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INTERPOLATION SETS FOR UNIFORM ALGEBRAS

A R N E STRAY

Let A be a uniform algebra on a compact Hausdorff space
X and let E c X be a closed subset which is a ft. Denote
by BE all functions on X\E which are uniform limits on
compact subsets of X\E of bounded sequences from A.

It is proved that a relatively closed subset S of X\E is an
interpolation set and an intersection of peak sets for BE if
and only if each compact subset of S has the same property
w. r. t. A. In some special cases the interpolation sets for
BE are characterized in a similar way. A method for con-
structing infinite interpolation sets for A and BE whenever
x G E is a peak point for A in the closure of X\{x}, is pre-
sented.

With X as above let S c X be a topological subspace. Then Cb(S)
denotes all bounded continuous complexvalued functions on S and we
put 11/11 = sup{|/(aO|:&eS} if feCb(S).

A subset S of X\E closed in the relative topology is called an
interpolation set for BE if any / e Cb(S) has an extension to X\E
which belongs to BE. If there exists / e BE such that / = 1 on S
and I/I < 1 on (X\E)\S, we call S a peak set for BE. If S has both
this properties it is called a peak interpolation set for BE. Peak and
interpolation sets for A are defined in the same way.

It is easy to see that BE is a Banach algebra with the norm
N(f) = inf {sup% | | /J | : {fn} a A, fn —>/ uniformly on compact subsets
of X\E}. It is an interesting problem in itself when this norm coin-
cides with sup norm on X\E.

In case X = {z: \ z | <; 1} and A is the classical disc algebra of all
continuous functions on X which are analytic in D = {z: \z\ < 1} the
interpolation sets for BE (where E is a closed subset of dX) are char-
acterized by that S Π dX has zero linear measure and that S Π D is
an interpolation set for H°°(D), the algebra of all bounded analytic
functions on D. This result was obtained in [8] by E. A, Heard and
J. H. Wells.

Their work has been generalized in different ways. Various
authors have considered more general subsets E of {z: \z\ ̂  1} and
more general algebras of analytic functions. ([2], [3], [4], [6], [9]
and [10]).

In this note we wish to generalize the results of Heard and Wells
to the setting of uniform algebras. We start with an extension of
Theorem 2 in [8].
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THEOREM 1. Let S c X\E be closed in the relative topology.
Assume X is the maximal ideal space of A. The following statements
are equivalent:

( i ) Given g e Cb(S), e > 0 and an open set Uz) S, there exists
feBE such that f = g on S, \\f\\ = \\g\\, \f\ < ε on (X\E)\U and
N(f)^\\g\\(l + ε).

(ii) There exists a constant M such that if geCb(S),ε > 0 and
Uz> S is open we can find fe BE such that f = g on S, \f\ < ε on
(X\E)\U and N(f) £ M\\g\\.

(iii) Each compact subset of S is an interpolation set and an
intersection of peak sets for A.

Proof. That (i) => (ii) is trivial.
(ii) => (iii). Choose geC(K) with \\g\\ = 1.
Let Ka S be compact, U and W open sets such that K c W (Z

W c U c U c X\E and choose ε > 0. By hypothesis there exists
gγ e BE equal to g on K such that | g, \ < ε/2 on U\ W and N(gx) ̂  M.

Hence we can find g2eA with \\g2\\ <̂  M, \g — g2\ < ε on K, \g2\ < ε
on U\W and \\g2\\ ^ M. By ([8], Lemma 2) applied to the restriction
map BE — C(K) we get that any g e C(K) we get that any g e C(K)
has an extension / to Xsuch that feA,\\f\\^ M/(l - ε) and | / | <
e/(l - ε) on U/W. Essentially by Bishops "1/4 - 3/4-Theorem" (See
[5], Th. 11.1 p. 52) we can use what is proved until now to find a
compact set Kγ and fe A such that f — 1 on Ku \f \ < 1 on Ϊ7VKΊ
and KdK.ciW. By "Rossis Local Peak Set Theorem" ([5], p. 91)
K, is a peak set for A and (iii) is proved.

It remains to prove (iii) => (i). We only indicate how to modify
our proof of Lemma 2.1 in [10] to apply to the present situation. As
in that lemma we construct a sequence {/»}~=i c A with the properties
listed there. Let t e < 0 , 1 > . The sum ΣΓ/» = f e BE and the proof
of Lemma 2.1 gives (i) if we can show that N(f) ^ 1 + t. This is
obtained by constructing {fn} such that | |/ n + / w + 1 | | ^ 1 + l/2 ί for
n = 0,1, •••.

This can be obtained if when constructing fH+1 we arrange it so
that | / n + Λ + 1 | = IΛI + IΛ+il on Kn+ι U Kn+t (Ku+ι, K%+2 as in [10])
and then if needed, modify fn+ι to h fn+1 where he A equals 1 = \\h\\
on Kn+ί U ̂ + 2 U Kn+z, is small where |/n + /Λ+11 may be large and
has a small imaginary part.

We now state a lemma which is due to A. M. Davie:

LEMMA 1. There exists a sequence {Qfc}Γ=i of polynomials with the
following properties:
(1) Σ Γ Qk(z) —*1 uniformly on compact subset of {z: \z\ < 1}
( 2 ) Qk(L) = 0 / o r k = 1,2, . . . α^d Σ Π Q * ( « ) I g 3 i / |^ | ^ 1.
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For a construction of {Qk} see the proof of Theorem 2.4 in [1].
We now have:

THEOREM 2. Let E be a peak set for A and let S c X\E be
closed in the relative topology. The following statements are equiva-
lent.

(i) S is an interpolation set for BE.
(ii) There exists M > 0 such that if K c S is compact and g e

C(K) we can find feA equal to g an K and with \\f\\ ^ Af||flr||.

Proof, (ii) follows from (i) as in the first part of the proof that
(ii) => (iii) in Theorem 1. For the converse an argument used by
Davie in [1] works: Choose he A peaking on E and put Ek = S Π
{x: \Qk°h(x) I ̂  ε h~k] where ε > 0 is given in advance. Let g e Cb(S)
with | | # | | = 1. Choose by hypothesis gkeA equal to g on Ek with
110Λ| I ̂  M and put G = Σ*Z=i(Qk°h)-gk. Then by Lemma 1 GeBE,
\\G\\ ̂  SM and if xeS we have

\G(x)-g(x)\ =

£Σ* e2~lc = ε .
1

By Lemma 2 in [8] (i) follows.
The hypothesis that E is a peak set for A seems unnecessary, but

we needed it to apply Lemma 1. It would be of interest to get some
examples where Theorem 2 holds without assuming E to be a peak
set.

A case which deserves investigation is when A is an algebra of
generalized analytic functions ([5], Ch VII) viewed as a uniform algebra
on its maximal ideal space. Then BE is very easy to describe when-
ever E is a closed subset of the Siϊov boundary of A. In particular
the norm N(f) coincides with sup norm on X\E in this case.

We want to give two examples where a more detailed description
of the interpolation sets for BE can be given.

(a) Let U c Cn be a strictly pseudoconvex domain with C2

boundary and let X be the closure of U. Let A be the algebra A(U) =
{feC{X):f\u is analytic}.

In this case Theorem 2 is valid if E is any closed subset d U and
the interpolation set S can then also be characterized by the following:

(I): Each compact subset of S Π 3 U is a peak interpolation set
for A,
and

(II): Sf] U is an interpolation set for H~(U), the algebra of all
bounded analytic functions in U.
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For a proof of this note that (i) => (ii) in Theorem 2 holds whenever
E is a closed G> That (ii) => (II) is a simple normal family argument
and I also follows from (ii) by a result of N H. Varopoulos [11] and
since each xedΐl is a peak point for A(U) in this special case.

To obtain (i) from (I) and (II) one can argue as in the proof of
Theorem 2.2 in [10] To use that proof one needs an approxima-
tion result similar to Theorem 2.1 in [10]. This nontrivial result is
contained in a recent work of R. M. Range [9j.

(b) Assume A is a Dirichlet algebra on its Silov boundary Y.

Let E be a peak interpolation set for A and let S c X\E be
closed in the relative topology and assume S\ Y countable. Then one
can prove that S is an interpolation set for BE if each compact subset
of S Π Y is an interpolation set for A and if for some constant C the
following result holds: If P is a nontrivial Gleason part for A and
S Π P = zu z2, and au a29 are numbers such that \ak\ <* 1 for
k = 1, 2, there exists / e H°°(P) such that /(zfc) = αA for & = 1, 2,
and I/I ^ C on P. (For the necessary definitions see [5] on page 34,
142 and 161).

Using this hypothesis and the Wermer-Glicksberg decomposition
([5], Thm. 7.11, p. 45) we can prove that S U E is an interpolation
set for A. This is done in the same way as Glicksberg proves Theo-
rem 4.1 in [7]. But then S is an interpolation set for BE by Theorem
2.

In [8] Heard and Wells described an explicit method for con-
structing infinite interpolation sets for B[x] if x e X is a non-isolated
peak point for A. Their method didn't depend on Carlesons characteri-
zation of the interpolating sequences for H^(D).

We indicate here how the polynomials {Qk} can be used for a
similar construction avoiding an unnecessary hypothesis about con-
nectedness which Heard and Wells assumed. ([8], Theorem 3).

THEOREM 3. Let xe X be a peak point for A and Pc X\{%} a
set which contains x in its closure. Then an infinite interpolation
set for B{x} contained in P can be constructed.

Proof. Choose e > 0 and f eA peaking at x. For k = 1, 2,
choose numbers nk and mk such that nk < mk < nk+1 and put Hk =
Σ?jf Qj°f- Using Lemma 1 it is easy to see that we can arrange it
such that the sets Ek = {x: \Hk(x)\ ^ ε2~k} and

Bk = PΠ{x:\Hk(x) — 11 < e2~*}

are nonempty for k = 1, 2, and that Et Π E5 = 0 if i Φ j .
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If we choose xk e Bk for k = 1, 2, then S = {x^i is an inter-
polation set for B[x}. For if g e Cb(S) and we put G = ΣΓ g(%k)Hk then
GeB{x], \\G\\ £3\\g\\ by Lemma 1 and \G - g\ < ε\\g\\ on S.

Comments on Theorem 2:
We want to point out that the hypothesis that E be a peak set

cannot be omitted. If A is any uniform algebra for which there
exists an infinite interpolation set F not meeting the Silov boundary,
one obtains a counterexample by taking E to be a limit point of F
and S = F\E. For an example of such an algebera A we refer to
Theorem 2.8. in [1]. On the other hand A. M. Da vie has recently
proved (private communication) that in case A is the algebra R(X)
and X is a compact plane set, Theorem 2 is valid without assuming
E to be a peak set.
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