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MULTIPLIERS OF TYPE (p,p)

KELLY MCKENNON

It will be shown in this paper that the Banach algebra
of all continuous multipliers on LP(G) (G a locally compact
group, pe [0, oo[) may be viewed as the set of all multipliers
on a natural Banach algebra with minimal approximate left
identity.

Let G be an arbitrary locally compact group, λ its left Haar
measure, and p a number in [1, oo[. Write 33P for the Banach algebra
of all bounded linear operators on Lp and write ΈSlp for the subset of
2% consisting of those operators which commute with all left trans-
lation operators; elements of Ttp are called multipliers of type (p, p).
If A is a Banach algebra, then a bounded linear operator T on A such
that T(a b) — T(a) b for all α, be A is called a multiplier on A; write
m(A) for the set of all such. By Coo will be meant the set of all
continuous complex-valued functions on G which have compact support.
A function / in Lp such that for each g in Lp, the function g*f(x) =

g{t)f{t~ιx)dX{t) exists λ-almost everywhere, g*f is in Lp, and || g*f\\p ̂
g\\p k where & is a positive number independent of g, is said to be

p-tempered; write Lp for the set of all such. Evidently Lp is closed
under convolution and Coo is a subset of Lp. Thus, for each / in L\
and h in Coo, there is precisely one operator W in 23̂  such that
W(g) = g*f*h for all g in Lp; write %p for the norm closure in %ίp of
the linear span of all such W. The principal result of this paper is
that %o is a Banach algebra with minimal approximate left identity
and that m(2tp) and Έip are isomorphic isometric Banach algebras.

THEOREM 1. Let f be a function in Lp and k a positive number
such that | |0*/||p ^ \\g\\p-k for all g in Coo. Then f is in Lι

v.

Proof. First of all, suppose that h is a function in Lγ Π Lp. As
is well known, h*f is in Lp and ||/&*/||p ^ || A||i |l / IIP Let {hn} be a
sequence in Coo which converges to h in the Lp and Lλ norms both.
It follows from the above that {hn*f} converges to h*f in Lp. This
fact and the hypothesis for / imply

||A*/||p = l im| |Λ Λ */ | | p ^imi | | fe Λ | | 1 , .A= \\h\\p-k .
n n

Let h be now an arbitrary function from Lp. We may assume
that h vanishes off some σ-finite set A. Let {An} be an increasing
nest of λ-finite and λ-measurable subsets of G such that their union
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is A. Let for each neN, hn be the product of h with the charac-
teristic function of An. Let π5 (j = 0, 1, 2, 3) be the minimal non-
negative functions on the complex field K such that z = Σϊ=o ίjπ3 (z)
for each z e K.

Fix j in {0,1, 2, 3}. For each xeG, define the measurable func-
tion wx in [0, oof by letting wx{t) = π^h^ fit^x)] for all teG. For
each xeG and neN, define the measurable function wx

n in [0, oo]σ

by letting wx

n(t) = πό[hn{t)-f{t~ιx)\ for all teG. Since the sequence
{wx

n} converges upwards to wx for each xeG, it follows from the
monotone convergence theorem that lim^ I wx

ndx = I wxdX. Define the

function F in [0, oof by letting F(x) = \ wxdX for all xeG. For each
J C

neN, define the function Fn in [0, °of by letting Fn{x) = I w dλ for
all x G G. Thus, {FJ converges upwards to F at each point x e G.

For each neN, hn is in Lx n Lp; it follows that π^h^f] is in
Lp, and so equals ^ a l m o s t everywhere. Hence, each Fn is measur-
able whence F is measurable. Further, by the monotone convergence
theorem and the inequality which concludes the initial paragraph of
this proof,

\\F\\p = \im\\F%\\9
n

= lim || πλK*f] \\r £ fim || A. /11, ^ fim || K ||, A; = || h \\P k .
n n n

Recalling that F(x) = 1 πj[h(t) f{t~ιx)]dt almost everywhere and j

was arbitrary, we see that h*f exists almost everywhere, is in Lp

and [|fe*/||p^ ||A||P 4Λ;. This proves that / is p-tempered.

The condition given in Theorem 1 for a function in Lp to be in
Lρ is clearly necessary as well as sufficient. Another such condition
was proved in [4], Theorem 1.3:

THEOREM 2. Let f be a function in Lp such that g*f is defined
and in Lp for all g in Lp. Then f is in Up.

For each feUp, there is precisely one operator Wfe%ίp such that

(1) Wf(g) = g*f

for all geLp. For feC00, we have as well (see [1] 20.13)

(2) \\Wf\\ ^ \ Λ-{p-1)lP\f\dX.

It is easy to check that



MULTIPLIERS OF TYPE (p, p) 431

(3) Wf.h= WhoWf

for all / and h in Lp.

THEOREM 3. The set SĈ  is a complete subalgebra of Έtp and it
possesses a minimal left approximate identity (i.e., a net {Ta} such
that ΊίΐnJI Ta\\ S 1 and lim || TaoT - T\\ = 0 for all T e 2 Q .

Proof. A simple calculation shows that, when / is in LI, then
Wf is in ΪUlp. Evidently, Wp is a Banach algebra; hence, 2tp is a
subset of 2ftp. That %p is a Banach space is an elementary conse-
quence of its definition. That %p is a Banach algebra is a consequence
of the fact that LP*CQO is closed under convolution.

For each compact neighborhood E of the identity of G, let fE be
a nonnegative function in CL which vanishes outside E and such that

\fEd\ = l. Directing the family of compact neighborhoods of the

identity by letting E > F when E czF, we obtain a net {fE} which
is a minimal approximate identity for Lλ. If {h7} denotes the product
net of {fE} with itself, then {hr} is again a minimal approximate
identity for Lγ and the net {Whγ} is in %v. Since A is unity and
continuous at the identity of G, we have by (2),

ίϊϊn || Wh || ^ ϊϊm
r r r

For feLl and g e Coo, (3) and (2) imply

Έ Ϊ I ϊ , . Λ v - Wg)oWf\

since limr \\g*hr — g\\x — 0 and since the net of sets {x e G: g*hr(x) Φg(χ)}
is eventually contained in some fixed compact set. Since LP*C00 gener-
ates a dense subset of §tp, we have lim 11 Wh © T — T \ \ — 0 for all
ΓeSί^. Thus, {Wh } is a minimal left approximate identity for %p.

We now turn to -£flp. We shall need a theorem proved in [3] 4.2.

THEOREM 4. Let μ and the elements of a net {μa} be bounded,
complex, regular Borel measures on G such that

( a ) l i m || μ a \ \ = \\μ\\
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and

( b ) lim l fdμa = I fdμ for each fe Coo .
α J J

Then, for each g e Lp (pe [1, oo[), Hmα || μa*g - μ*g \\p = 0.

COROLLARY. For each multiplier T in Έtp and each bounded,
complex, regular Borel measure μ, we have

( i ) T(μ*g) = μ*T(g)
for all g e Lp. In particular, for feLl9 we have

(ii) T(f*g) = f*T(g) .

Proof. Since T commutes with left translation operators, it is
evident that (i) holds when μ is a linear combination of Dirac measures.
Now let μ be arbitrary. Since the extreme points of the unit ball
of the conjugate space Co* (where Coo bears the uniform or supremum
norm) are Dirac measures, and since Alaoglu's Theorem implies that
the unit ball of CO* is σ(C0*, C00)-compact, it follows by the Krein-
Milman Theorem that there exists a net {μa} consisting of linear
combinations of Dirac measures such that the hypotheses (a) and (b)
of Theorem 4 are satisfied. By Theorem 4, we have limα || μa*g —
μ*g\\p = 0 for all g e Ln. This implies that limα || T(μa*g) - T(μ*g) \\p = 0
for all g e Lp. Consequently,

T{μ*g) - μ*T(g) | |, ^ lim || T{μ*g) - T(μtt*g) \\,

+ ϊuii I! T(μa*g) - μ*T(g) | |p = 0 + ϊϊm || μa*T(g) - μ*T(g) \\P = 0 .
a a

This proves part (i). Part (ii) is a special case of (i).

THEOREM 5. For each multiplier T in Mp and each function f
in Coo, the function T(f) is in Lp and Wτ{f) = ToWf.

Proof. Because / is in Lp, it follows from the corollary to
Theorem 4 and (1) that g*T(f) = T(g*f) = T<>Wf(g) for all g e Coo.
This implies that || g*T(f) \\P ̂  || Γ | | |l Wf \\ \\g \\P for all geCQ0.
Thus, by Theorem 1, T(f) is in Lp. Since Coo is dense in Lp, we
have that Wτ{f) = To Wf.

We purpose to identify the multipliers on 21̂ . To accomplish
this, we shall set down a general multiplier identification theorem.

Let B be a normed algebra with identity and let A be any sub-
algebra of B which is || Incomplete and which has a minimal left
approximate identity. Define $ΐ(B, A) to be the coarsest topology with
respect to which each of the seminorms α | | || (aeA) is continuous
where α | | b \\ = || δ α \\B for all b e B. It is known (see [3] 1.4. (ii)) that
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( 4 ) the map (α, b) • a-b is ®(B, A)-continuous

when a and b run through any [| | ̂ -bounded subset of B.

THEOREM 6. Let A and B be as above and suppose that the
following hold:

( i ) the unit ball Aγ of A is B(B, A)-dense in the unit ball Bλ

of B;
(ii) || b\\B = sup {|| b-a \\B: ae A,} for each be Bλ;
(iii) Bλ is S(J3, A)-complete.

Then m(A) is isomorphic to B.

Proof. By [3] 1.8. (iv), A is a left ideal in B. Define the map
Γ|->m(A) by letting Tb(a) = δ α for all beB and aeA. That T is
an algebra homomorphism of B into m(A) is easy to check. That T
is an isometry follows from (ii). That T is onto is a consequence
of [3] 1.12.

LEMMA 1. The unit ball of Stp is ^(9Jip, %p)-dense in the unit
ball of mp.

Proof. Let T be any operator in the unit ball of Wv. Let {Whγ}
be the minimal left approximate identity for %p chosen in Theorem
3. For each index 7, we know from Theorem 5 and (3) that T(hr)
is in Lp and Wh]oToWhγ = Whr°Wτ{hγ) = Wτ{hy)^r From (4), we see
that {WhioToWh'γ} converges to I o T ° J = T in ®{mpy Stp): in other
words, lim Wτ{hy)[hγ - T in St(mp, %p).

Thus, we must have lίm7 || TΓΓ(Λ )ΛΛ || ^ || Γ | | , as is easily seen.

But \ΈKr\\Wτ{hγ)*hr\\ =TΠϋr M T ΐ V T o l ί \ | | ^Tϊiϋrll ^ J Γ II Γ | | £ II Γ | | .
Thus,wehavel im Γ | |TΓ m r , i λ r | | = || Γ | | . It follows thatΊ im r | | Wnh^hr\\~ι

TΓr(,?),/ir = T in ffi(SKp, SI,). We have shown that T is the ®(Wlp, a p )-
limit of operators in the unit ball of 3tp.

LEMMA 2. Lei {Γα} δe αtιτ/ ^(S3P, %P)-Cauchy net in Ϊ8P such that
supα [| Ta 11 < co. TAew ί/̂ ere is an operator T in S3P such that limα Tα =
T in both the strong operator topology and the topology ^(3%, %p).

Proof. Let S be the subspace of Lp spanned by the set Lp*Lρ*COo.
If g is in Lp and {fey} is the net in Lρ*Coo constructed in the proof
of Theorem 3, then limr \\g*h, - g\\p = 0 (see [1] 20.15. ii). It fol-
lows that S is dense in Lp.

Let Σ ^ J i ^ i ^ i be a typical element of S where fόeLp1 hά^Lp,
and flτy e Coo (i = 1, 2, , m). Then T^ .̂,̂ . is in %p (j = 1, 2, , m)
so that, by hypothesis, the net {TaoWh *Oj} is \\ ||-Cauchy in S3,. Since
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Ta{fί*hj*gj) = TaoWhj*g.(fj) for each j = 1, 2, ••., m and each index
a, it follows that the net {Ta(fj*hj*gj)} is || I^-Cauchy for each j =
1, 2, •••, m. Thus, {Tβ(Σ?=i/i*^i*0i)} is || ||p-Cauchy and so has some
limit in Lp which we shall write as T0(£?=ifj*hj*gs). The operator
To IS —> Lp thus defined is clearly linear and, by the hypothesis
supα[[jΓα[[< oo, is also bounded. Since S is dense in Lp, To is the
restriction to S of a unique operator T in 33P. Since the net {Tα}
converges to T on the dense subspace S of Lp, and since supα 11 Ta \ \ <
oo, it follows that limα Ta = T in the strong operator topology.

Let / be any function in Z4*CΌ0. By hypothesis, the net {Ta°Wf}
is || ||-Cauchy and so has some || ||-liτnit V in 39,. For each g e Lι Π
Lp, we have

p,

V(g) = lim Tαo ft^) = l i m Γβ(flr*/) = T(g*f) - To ^ ( ^ .
a a

Since Lj Π Lv is dense in Lp., it follows that V = Γ° TF/. Thus^
l im β | | (Γ β - Γ)oW>|| = 0. Since {W>:/e L>C00} spans a dense subset
of gς and since supα || Ta || < oo, it follows that lim^ Γα = T in ^(85,, Stp).

THEOREM 7. Lei π | aftp-> SJ* δe de^wed by, for each TeMp,
letting the function πτ \ %p —> 35P 6β ^ίt βπ by πτ( W) = Γo TΓ /or αW

7Γ is α^ isometric algebra isomorphism Mp onto m(2tp)

Proof. We shall apply Theorem 6 for B = Wv and A = §!„. That
Sip has a minimal left approximate identity follows from Theorem 3.
That condition (i) of Theorem 6 is satisfied follows from Lemma 1.
That condition (iii) of Theorem 6 is satisfied follows from Lemma 2.
To invoke Theorem 6 and so prove Theorem 7, it will suffice to show
that | | T | | - sup{| |ToTF||: TΓeSl,, ||TΓ|| - 1} for each TeWlp.

Let then T be any multiplier in Mp. That || T | | ^ sup{|| To W\\:
TFeStp, || W\\ = 1} is obvious. Let ε be any positive number. Choose

feLp such that | | / | | , ^ 1 and || Γ(/) | | , > || T | | - ε / 2 . Let {Wγ} be a
minimal left approximate identity for St,. Then limr Wτ = I in
S(2Kp, %p) where I is the identity operator on Lp. By (4) we have
\imr To Wr= Tol= T in St(TtP9%). By Lemma 2 we know that
limr To Wγ = T in the strong operator topology. In particular, there
exists some index 7 such that || To Wr{f) - T(f) jj < ε/2. It follows
that

II To wr{f) ||p ^ II Γ ( / ) ||p - II T(f) - To Wr{f) II,

^ 11 -i 11 — O/^J — o/Zϊ — 11 JL 11 — ε ,

but | | T o T F r ( / ) | | p ^ | | Γ o ^ | | | | / l l , ^ l | Γ o T F r [ | , so that | | Γ o W r | | ^
|| !Γ|| - e. Since ε was arbitrary and || Wr \\ ̂  1, we have shown that
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|| T\\ = sup{|| Toψ\\: We A, \\ W\\ ̂  1}.

We shall identify Lρ and %p for several particular cases.

Case I. p — 1. Since Lι is a Banach algebra with 2-sided mini-
mal approximate identity, it follows that L[ = Lί and || Wf\\ = | | / | | i
for all feL^ Because L^C00 is dense in L19 it follows that %p is
isomorphic to Lt as a Banach algebra. Thus, in this case, Theorem
7 is the well-known fact that a bounded linear operator on Lx commutes
with all left translation operators if and only if it commutes with
all left multiplication by elements of Lt.

Case II. G is Abelian and p = 2. Let X be the character group of
G and θ the Haar measure on X such that | | / | | 2 = | |/ | | 2 for all fe L2.
In this case there is an isometric isomorphism ^ | M2 —• L^iX) which
is onto LW{X) and such that Ί\f) = f-f for all g e L2. Evidently,
L\ is just {feLzifeL^X)}. It is known that there is a net {ga} in
the set {/:/eC00(C)} such that \\ga\\oo = l for each index a and
lim ga(χ) = 1 uniformly on compact subsets of X. Consequently, the
set {Λ*/: heLl,fe Coo} is dense in the set {g e L2(X) Π L^(X): g vanishes
at co}, It follows that Sl2 is isomorphic in this case to {feLJpήi f
vanishes at co}.

Case III. G is compact and p Φ 1. In this case Lp is a convolu-
tion algebra ([2] 28.64). Thus, L\ = Lp and W may be viewed as a
non norm-increasing linear operator from Lp into %p. Since Co oc
Lpf]Lly it is not difficult to show that W is an isomorphism into %p.

Let feLp and choose a minimal approximate identity {/«} for Li
out of Coo. Then {/*/«} converges to / in Lp. Consequently, {W/ /α}
converges to TF/ in %p. All this shows that, in this case, %p is the
closure in ?dp of the set {Wf:feLp}.

Suppose now that G is also infinite. Then Lp has no minimal
1-sided identity (see [2] 34.40. b); since 2tp does have one, it follows
that W is not a homeomorphism. Since W is a continuous isomor-
phism, the open mapping theorem implies that W \ Lp —•* %P is not
onto %p.

Case IV. G is compact and p = 2. Let I7 be the dual object of
G as in [2]. For the spaces <£Q(Σ), ^^(Σ), and (^(l7) and the norms
|| IU and || ||2 on these spaces, see [2] 28.34. It is an easy consequence
of [2] D. 54 that

(5)
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for all Ee ^(Σ). For the definition of the Fourier-Stieltjes transform
/ o f a function feL2, see [2] 28.34. By [2] 28.43, the mapping

^ L2-+(£2(Σ) is a surjective linear isometry and, by [2] 28.40, f*g = /o£
for all/, g e L2. Consequently, by (5),

( 6 ) 11^/11 = II/IU for all feL2 .

Since Coo c L2, it follows from [2] 28.39, 28.27, and 28,40 that the set
{f:feL2} is a dense subspace of @0(̂ ) Since Sip is just the closure
in S3p of the set {Wf:feL2}, it follows from (6) that %v is isomorphic
to (£0(Σ) as a Banach algebra.
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