T(j^*) = ft)*, ©*, I ) .

Let p be a point of ^ = ^ ( ^ ) and G be a line of JT 7 . We
define

f:

by

ψp = p A B and τ/rG = G Λ B .

In the following paragraphs, we will show that α/r is an epimorphism.
If p <; G, then p ΛB ^ G Λ B, so the fact that α/r preserves in-

cidence is trivial.

2.6. Let p be a point of £ίf, say p s> A{ = U, and let B{ — bά V
&fc. Then (p A B) V B* = B, and ^ maps £ into £*. We want to show
that it is onto. Let p* be a point of < ^ * , say p* V B{ = B. Then
p* Λ At — N, and by [8, Thm. 5.2], p* is contained in some comple-
ment p of Ai. It follows pep and ψp = p*.

2.7. Let G be a line of ^ , say G ^ α ^ Z7, and G Λ i i = s
and G A Ak = r as in 1.3. We have ί) {V r ^ 6̂  and ^ V s ^ δfe, hence
hV (G A B) = (biV G) A B = B. Since G A B Ah = N,ψ maps ©
into ($*. Again we have to show that it is onto. Let G* be a line
of < ^ * and G* = r* ^ s* for two points of < ^ * . There exist points
r, s of ^ such that r Λ B = r* and s Λ £ = s* For G = r V s
we have α/rG = G*.

2.8. Since p ~ q in ^g^ means p A q > N m £f, we have p ^ q
in < ^ if and only if ψp — α/rg in ^g^*.

We want to show that the same is true for lines. Assume G ~
H in 3ίf. We know that this means G Λ H> p for some common point
p of G and if. Let a; be a cycle ^ G such that G A H = p ^x.
We may assume G Φ H, hence the dimension of x is at most n — 1.
Therefore x ^ G A B and x ^ H A B, and we have
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G Λ i ? Λ ΰ = ( P v ^ ) Λ S

= v Λ B V x

= # V x ,

and from x > N we deduce ^G ~ φH.
Now let G Φ H in Jg^, then G Λ H = p for a unique point p.

There are points r, s of ^ such that G = p \> r and H = p ^y s.
From this we derive ^p V ψr V ψs ^ α/rG V ψH, and since τ̂ p, ̂ rr, ψs
are three independent (w — l)-cycles, it follows GΛBvHΛB = B,
hence ψG Φ ψH.

Thus we have arrived at: G ~ H in ^ if and only if ψG
in

2.9. By 2.5 - 2.8 we know:
ψ: £ίf —• Jg^* is an epimorphism and

p ~ q if and only if τ/rp —
G ~ H Ίϊ and only if ψ(?

Now, for n — 1 > 1, we may repeat the procedure and, changing
notation to £ίf = ^gζ, < ^ * = J^t_! and ^ = ^ ^ ^ get a sequence

^tt-2 ^1

where the final incidence structure S^[ is an ordinary projective plane.
The mapping

is an epimorphisms such that

p ~ q in ^g^ if and only if μφ = μλq in Jgf and

G - JET in ^ T if and only if μ,G = /^.iϊ in

Now the canonical epimorphism φn: £ίfn —> ̂ ς ; is universal with the
property (*), hence we have a unique isomorphism ψ: J ^ ; —> ^gt such
that /̂ i = 09>Λ. By the same reasoning for £έfn-γ and ^x:
we get the following commutative diagram

fn-i
\

If we put λ ^ - θ~ιr], we have ^ , - K-i<Pn-iψn-i and ̂ n ^ :
defines a refined neighborhood in 3ίfn. Clearly, the same is true for
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all ψii <%^ί^ι—> Sίfi (1 <Ξ i < n). Thus we arrive at a commutative
diagram as required in Definition 2.2 We did not yet show that
the refined neighborhood defined by ψn-λ: £ίfn —> Sl?^ is minimal.
Without knowing this, we define μ{ and (~ i) as in 2.2β

2.10. In order to prove the axioms (M) and (RS) of Definitions
2.1 and 2.3, it is useful to have an alternative description p(~ i)q
and G(~ i)H in Stf = <%?(£*).

( i ) Let N = p0 « pλ < pn_ 1 « p B = |) and ] V = g o « . «
g% = # be the chains of elements below the points p and q. We have
tn-iP — P Λ B = pn_19 hence ^ - i P = Ψn-iQ if and only if pn^ = g%_lβ

Repeating the argument we obtain μj> = Pn which yields μφ = μ&
if and only if p{ = qi9

(ii) Let G, H be lines of 3(f(£f) and p, r, s be points such that
G = p \> r and H = p \> s. Let r*, ŝ  be defined like pτ in (i), and
p = x0 < xι < " - < xn = G. If ^^G = //ifl, then

and

Hence p C- ri — %i S G A H and from Lemma 1.4 we get
( + ) There exists a point g such that pn_{ = qn^ and

Conversely, assume ( + ). There exists a cycle r< such that p V q =
p ^yTi — Xi and points r, s such that r{ ^ r ^ G and r* ^ s ^ i ί [8,
Thm. 4.8]. From this we derive G = p ^r and H — p \> s and

Letting G = gQ < ^ < < gn = U and H = hQ < - - < hn = U we
may equivalently say

^•G = μ%H if and only if gn^ = /ι%_,- .

Or, using p = y0 <t - < yn = H:

μ{G — μ{H if and only if ^ = y{ .

2.11. We are now ready to verify that ψn^: J%^Λ —> ^ ^ _ i defines
a minimal neighborhood in ^g^.
(Ma) From p A B = q A B it follows that p and q cover p A q.
Hence p V q covers p and #. Now if G V H <U, then G A H > p
and since L(p, G) is a chain, we have
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p <pV q^G A H,

hence q ̂  H.
(Mb) Let Xi and yt be as in 2.10. By 2.10 (ii) we know xn-x — yn^.
Now if p ~ q, then p\/ q < G, hence p V q ̂  xn-i = 2/»-i which implies

(Me) Taking i = 1 in 1.5 we get points with the desired property.
By duality, we have lines G Φ H such that G V H is a cocycle of
codimension n — 1, hence ψn^G = ψn^H.

2.12. The axiom of reciprocal segments. By 2.10 (i) an ί-segment
is a set of points on a line G such that p* = q{ for any two points
p, q of the set.
(RSa) Let p ^ G A H and p*, $< as before. Assume G Λ H = xn^.
Then for every point q ̂  H we have that

p Λ q ̂  Pi implies g ̂  G, and

p A q < Pi implies q ̂  G, since otherwise G A H > xn-i

Hence the set of points incident with both G and H is an i-segment.
(RSb) By 2.10 (ii), μ{G = μt H if and only if G and i ί have (at least)
an i-segment in common.

THEOREM 2.13. The H-plane β^(^f) derived from a primary
lattice L with a homogeneous basis of three n-cycles is an H-plane of
level n.

Proof. By 2.9, ψv_L: <%t —• ^ t - i defines a refined neighborhood
in £ίfn which is minimal by 2.11. By 2.12, the axiom (RS) of reciprocal
segments holds in £έfn. Since Sf?^ is derived from a primary lattice
with a homogeneous basis of (n — l)-cycles, we may assume that έ%f%-γ

is of level n — 1. But then Sίfn is of level n

3* Desarguesian iϊ-planes of level n.

DEFINITION 3.1. [8, Def. 6.6]. A ring & (associative with unit)
is said to be completely primary and uniserial if there is a two-sided
ideal s$? of & such that every left or right ideal of & is of the form
S^fk (where J^° = ̂ ) . The rank of such a ring is the smallest
integer k such that s$fk — (0).

It is a simple exercise to verify that a completely primary and
uniserial ring is an ff-ring in the sense of [9 Def. 9].

DEFINITION 3.2. Let & be a completely primary and uniserial
ring of rank n. The lattice £f{3if*) of all submodules of the
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left) module ^ 3 is primary [8, Thm. 6.7] and has the homogeneous
basis a, = ^?(1, 0, 0), α2 = ^ ( 0 , 1, 0), α3 = ^ ( 0 , 0,1) of π-cycles. Let
3ίf{&) = ^(Jδ^C^?3)) be the H-plane derived from £f(&*). It is
easy to check that this plane is essentially the same as defined by
Klingenberg [9 Def. 10] via homogeneous coordinates. An iϊ-plane

is called desarguesian if there exists an if-ring & such that
is isomorphic to £ί?{&)> the latter defined as in [9].

THEOREM 3.3. If έ% is a completely primary and uniserίal ring
of rank n, then the H-plane £ίf{&) is of level n.

Proof. Theorem 2.13 and Definition 3.2.

3.4. In [4] it is shown: If ^f = £έf{&) is a desarguesian H-
plane of level n, then <% is a completely primary and uniserial ring
of rank n. We combine this with 3.3:

COROLLARY. A desarguesian H-plane βέ?{&) is of level n if and
only if & is completely primary and uniserial of rank n.

3.5. Since the lattice £^(&z) defined in 3.2 is arguesian, we
have a correspondence between completely primary and uniserial rings
of rank n, arguesian primary lattices with a homogeneous basis of
three w-cycles and desarguesian iί-plane of level n as in the classical
theory of projective spaces. With the appropriate definitions, it should
be not too hard to verify the analogues correspondences for finite
dimensional iϊ-spaces. The coordinatization theorems relevant for this
can be found in [7] and [8] for lattices and in [10] and [11] for
Hjelmslev spaces.
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