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MULTIPLIERS OF TYPE (p, p)

KELLY MCKENNON

It will be shown in this paper that the Banach algebra
of all continuous multipliers on L,(G) (G a locally compact
group, p € [0, «o[) may be viewed as the set of all multipliers
on a natural Banach algebra with minimal approximate left
identity.

Let G be an arbitrary locally compact group, )\ its left Haar
measure, and p a number in [1, «o[. Write B, for the Banach algebra
of all bounded linear operators on L, and write I, for the subset of
B, consisting of those operators which commute with all left trans-
lation operators; elements of ¢, are called multipliers of type (p, p).
If A is a Banach algebra, then a bounded linear operator T on A such
that T(a-b) = T(a)-b for all a, be A is called a multiplier on A; write
n(A) for the set of all such. By C, will be meant the set of all
continuous complex-valued functions on G which have compact support.
A function f in L, such that for each ¢ in L,, the function g=f(z) =

g(Of(t'w)dN(t) exists N-almost everywhere, g«f is in L,, and || g«f]], <

l|gll,k where k is a positive number independent of g, is said to be
p-tempered; write L) for the set of all such. Evidently L! is closed
under convolution and C,, is a subset of L,. Thus, for each f in L!
and & in C,, there is precisely one operator W in B, such that
W(g) = g=f=h for all g in L,; write 2, for the norm closure in B, of
the linear span of all such W. The principal result of this paper is
that [, is a Banach algebra with minimal approximate left identity
and that m(%,) and M, are isomorphic isometric Banach algebras.

THEOREM 1. Let f be a function in L, and k a positive number
such that || g=fll, = |l gll, &k for all g in Cy. Then f is in L.

Proof. First of all, suppose that & is a function in L, N L,. As
is well known, h«f is in L, and || h«f|l, < || 2||,*|| f|l,» Let {h,} be a
sequence in C,, which converges to % in the L, and L, norms both.
It follows from the above that {&,xf} converges to hxf in L,. This

fact and the hypothesis for f imply

[ ef flp = Y [[ e, = U ([ B [k = (LRl F

Let # be now an arbitrary function from L,. We may assume
that % vanishes off some o-finite set A. Let {A4,} be an increasing
nest of \-finite and A-measurable subsets of G such that their union
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is A. Let for each ne N, h, be the product of » with the charac-
teristic function of A4,. Let n; (=0,1,2,3) be the minimal non-
negative functions on the complex field K such that z = 3}, i'7;(z)
for each z€ K.

Fix j in {0, 1, 2, 8}. For each z < G, define the measurable func-
tion w® in [0, «]¢ by letting w*(¢) = 7;[h(t)-f(t7*x)] for all te G. For
each x€ G and n € N, define the measurable function w? in [0, «]°¢
by letting wi(t) = 7;[h,.(¢t)-f(t7x)] for all te G. Since the sequence
{wz} converges upwards to w® for each xze€ @G, it follows from the
monotone convergence theorem that lim, | wzdx = | w®dx. Define the
function F in [0, «]° by letting F(x) = | w*d\ for all xe G. For each
n € N, define the function F, in [0, <]° by letting F,(x) = Swiﬁdh for
all xe G. Thus, {F,} converges upwards to F' at each point xcG.

For each ne N, h, is in L, N L,; it follows that x;[h,xf] is in
L,, and so equals F', almost everywhere. Hence, each F, is measur-
able whence F' is measurable. Further, by the monotone convergence

theorem and the inequality which concludes the initial paragraph of
this proof,

1 F[l, = lim [| £, I,
= lim || 7[R, fTl, = HnE [ hoxfllp < T [ By [lpok = [[ B[], K

n

Recalling that F(x) = Sﬂj[h(t) -f(t7'x)]dt almost everywhere and j

was arbitrary, we see that hxf exists almost everywhere, is in L,
and [|h«f|l, £ || k]l,*4k. This proves that f is p-tempered.

The condition given in Theorem 1 for a function in L, to be in
L is clearly necessary as well as sufficient. Another such condition
was proved in [4], Theorem 1.3:

THEOREM 2. Let f be a function in L, such that g=f is defined
and in L, for all g in L,. Then f is in L.

For each fe L', there is precisely one operator W,e ¥, such that
(1) Wi(9) = g+f
for all ge L,. For feC,, we have as well (see [1] 20.13)

(2) (Wi = [amoe i flan .

It is easy to check that
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(3) Wf*h = Who Wf
for all f and h in L.

THEOREM 3. The set A, is a complete subalgebra of IM, and it
possesses o minimal left approximate identity (i.e., a net {T,} such
that Tim, || T.|| £ 1 and lim || T,o T — T|| = 0 for all Te?L,).

Proof. A simple calculation shows that, when f is in L%, then
W, is in IM,. Evidently, M, is a Banach algebra; hence, 2, is a
subset of M,. That 9, is a Banach space is an elementary conse-
quence of its definition. That 2, is a Banach algebra is a consequence
of the fact that L!xC, is closed under convolution.

For each compact neighborhood E of the identity of G, let f; be
a nonnegative function in C,, which vanishes outside E and such that

fzdx = 1. Directing the family of compact neighborhoods of the

identity by letting E > F when E C F, we obtain a net {f,} which
is a minimal approximate identity for L,. If {k,} denotes the product
net of {fy} with itself, then {A,} is again a minimal approximate
identity for L, and the net {W,Lr} is in A,. Since 4 is unity and
continuous at the identity of G, we have by (2),

i [ W, || < Tm | 4~ rhdr < 1.
For fe L), and geC,, (3) and (2) imply
HTEII WioWr, — We,ll = H?n‘{l (W — W) Wel|
= T (W, = W, 111,11 = (T {1 g5h, — g1-2702Pa0)- | W,
= @Hg*hr — glli-sup {477707(2): gxh(2) # g@)}-[[ W, = 0

since Iim, ||g *k, — g||, = 0 and since the net of sets {x € G: gxh,(x) #g(x)}
is eventually contained in some fixed compact set. Since L.*xC, gener-
ates a dense subset of 2, we have lim||[W, T — T|| =0 for all
TeA,. Thus, {Whr} is a minimal left approximate identity for 9L,.

We now turn to I,. We shall need a theorem proved in [3] 4.2.

THEOREM 4. Let p and the elements of a mnet {{t.} be bounded,
complex, regular Borel measures on G such that

(a) Hm [[ 2, [ = [[ 2]
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and

(b) Iiamg fdg, = S fdg for each feCu .
Then, for each ge L, (pe[l, [), lim, || ttaxg — t*g ||, = 0.

COROLLARY. For each multiplier T in I, and each bounded,
complex, regular Borel measure p, we have

(1) T(peg) = pT(g)
for all ge L,. In particular, for fe L, we have

(ii)  T(f+g) = f=T(g)

Proof. Since T commutes with left translation operators, it is
evident that (i) holds when f is a linear combination of Dirac measures.
Now let ¢ be arbitrary. Since the extreme points of the unit ball
of the conjugate space C; (where C, bears the uniform or supremum
norm) are Dirac measures, and since Alaoglu’s Theorem implies that
the unit ball of Cj is o{(C%, Cy)-compact, it follows by the Krein-
Milman Theorem that there exists a net {g,} consisting of linear
combinations of Dirac measures such that the hypotheses (a) and (b)
of Theorem 4 are satisfied. By Theorem 4, we have lim, || tt,xg —
¢xgll, = 0 for all g € L,. This implies that lim, || T(tt.*xg) — T(¢=g) |l,=0
for all ge L,. Consequently,

| Tigeeq) = T(9) |1, = || L) — T(ptar)
+ T | T(ttr9) — 125 T(@) [l = 0+ T || 12,2 T(g) — g2 Ta) [}, = 0.

This proves part (i). Part (ii) is a special case of (i).

THEOREM 5. For each multiplier T tn M, and each function f
i Cy, the function T(f) is in L, and Wy, = To W,.

Proof. Because f is in L,, it follows from the corollary to
Theorem 4 and (1) that g+«T(f) = T(g=f) = To W(g) for all ge C,.
This implies that |[[g«T(f)[l, = [| Tll-|| W;|l-llgll, for all ge Cq.

Thus, by Theorem 1, T(f) is in L.. Since C, is dense in L,, we
have that W, = T-W,.

We purpose to identify the multipliers on 2,. To accomplish
this, we shall set down a general multiplier identification theorem.

Let B be a normed algebra with identity and let A be any sub-
algebra of B which is || ||z-complete and which has a minimal left
approximate identity. Define (B, A) to be the coarsest topology with
respect to which each of the seminorms °|| || (a € A) is continuous
where ¢||b|| = || b-a ]| for all be B. It is known (see [3] 1.4. (ii)) that
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(4) the map (a,b) — a-b is K(B, A)-continuous

when a and b run through any || ||z-bounded subset of B.

THEOREM 6. Let A and B be as above and suppose that the
Sfollowing hold:

(1) the unit ball A, of A is &(B, A)-dense in the wunit ball B,
of B;

(ii) [ b]lz = sup{||b-a ||z a€ A} for each be B;

(iii) B, is &(B, A)-complete.
Then m(A) is isomorphic to B.

Proof. By [3] 1.8. (iv), A is a left ideal in B. Define the map
T|— m(A) by letting T,(a) = b-a for all be B and ae A. That T is
an algebra homomorphism of B into m(A) is easy to check. That T
is an isometry follows from (ii). That 7T is onto is a consequence
of [3] 1.12.

LemmaA 1. The unit ball of U, is KM, A,)-dense in the unit
ball of IN,.

Proof. Let T be any operator in the unit ball of I%,. Let {W.}
be the minimal left approximate identity for 9, chosen in Theorem
3. For each index v, we know from Theorem 5 and (3) that T'(k,)
is in L and W, T W, = W, o Wrs, = Wrom. From (4), we see
that (W, cT-W, } converges to IoToI =T in &M, A,): in other
words, lim Wy, = T in &%, A,).

Thus, we must have lim, [[Wyu ., [l = | T, as is easily seen.
But T, || Wy | = Tm, || Wy o To W, || < Tim, | W, 1] 71| < || Tl
Thus, we have lim, || Wy, | =11 TI. Itfollows that lim, | Wy ) Il
Wirope, = T in $(,, A,). We have shown that T is the O, 2A,)-
limit of operators in the unit ball of %,.

LEmMA 2. Let {T.} be any &(B,, A,)-Cauchy net in B, such that
sup, || T. || < oo. Then there is an operator T in B, such that lim, T, =
T in both the stromg operator topology and the topology &(B,, A,).

Proof. Let S be the subspace of L, spanned by the set L,«L:xC,.
If ¢ is in L, and {&,} is the net in L!xC, constructed in the proof
of Theorem 3, then lim, ||g*h, — g, = 0 (see [1] 20.15. ii). It fol-
lows that S is dense in L,.

Let 37, fixh;xg; be a typical element of S where f;e L,, h; € L,
and g;€Cy (j=1,2 +--,m). Then W, isin %, (j=1,2, -+, m)
so that, by hypothesis, the net {T.c W, ., }is (| [[-Cauchy in %B,. Since
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To(fixhi*g;) = Tao Wi, (f;) for each j=1,2,++.,m and each index
«, it follows that the net {T,.(f;+h;*xg;)} is || ||,-Cauchy for each j =
1,2, -+, m. Thus, {T (3™, fixh;*g;)} is || |[,-Cauchy and so has some
limit in L, which we shall write as T,(3.7, fi*h;j+g;). The operator
T,|S— L, thus defined is clearly linear and, by the hypothesis
sup, || To || < oo, is also bounded. Since S is dense in L, T, is the
restriction to S of a unique operator T in 3B,. Since the net {T,}
converges to T on the dense subspace S of L,, and since sup. || 7. || <
oo, it follows that lim, T, = T in the strong operator topology.

Let f be any function in L:xCy,. By hypothesis, the net {T,o W}
is || ||-Cauchy and so has some || ||-limit V in B,. For each ge L, N
L,, we have

Vig) = lim Too Wi(9) = liam Tu(g+f) = T(gxf) = To Wi(g) -

Since L, N L, is dense in L,, it follows that V = T-W,. Thus,
lim, || (T, — T)oW,|| = 0. Since {W,: fe L,+C,} spans a dense subset
of 2, and since sup, || T, || < <, it follows that lim, T, = 7T in &(5B,, U,).

THEOREM 7. Let 7|, — Bj» be defined by, for each TeM,,
letting the function 7,|%,— B, be given by (W) = T-W for all
We,. Then m is an isometric algebra isomorphism M, onto m(,).

Proof. We shall apply Theorem 6 for B = I, and A = %,. That
2, has a minimal left approximate identity follows from Theorem 3.
That condition (i) of Theorem 6 is satisfied follows from Lemma 1.
That condition (iii) of Theorem 6 is satisfied follows from Lemma 2.
To invoke Theorem 6 and so prove Theorem 7, it will suffice to show
that || T'|| = sup (|| T- W||: We2,, ||W]| = 1} for each T e M,.

Let then T be any multiplier in M,. That || T|| = sup{|| T- W|]:
We?l,, || W|| = 1} is obvious. Let ¢ be any positive number. Choose
feL, such that || f|[, <1 and || T(f) |, >|| Tl — ¢/2. Let {W,} be a
minimal left approximate identity for 9,. Then lim, W, =1 in
KM, A,) where I is the identity operator on L,. By (4) we have
lim, TeW, = TeI =T in &M,, A,). By Lemma 2 we know that
lim, To W, = T in the strong operator topology. In particular, there
exists some index 7 such that || To W,(f) — T(f)|] < ¢/2. It follows
that

I T WDl 2 [T Ml — 1T — ToW() I,
2Tl —¢2—¢e2=|T|l-¢;

but || Te W (f)ll, < | Te W, |-l fll, < || ToW,|l, so that || ToW,| =
| T|| — e. Since ¢ was arbitrary and || W, || < 1, we have shown that
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I T[] =sup{||T-W|: WeA,| W| =<1}
We shall identify L! and 2, for several particular cases.

Case I. p =1. Since L, is a Banach algebra with 2-sided mini-
mal approximate identity, it follows that L! = L, and || W,|| = || f .
for all fe L,. Because L,xC, is dense in L, it follows that 9, is
isomorphic to L, as a Banach algebra. Thus, in this case, Theorem
7 is the well-known fact that a bounded linear operator on L, commutes
with all left translation operators if and only if it commutes with
all left multiplication by elements of L,.

Case II. G is Abelian and p = 2. Let X be the character group of
G and 6 the Haar measure on X such that || £, = || /]|, for all fe L,.
In this case there is an isometric isomorphism | M, — L.(X) which

is onto L.(X) and such that 1/’(.\7”) = T-f for all ge L,. Evidently,
Lt is just {fe L, fe L.(X)}. It is known that there is a net {9.} in
the set {f:feCyn(G)} such that |/ g.|l. =1 for each index a and
lim g,(y) = 1 uniformly on compact subsets of X. Consequently, the

set {i*\f: he L, feCy} is dense in the set {g € L,(X) N L.(X): g vanishes
at o}. It follows that U, is isomorphic in this case to {fe L.(®): f
vanishes at <o}.

Case 1II. G s compact and p = 1. In this case L, is a convolu-
tion algebra ([2] 28.64). Thus, L' = L, and W may be viewed as a
non norm-increasing linear operator from L, into 2,. Since C,C
L, N L, it is not difficult to show that W is an isomorphism into 2,.

Let fe L, and choose a minimal approximate identity {f,} for L,
out of Cy. Then {f«f,} converges to f in L,. Consequently, { W, }
converges to W, in %,. All this shows that, in this case, 2, is the
closure in B, of the set {W,: fe L,}.

Suppose now that G is also infinite. Then L, has no minimal
1-sided identity (see [2] 34.40. b); since 2, does have one, it follows
that W is not a homeomorphism. Since W is a continuous isomor-
phism, the open mapping theorem implies that W|L,— %, is not
onto A,.

Case IV. G 1is compact and p = 2. Let X be the dual object of
G as in [2]. For the spaces @,(2), €.(2), and &,(2) and the norms
[| ll. and || ||, on these spaces, see [2] 28.34. It is an easy consequence
of [2] D. 54 that

(5) Ell. = sup{l| Ao E|l: AcCy(2), [[A]. = 1}
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for all Fe@_,(2). For the definition of the Fourier-Stieltjes transform
7 of a function fe L, see [2] 28.34. By [2] 28.43, the mapping
™ L,— §,(3) is a surjective linear isometry and, by [2] 28.40, ]{*3 = fog
for all f, ge L,. Consequently, by (5),

(6) | Wil = || fll. forall felL,.

Since Cy C L,, it follows from [2] 28.39, 28.27, and 28,40 that the set
{ f: feL,} is a dense subspace of §,(Y). Since 2, is just the closure
in B, of the set {W,: fe L,}, it follows from (6) that U, is isomorphic
to E,(Y) as a Banach algebra.
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