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FILTRATIONS AND VALUATIONS ON RINGS

HELEN E. ADAMS

The concept of a multiplicative filtration on a ring is
generalized so as to include among filtered rings, rings with
valuation, pseudovaluation and semivaluation. The general-
ized filtration induces a topology on the ring, and it is shown
that the Hausdorff completion of the resulting topological
ring can be described by an inverse limit. The paper finishes
with an example illustrating the theory.

!• Definitions and immediate consequences* In this section

we define a generalized filtration and generalized pseudovaluation on

a ring and show that a pseudovaluation induces a filtration on a ring.

If A and B are subsets of a ring we shall write AB to mean the

set {xy: x e A, y e B}. By an ordered semigroup we mean a semigroup

which is partially ordered as a set such that the ordering relation is

compatible with the semigroup operation. A directed semigroup is an

ordered semigroup which is directed above as an ordered set; and a

quasi-residuated semigroup (Blyth and Janowitz [2]) is an ordered

semigroup T with the property: given any s, te T, there exists ue T

such that ut ^ s and tu ^ s.

Let R be a ring and let S be a directed semigroup with the property:

(1.1) given any s e S, there exists teS such that t Ξ> s.

A filtration on R over S is a set of additive subgroups {Ps}se<? of R,

indexed by S, with the following properties:

(1.2) if s, t e S such that s ^ t, then Ps § Pt;

(1.3) for any s,teS, PsPt £ Pst;

(1.4) given xeR, s e S, there exists te S such that xPt £ Ps and

Ptx £ Ps

Note that Πβes-P* is a two-sided ideal of i? For a treatment of

the classical multiplicative filtration on a ring, see Atiyah and

Macdonald [1] and Northcott [6].

The following lemma gives a less general form of a filtration

which will be shown to arise from a pseudovaluation on a ring. The

proof of the lemma is straightforward.

LEMMA 1.1. Let S be a quasi-residuated, directed semigroup. Let

{Ps}ses be a set of additive subgroups of a ring R such that (1.2),

(1.3) hold, and (lΛ')\JaeSPβ = R.

Then {Ps}ses is α filtration on R.
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The following definition of a pseudovaluation on a ring allows us
to treat at the same time Manis [5] valuations and pseudovaluations
(Mahler [4]) on commutative rings, and semivaluations (Zelinsky [7])
on fields.

Let S be a quasi-residuated, directed semigroup, and let So be
the disjoint union of S and a zero element Os with the properties:
OSOS = Os; and, for any s e S, Os> s and sθs = Os = Oss. A pseudo-
valuation on a ring R into So is a map φ of R into So such that: for
all a, beR,

(1.5) ?>(α&) ̂  ?>(αM&);
(1.6) if s G S such that s ^ <ρ(α), φ(6), then φ(α - b) ̂  s;
(1.7) ^(0) = Os;
(1.8) the set φ(i2)\{O,s} is nonempty.
Let φ: R —» So be a pseudovaluation on a ring i2. Define, for

any s e S ,
(1.9) Ps = {x: xeR,φ(x) ^ s}.

Then, from Lemma 1.1:

PROPOSITION 1.1. The family of subsets {Ps}ses of R, defined in
(1.9), is a filtration on R.

2* The completion of a ring with respect to a filtration*
Throughout this section, R is a ring with filtration {Ps}se(S. It will
be shown that the filtration {Ps}se<s induces a topology JT' on R com-
patible with the ring structure of R, and the completion of (R, ̂ ~)
will be explicitly defined both algebraically and topologically.

From Bourbaki [3, III §1.2, example], the set {Ps}s6s is the funda-
mental system of neighbourhoods of the zero for a uniquely determined
topology J?" on R, addition in (R, J7~) is continuous, and j?~ is
Hausdorff if and only if Πse^Ps = {0}. Further, multiplication in (R,

is continuous by the definition of a filtration and [3, III §6.3,
) and (AVΠ)]. Hence (R, ^~) is a topological ring and, as such,

admits a Hausdorff completion.

Now the Hausdorff completion of a topological ring is just the
Hausdorff completion of the ring considered as an additive topological
group [3, III §6.5]. Multiplication is then defined on the completion
by a continuous extension of multiplication on the associated Hausdorff
ring, in this case the factor ring R/f\seS Ps.

But in this case we already have, from [3, III §7.3, Proposition
2, Corollary 2], that the Hausdorff completion of the additive topological
group (R, JT") is isomorphic, both algebraically and topologically, to the
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Haυsdorff group (R, J?~) where R — lim R/Ps and J?~ is the usual topology

induced on R by the topology ^~ on R. Hence the Hausdorff com-
pletion of the topological ring (R, ̂ ~) is isomorphic to the Hausdorff
ring (R, ̂ Γ, x) where x denotes the multiplication constructed on
R by means of a continuous extension of multiplication in R/Γ\ae& Ps.
The main aim of this section is to define explicitly the multiplication
x This is not a straightforward task since each factor group R/Ps,

S G S , in the direct product J[seS R/Ps, is not a ring.

For reference we define the topological group (R, J7~) explicitly
[3, III §7]. Now R = {{ξs}SeSellsesR/Psl for all s,teS such that
s is t, ξt £ ξs}. That is, the elements of R are sets of subsets of R,
indexed by S, and written {ξs}seS where: for each seS, ξseR/Ps; and,
for any s, t e S such that s ^ t, ξt £ ξ8. Note that, for each xeR,
{X+ Ps}ses £ R Equality and addition in R are defined as follows: Let
{£,}.es, {V)ses£R- Then {ζs}seS = {ηs}SQS if and only if, for each s e S,
ίβ = ί7β; and {ξs}seS + {%}seίS = {is + ys}ses- When there is no risk of
ambiguity, {ξs}SQs will be written as {£J.

The topology ^ is defined on R by inducing the usual quotient
topology on each R/Ps, s e S, then inducing the usual product topology
on ]JseSR/Ps, and finally restricting this topology to R, considered
as a subspace of ΐ[seSR/Ps

Let teS and let ft: R—>R/Pt be the canonical projection defined
thus: For any {ξs}seS£R> ft({ξs}Ses) = &. Since JB/P* is discrete [3,
III §7.3], the set Pt - fτι(Pt) = {{fJ.β5eS: & - PJ is an open set in
(R, Jf~), containing the zero {Ps}ses of R.

Further, it is easily checked that, for each t e S, Pt is a subgroup
of R. Hence the set of subgroups {Pt}tes of R forms a fundamental
system of neighbourhoods of the zero of (R, 3") and thus, by [3, I
§2.3, Example 3], defines the topology j?~ on R.

Next we define a multiplication "*" in R, and show that * is in
fact the required multiplication x . When there is no risk of ambiguity,
we shall omit the multiplication sign *. Note that if each of the
subgroups P8, se S, were a two-sided ideal of R, then multiplication
in R would be as simple to define as addition: but this is not the
case.

Let {ζs}ses, {y]s}seS£R. Let {£.}.es*{i?.}.β5 - {Ωs}seS where {Ωs}seS is

defined as follows: Let seS. Then by (1.1) there exists teS such
that f ^>s. Choose xx e ζt9 yι e ηt. From (1.4) there exist u,veS such
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that xJP% £ P8, Pvyί § P s. Let we She such that w ^>t,u, v. Define
Ωs = xy + P s where α? e ξw, y e ηw. The following two lemmas show
that Ωs is well-defined and independent of the particular choice of w.

LEMMA 2.1. With w chosen, the coset Ω8 does not depend upon
the choice of x and y.

Proof. Let x, xf e ξw; y, y' e rjw. Now

(2 2) XV ~ χfyf = ^ ~ x^Vl + X^v ~ y^
+ (x - x')(y - y,) + {xr - x,){y - y') .

It is easily checked that each of the summands of (2.2) belongs to
Ps. Hence xy — x'y' e Ps and the lemma follows.

LEMMA 2,2. Let the notation be as above. Let f,geS such that,
for all a', a" e ζf and for all V, b" e ηg, a'V - a"b" e Ps. Then
Ωs = ab + Ps for any aeξf, beηg.

Proof. Let aeξf, be ηg. Let he S such that h*zw,f, g. Let
ceξh,de ηh. Then, by Lemma 2.1, Ωs = cd + Ps since ceζw,de τjw.
But ab — cde Ps since a, ceξf and b, deηg. Hence Ωs = ab + P s

COROLLARY. The definition of Ωs is independent of the particular
choice of w.

Proof. Let vf e S be another possible choice for w (with possibly
different £, u, v, xl9 yt). Then, by Lemma 2.1, Lemma 2.2 holds for
f = g = wr, and the corollary follows.

LEMMA 2.3. In the above notation, {Ωs}seSe B.

Proof. By the definition, for each seS, Ωse R/Ps. Let λ, μ e S
such that λ >̂ μ. Then, by Lemma 2.1, there exist m, ne S such that
Ωλ = x'y' + Pλ for any x' e ξm, y' e ηm) and Ωμ = x"y" + Pμ for any x" e ξn,
y"eηn. Let qeS such that q ^ m, n; and let xeζq, yeηq. Then
Ωλ = xy + Pλ and β^ = xy + P^. Hence β ; g β^ since P^ g P^. Therefore

PROPOSITION 2.1. With the multiplication defined above, R is a
ring which is commutative [if R is commutative and has identity
{1 + P8}8es tf R has identity 1.

Proof. We already have that R is an additive Abelian group,
(i) Using the definition of multiplication in R and the directed
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property of S, it is a straightforward task to show that multiplication
in R is associative and that both distributive laws hold. Hence R
is a ring which, by the definition of multiplication, is commutative if
R is commutative.

(ii) Let R have identity 1. As noted before, {1 + Ps}seSeR.
Again, using the directed property of S and the fact that, for each
s G S, 1 G 1 + P8, it is a straightforward task to show that {1 + Ps}ses
is the identity of R.

Next we show that {Pβ}βe5, the fundamental system of neighbour-
hoods of the zero of (jβ, J7"), is in fact a filtration on (R, *) which
defines the topology ^ as at the beginning of §2; and hence the
multiplication * is continuous in (R, J7~, *). We need the following
preliminary result.

LEMMA 2.4. Let xeR, te S. Then there exists ue S svxh that
{x + Ps}ses * Pu S Pt and Pu * {x + Ps}seS g Pt.

Proof. By (1.4) there exists veS such tha t xPv g Pt; and by
(1.1) there exists weS such t h a t w2 >̂ t. Let ueS such t h a t u ^
v, w. Let {^s}se5 e P t t; t h a t is, ^ = Pu. Let ^ G X + P t t, ̂  G P t t . Then
a?i2/! G ̂  since P t t g P, Π Pw, and so a?Ptt g Pt, PUPU g P,. Therefore,
for all α;', a?" G X + P u and for all y\ y" e γu, x'y' ~ x"y" e Pt.
Hence, by Lemma 2.2, with / = g — u, s = t, a = xλ and b = y17

{x + P J {ηs} = {Ωs} where Ωt = Pt: t h a t is, {x + P J {)?s} G P ί β Similarly

Pu{χ + P J s P , .

PROPOSITION 2.2. {PS}S€S is a filtration on R which defines the
topology J?~.

Proof, (i) S is a directed semigroup with property (1.1) and, as
noted, each Ps, s e S, is an additive subgroup of R.

(ii) Let t,ueS such that u^t. It is easily checked that Pu g P f.
(iii) Let t,ueS Again, it is easily checked that PtPu g P ί u .
(iv) Let {f J eR, te S. We must show that there exists r G S

such that {ζs}Pr g P t and Pr{fs} g P t , L e t w e S such that w2 ^ ί and
let x e ξw. Then {ζs} - {α; + P J e Pw. By Lemma 2.4 there exists ueS
such that {x + PS}PU^ Pt. Let r e S such that r ^ u, w; and let
{ζj G Pr. Now {fj{ζj - ({fj - {x + PJ){ζs} + {x + Ps}{ζs}; ({?.} - {a +
PJ){ζs} G P w P r g Pwr g P, by (ii) and (iii); and {α; + Ps}{ζJ G {α; + P J P . g Pt

since r ^ w. Hence, by (i), {fs}{Q G P,. Similarly Pr{fβ} g P,. This
completes the proof.
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THEOREM 2.1. The Hausdorff completion of (R, J?*~) is ίsomorphic

to (R, JT, *).

Proof. By [3, III §7.3, Proposition 2], the mapping i:R—>R

given by: for all xeR, i{x) = {x + -Ps}s6s> has an image which is dense

in (R,β~). From [3, III §6.5 and III §7.3, Proposition 2, Corollary

1], the mapping i:R~^(R, x) is a ring homomorphism. Hence

i{xy) = i(x) x i(y). But

') = {XV + Ps}ses = & + P.}seS*{y + PeheS = Φ

Thus the multiplications * and x , which are continuous in ^ ~ , agree

on the dense subset i{R) of (R, JT"). Therefore, by the principle of

extension of identities [3,1 §8.1], * and x agree on R. Thus (R, j ^ , *)

is the Hausdorff completion of (R, J7~).

3* Example* In this section we illustrate our theory with a
semi valuation on the field Q of rational numbers (Zelinsky [7]).

We shall reserve the sign " ^ " for the usual ordering on Q and
shall denote the usual absolute value of the rational number x by
\x\. Define S = {x: xe Q, x > 0}. Order S as follows: For all a, he S,
a ^ b if and only if ab~ι e I (the set of natural numbers). Then
(S, ^ ) is a quasi-residuated, directed semigroup under multiplication.
Define a mapping φ: Q —»SQ as follows: For all xe Q\{0}, φ{x) = \x\;
and ^(0) = 0^. Then it can easily be checked that φ: Q —> So is a
pseudovaluation on Q, (In fact, φ is a semivaluation on Q, from
Zelinsky [7]).

PROPOSITION 3.1. The completion of Q with respect to φ is iso-
morphic to the ring of formal series ΣΓ=.i ί! &; where a,h e Q, 0 ^ αx <
2, αtid, /or eαcft i G I\{1}, α̂  e {0, 1, , i}.

Proof. We shall use the notation of §§1 and 2 throughout. Now,
for each s e S>

Ps = {x: xe Q, φ(x) ^ s} = {ms: me Z} .

We shall use the fact that, for all p, qe I, p\ ^ p ^ p/q and #>! ^

(p - 1)!: that is, for all {£β},6se Q, £*: S ίp £ ίP/<7 and fp! £ ^ - D , .

( i ) Let {fs}Se,e0.

Let α?i G ί2 Then there exists a unique α ^ β such that 0^aι<2
and #! — αx G P2. Suppose that ίuj G ς2 and α[ G Q such that 0 ^ a[ < 2
and »; - a[e P2. Then
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Uι — al = 0»[ - a[) - (Xi — cθ + (»i - #ί) e P 2 .

Hence αx = αί, and so ax is independent of α̂ . Then ζ2 — αx + P2.

Let #2e f3! - (αL + P8I). Since f3! § f2 and P3 ! S P2, we have
2̂ e f2 — (αi + Pύ = PE Hence #2/2 is an integer. Let α2 e {0,1, 2} such

that α2 ΞΞ &2/2 mod 3. Then ζ3ϊ = α : + 2α2 + P 3 ! .

Next, suppose & e I\{1, 2} such that ζkι = at + Σfe 1 ί ! ^ + Ph\ where
αi e {0, 1, , i} for each i e {2, 3, , k — 1}. As before, we can show
that there exists ake {0, l , k} such that f ( f c +i) !=

:α 1+Σt=2^ α*+P(fc+i)i.
Further, each a{ is unique.

Let S G S . Then there exist unique p, qe I such that s = p/q and

(p, g) - 1. Now £,, S fP/ff. Hence f. - Σ C ί '̂ r ^ + ̂ s

Suppose that {5,}βeS and {^s}se5e S define the same set of aiy iel.
Then, for each se S, ξs = Vs Hence {ζs}ses defines a unique set of ai9

ie I.

(ii) Let {αjiez be given such that a^Q, 0 ̂  αx < 2 and, for
each ΐel\{l}, α<e {0, 1, •••, i} Let s e S . Then, as before, there
exists a unique pel such that j> ̂  s. Define ξ8 = Σf^ί1 ^ α^ + -Pe-
lt is a straightforward task to show that {fs}se(SGQ.

Thus far we have established a one-one correspondence between
the elements of Q and formal power series ΣΠ=i aι ^ where α : e Q,
0 ^ ^ < 2, and, for each i e I\{1}, ̂  e {0, 1, , i}.

(iii) Let {ίs}se5?{^s}s6s e 0 correspond to the series ΣΓ=1 H βj>ΣΓ=i ί! δ*
respectively. Now {fs}seίS + {̂ s}se>s = {ζs + ̂ s}se>s. Hence we can define
addition of the series as would be hoped: ΣΓ=i H '<L% + ΣΠ=i ̂  &< =
ΣΠ=i ί! (α« + δi) where at the ith stage αέ + δ< is reduced modulo (i +1)
and the integral part of (α< + δ<)/(i + 1) carried on.

Let {Ωs} = {£,} {57J. Let SG S. Then there exists t e S such that,
for all x e ξt, y e 07,, β s = O T/ + P s - Σ*=ί ϋ α* ΣfcΊ1 ϋ δ< + P s for some
k G /. Hence we can define multiplication of the series in the usual
way, taking care to correct each term as described for the addition.
This proves the proposition.

REMARK. The above example illustrates that the definition of
multiplication * in R in §2 cannot be obviously simplified. For
example, if {ζs}seS = {5 + PS}SQS and {ηs}seS = {3 + P8}seS, then {Ω8}8GS =

{ξ.}.es{V*h*s = {15 + P.Us. Now & = 1 + P2 = %, but ί34 = 3 + P4:
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that is, it would not have been sufficient to choose the w of §2 such
that w2 >̂ s.

I would like to thank my supervisor, Dr C. F. Moppert, for his
many valuable suggestions.
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