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THE USE OF MITOTIC ORDINALS IN CARDINAL
ARITHMETIC

ALEXANDER ABIAN

In this paper, based on the properties of mitotic ordinals,
some results of the cardinal arithmetic are obtained in a rather
natural way.

In what follows, any reference to order among ordinal numbers
is made with respect to their usual order. Thus, if u and v are
ordinals then u ^ v if and only if u g v if and only if "uev or u = v".

DEFINITION. A nonzero ordinal w is called mitotic if and only
if it can be partitioned into W pairwise disjoint subsets each of type
w. Such a partition is called a mitotic partition of w.

For instance, ω is a mitotic ordinal since ω can be partitioned
into denumerably many pairwise disjoint denumerable subsets R{ with
i = 0, 1, 2, , where the elements of Rζ are precisely the ordinals
appearing in the ΐ-th row of the following table:

0 1 3 6 . . .

2 4 7 . . . .

5 8

9

Clearly, each J2f is of type ω.

LEMMA 1. Let w be a mitotic ordinal. Then w is a limit ordinal.
Moreover, for every element Si of a mitotic partition (Si)iew of w we
have:

(1) U Si = sup S{ = w .

Proof. Since Si is of type w we see that St is similar to w. Let
fi be a similarity mapping from w onto £ {. But then by [1, p. 302]
we have x g fi{x) for every xew. Now, assume on the contrary that
w is not a limit ordinal and let k be the last element of w. But
then clearly, k = fi(k) and therefore k e S^ However, since 1 is not
a mitotic ordinal, we see that the mitotic partition of w must have
at least two distinct elements, So and Si. But then ke So and k e Si
which contradicts the fact that So is disjoint from S^ Thus, our as-
sumption is false and w is a limit ordinal.
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Next, since the similarity of w to S< implies the existence of a
one-to-one mapping fi from w onto St such that x ^ /*(#) for every
x e w, we see that \J w ^ St and therefore U w — U fi>< since 5< £
w. On the other hand, since w is a limit ordinal by [1, p. 323] we
have \jw = w. Hence, (1) is established.

Based on the natural expansion [1, p. 355] of ordinals we prove
the following lemma.

LEMMA 2. Let w be a mitotic ordinal and let ωen be the last
term of the normal expansion of w. Then

(2) W = ώ*n

Proof. Let w = u + ωen and let (Si)iew represent a mitotic par-
tition of w. From (1) it follows that for every ίew, we must have
(u + v) G Si for some v < coen. But then (2) follows from the fact
that (Si)iew is a family of pairwise disjoint elements St.

LEMMA 3. For every nonzero ordinal e the ordinal ωe is mitotic.

Proof. Since a) < ωe we see that there is a mitotic ordinal of
type coh such that h ^ e. Let P be the set of all mitotic partitions
of mitotic ordinals of type ωh which are less than or equal to coe.
Partial order P by ^ * as follows:

if and only if Su. S Sυ. for every ie(ωu f] ωv).

Let ((SUi)ieω*)ueA be a simply ordered subset of (P, ̂ * ) . But
then it is easy to verify that (ULeiM SUi)ieo)ϋA is a mitotic partition
of the ordinal O)ΌA. Hence every simply ordered subset of the non-
empty partially ordered set (P, <**) has a least upper bound. Con-
sequently, (P, <£*) has a maximal element (Mi)ieωk where ωk is a
mitotic ordinal such that k ^ e.

Let (Mi) denote the mitotic partition (Mi)i6ωk of ωk, i.e.,

( 3 ) (ilf4) = (ΛΓ*)*eβ* .

To prove the lemma it is sufficient to show that k = e. Assume
on the contrary that k < e. Thus ωkω <̂  ω%

For every neω, let (Λf<)w denote the mitotic partition given by
(3) where each entry is augmented on the left by ωkn. But then

(MJO (Af,)l (ΛQ3
(AΓ«)2
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is clearly a mitotic partition of ωkω = ωk+1. But since ωk <̂  ωkω <
ωk+1 <^ ωe we arrive at a contradiction. Thus, our assumption is false
and k = e.

LEMMA 4. The sum of finitely many pairwίse equipollent mitotic
ordinals is a mitotic ordinal.

Proof. Obviously, it is sufficient to prove that the sum of two
equipollent mitotic ordinals is a mitotic ordinal. Let (Ri)ieu and (jS<)ie?
represent respectively mitotic partitions of mitotic ordinals u and v
where u = v — c. Now, let

Ri = (n, n, r2, •) and Si = (s0, sx, s2, •) •

Consider

fl* = (n, n, r2, . ., (u Ri) + s0, (uRi) + 819 (ϋRi) + s2, . . •).

Clearly, Ht S (^ + v) and JHi is of type u + v for every i 6 c.
But then observing that u + v •=. c we see that (Hi)iee is a mitotic
partition of the ordinal 6̂ + v. Thus, u + v is mitotic, as desired.

THEOREM 1. An infinite ordinal is mitotic if and only if it is
equipollent to the last term of its normal expansion.

Proof. Let w be an infinite ordinal. Without loss of generality
we may assume that the normal expansion of w has two terms and
is given by:

(4) w = ωam + ωen .

Now, if w is mitotic then by (2) we see that w is equipollent to
the last term of its normal expansion. Conversely, let w be equipol-
lent to the last term of its normal expansion. But then clearly,

(5) w = ωam — ωen .

However, since ωam is a finite sum of summands each equal to ωa,
in view of Lemmas 3 and 4, we see that ωam is mitotic. Similarly,
o)en is mitotic. But then again, from (5), (4) and Lemma 4, we see
that w is mitotic, as desired.

From Theorem 1 it follows that each of the following ordinal
numbers is mitotic:

ωω, ωω + ω, ω? + ωl9 ω™ + ω2ωLω, .

Also, since the normal expansion of every infinite cardinal has
one term, from Theorem 1, we have:
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COROLLARY 1. Every infinite cardinal is mitotic.

Next, based on the properties of mitotic ordinals we derive some
results pertaining to the cardinal arithmetic

THEOREM 2. Let w be a mitotic ordinal and (Ci)iew a nondecreasing
sequence of type w of cardinals cίΛ Then

(6) ILeWC i = (ΐli^Cif.

Proof. Let (S<)ί6w be a mitotic partition of w. Since (Ci)iBυ, is
nondecreasing, we have

Π c i ̂  Π fa \ G i e Sj} f o r e v e r y j e w
iew

and since the right side of the above inequality is a subproduct of
the left side, we have

(7) Π ̂  = Π {Ci \Ci e Sj} f o r e v e r y j e w .
iew

On the other hand, in view of the general commutativity and asso-
ciativity of the infinite product of cardinal numbers, we have

(8) Uci = ΊI(U{ei\eteSi}.
iew jew

But then (6) follows readily from (7) and (8).
Based on Theorem 2, we prove a theorem which extends a result

of Tarski-Hausdorff [2, p 14] to the case of a nondecreasing sequence
of cardinals.

THEOREM 3. Let w be a mitotic ordinal and (Ci)iew a nondecreasing
sequence of type w of nonzero cardinals c{. Then

(9) Π ^ = (supc,)-.
iew iew

Proof. Since c{ si sup{ei0Ci for every iew, we have

(10) Π Ci ̂  (sup df .
iew iew

On the other hand, for establishing (9), we may assume without loss
of generality, that ci > 1 for every iew. But then we have:

(11) (sup cζf :S (Σ cf ^ (Σ cy
iew iew iew

and then (9) follows readily from (6), (10) and (11).
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Thus, Theorem 3 is proved.
Let us observe that the formula analogous to (9) for the sum of

an (not necessarily nondecreasing) infinite sequence (Ci)iev of type v
(not necessarily mitotic) of nonzero cardinals c{ is given by:

(12) Σ Ci = v sup Ci.
i e v lev

REMARK. In the arithmetic of ordinal numbers infinite sums and
products of ordinals are respectively equal to the limit of their partial
sums and partial products. In fact, in ordinal arithmetic, evaluation of
the result of an infinite operation as the limit of those of partial ones
is a general method. In contrast to this, in the arithmetic of cardinal
numbers infinite sums and products of cardinals are not equal, in
general, to the limit of their partial sums and the limit of their
partial products respectively. However, as shown below, in cardinal
arithmetic, infinite sums of cardinals and products of nondecreasing
cardinals are respectively equal to the sum of their partial sums and
to the product of their partial products (this, in general, is not true
in ordinal arithmetic).

The statement concerning an infinite sum of cardinals can be
given as a corollary of (12).

COROLLARY 2. Let {ci)ίev be an infinite sequence of type v of
nonzero cardinals ci9 Then

(13) Σ d = Σ (Σ Ci) .

Proof. From (12) it follows:

Σ (Σ ci) = Σ ^'cu = v-v sup Ci = v sup Ci = Σ Gi

Next, based on the properties of mitotic ordinals we prove the
following theorem.

THEOREM 4. Let u he limit ordinal and (Ci)ieu a nondecreasing
sequence of type u of cardinals cim Then

(14) Πc,= Π(D».
i<.u j<u i<j

Proof. Without loss of generality, we may assume that the normal
expansion of u has two terms and is given by

u = ωep + o)hq .

Hence, by Lemma 3, without loss of generality, we may assume
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that u is a sum of two mitotic ordinals w and r, i.e.

(15) u — w + r with W ̂  r ^ ^ 0

Thus, to prove (14), it is enough to show that

(16) Π c< = Π ( Π c<) .

However, since u is a limit ordinal and c3- rg IL<i+ic; f° r every
i < u, we see that the left side of the equality sign in (16) is less
than or equal to the right side. Thus, it is enough to show that
the right side is less than or equal to the left side.

Since w and r are both mitotic ordinals, in view of (15) and (9)
we have:

Π (Πci) = .Π(.Πci) Π (Π e{)
j<w+-r i<j i<w ί<j o <r i<.w-\-j

^(supc i)
s Π(Πc i.Π<W1)

i<w j<r j<w i<j

g (sup βff (sup e{)" (sup ew+if
 =r

i iw i<r

pc^)7

r

= Π e c Π ί . + i =.Π<>«

as desired.
Finally, based on (14) we obtain the formula analogous to (13)

for the product of cardinals.

THEOREM 5. Let (c{)i<v be an infinite nondecreasing sequence of
type v of cardinals <v Then

(17) Π * = Π (Π C)

Proof. As the proof indicates, without loss of generality we may
assume v — u + 1 where u is a limit ordinal. But then from (14) it
follows:

Π ci = (Π Φu = Π (Π d) cu = Π (Π ct).
ί<u+l ί<n j<u i<j j<u+l i<j
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