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WEIGHTED CONVERGENCE IN LENGTH

WILLIAM R. DERRICK

This paper studies the lower semicontinuity of weighted
length

( * ) liminf 1 fds ^ \ fds ,

where the sequence of curves {γn} converges uniformly to the
curve γ, and / is a nonnegative lower semicontinuous function.
Necessary and sufficient conditions for equality in (*) are
obtained, as well as conditions which prevent γ from being
rectifiable. Requirements are given for the attainment of the
weighted distance, from a point to a set, and the families of
functions, for which weighted distance is attained or (*) is
satisfied, are shown to be monotone closed from below. Finally,
the solutions to the integral inequality

*) lr(*)-r(O)l s ( fds,
Jr[o,ί]

are shown to be compact if the initial values γ(0) lie in a
compact set.

Let 7 be a curve in Euclidean m-space Em and / be a real-valued

function on Em. The (/)-weighted length of 7, \ fds, has proved of

fundamental importance in establishing the path-cut inequality for
condensers [2], [3] and the relationship between capacity and extremal
length [5], [8]. Theorem (2.4) provides necessary and sufficient condi-
tions for weighted convergence in length, and (2.10) gives conditions
under which the weighted distance, from a point to a set, is attained.
Corollary (2.6) is a useful special case of [8, Lemma 3.3]. In (3.1) the
family of functions, for which weighted distance is attained, is shown
to be monotone closed from below, and Theorem (3.2) establishes the
compactness of the set of solutions to the contingent equation (**),
similar to a result of Filippov [4].

2. Convergence theorems*

NOTATION 2.1. Let Em denote Euclidean m-space consisting of
all m-tuples x = (xl9 , xm) of real numbers with inner product
(&, v) — Σ*U %iVi> for all x, y m Em and norm \x\ = <α?, x}1'2. Through-
out this paper, points in Em will often be denoted by the letters x
and y, whereas the letters s, t will be reserved for real numbers. The
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complex plane is designated by the symbol ^.
Let Int A, cl A, BA denote the interior, closure, and boundary of

the set A, respectively. The open ball of radius t centered at x will
be indicated by the expression B(x, t).

A function f:Em-+En is Lipschitz on the set A in Em if there
is a constant M such that

\f(x)~ f(y)\^M\x-y\,

for all x, y in A. If n = 1, the gradient of /, grad /, will exist
Lm — a.e. in A, where Lm is the m-dimensional Lebesgue measure.
The Hausdorff 1-dimensional measure in Em will be denoted by H1 (for
its definition and properties see [1]). Then Hι(A) represents the length
of the set A in Em.

DEFINITIONS 2.2. Two functions 7: [a, b] -+ Em, 7* = [c, d] -> Em

are Frechet-equivalent if

infsup|7(£) - 7*(λ(ί))l = 0,
Λ,

where h: [a, b] —> [c, d] is a homeomorphism. A Frechet equivalence
class 7 of continuous functions into Em is called a curve in 2£m, and
each member of the class is called a parametrization of 7.

The length of a curve 7 is given by

Hί(j) = s u p Σ |7(ί{_i) — 7(ί|)| ,

where 7: [a, b] —> i?™ is any parametrization of 7 and TΓ is a partition
of [α, δ]. Note that £P(7) < £Γί(7), unless the set of multiple points
of 7 has iP-measure zero (see [7, p. 125]). A curve 7 is rectifiable
if H*(y) < 00. In this case we can write

Hi(v) =

A rectifiable curve can be parametrized with respect to arc-length
(see [6, p. 259]); we denote this parametrization by 7(s) Note that
|grad7(s)| = 1, H1 - a.e. in [0, m(j)], since \Ύ(S) - 7(8*) | ^ \s - s
implies that |grad7(s)| ^ 1, H1 — a.e., and

0

If / : Em —> E1 is a Borel-measurable function and 7 is a rectifiable
curve, define (as above)

\fdH1 = J V(7(ί)) I grad 7(01 cίί ,
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then in the event 7 is parametrized by arc length,

fdIP = f(7(s))ds .

r Jo

In particular, if 0 <S S ^ Hί(y), we define

[ fdH1 = \Sf(Ύ(s))ds .
JΠSl Jo

A curve 7 is locally rectίfiable if H*(7 0 cl B(0, k)) < 00, for all
k = 1, 2, 3, , where 7 Π cl B(0, k) are the subcurves of 7 with images
in cl B(0, k).

THEOREM 2.3. Let {Ύn(s)} be a sequence of rectifiable curves in
Em, such that Hi(yn) ^ L > 0 and 7«(0) —>70. Let ys be an accumula-
tion point of the set {7W(S)}, 0 < S ^ L. Then some subsequence {ynj}
converges uniformly on [0, S] to a curve 7 containing 70 and j s such
that for every nonnegative lower semicontinuous function f: Em —> E1,

(1) lim inf [ fdH1 ^ ( fdH1 .
^ ° ° J "/'%iL5] J r

Proof. Since all but finitely many points of {7W(S)} lie in
2?(7o, S + 1), so does 7<?. By selecting a subsequence and reindexing
we can assume 7»(S) —> 75. Each 7W is Lipschitzian with constant 1,
so {7W} is equicontinuous on [0, S], and uniformly bounded by |70 | +
S + 1. By Ascoli's Theorem, some subsequence {ynj} converges uni-
formly on [0, S] to a function 7: [0, S]-^Em. Clearly 7 is a curve
from 70 to 7S1 and is Lipschitzian with constant 1. Thus, |grad 7| ^ 1,
H1 — a.e., and by Fatou's lemma and the lower semicontinuity of /

lim inf ( fdH1 ^ Γ l ί m i n f /(? (t))dt >
i->~ Jr W i C5] Jo i->co % J

S \Sf(v(t))dt ^ [ /ώίfx.
Jo h

COROLLARY 2.4. Assuming the hypotheses in Theorem (2.3), the
condition

(2) lim Γ|grad yn.(t) - grad τ(ί) |dΐ = 0 ,
i-00 Jo J

(3) lim ( fdH1 =
i->°°Jr% i[5]

for every continuous function f: Em -+ E1.
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Proof. Let M be a bound for / on B(y0, S + 1). Given ε > 0,
the uniform convergence of {Ίnj} and (2) imply that, for sufficiently
large j ,

\ fdH1 - \ fdW ^ Γ foΎ - foΊ\\gΐ^Ί \dt
rnj h Jo J

^ e(S + Λf) .

Thus (2) implies (3). Conversely, if / ΞΞ 1, then

S = limf dH1 = Γ | grad7(ί) |dί ^ S ,
i—J?-wi[5] Jo

and it follows that | grad 7 | = 1, H1 — a.e. By the triangle inequality,

I grad ynj — grad 7 |2

= 4 - | grad Ύnj + grad 712 ^ 4(2 - | grad yn. + grad 71) ,

so Schwarz's inequality yields

( 4) Γ f J grad 7^. - grad 71 dtϊ ^ 4S^2S - Γ | grad 7n,- + grad 71 dί) .

But {ynj + 7} converges uniformly to 27 on [0, S], so Theorem
(2.3) implies

(5) liminf Γ[grad7Λ, + grad7|dί ^ 2? |grad7|dί = 2S .
j-*oo Jo J Jo

Combining equations (4) and (5) we find

0 <£ lim inf ( i | grad 7». — grad 71 dί)
i-»oo \Jθ ^ /

/ r s \2

^ lim sup (1 I grad 7» — grad 7\dt)
j->oo \ J θ ° J

= AS (2S - lim inf ΓI grad j n . + grad 71 dt) ^ 0 ,
\ i->oo Jo J /

which yields (2).

EXAMPLE 2.5. Let 7Λ: [0, 2π] —> ^ be given by 7Λ(s) = (eins)/n.
Note these functions converge uniformly to the constant function
y(t) = 0. Although (1) holds, (3) clearly does not, and

.(£) - grady(t)\dt = [2Z\eint\dt = 2π .
J

COROLLARY 2.6. Lei {7w(s)} be a sequence of rectifiable curves in
Em such that 7%(0) -* 70 and Ίn{sn) —> ys, 0 < sn ^ S < 00. Then there
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is a subsequence {7nj} and a curve 7 containing 70 and ys such that

(6) lim inf \ fdHι^\fdHι,
i-~ hnjίsnj~] h

for every nonnegative lower semicontinuous function f: Em —> E1.

Proof. Let ΊZ be the restriction of jn to [0, sn]. Extend 7* to [0, S]
by setting 7t(t) = 7*(sJ, for sΆ ^ t ^ S. Each 7* is Lipschitzian with
constant 1, so, as in Theorem (2.3), some subsequence converges uni-
formly on [0, S] to a curve 7 containing 70 and 7S, and having Lipschitz
constant 1. By passing to a subsequence, we can assume sn — >s* in
[0, S]. Then y(s*) = 7* since

17(8*) - Ίi3(sn)\ ^ \7(s*) - 7n* (5*)| + I** - ^ , ! — 0 .

For every ε > 0, sΛj. > s* — ε for large j, so by Fatou's Theorem

lim inf ί /d£P ^ lim inf Γ "/(τϊ-(ί))^

^ Γ*~f/(7(ί)dί ^ ( /diί 1 ,
JO Jϊls*~ε]

from which the result follows.

THEOREM 2.7. Let {7«(£)} &β α sequence of curves in Em such that
Hi(7n Π cl B(0, k)) SLk< °o, for all n, k = 1,2, •••, and 7.(0) -> %•
Then some subsequence {7nj} converges uniformly on compact subsets
to a curve 7 containing 70 such that

( 7 ) liminfί fdHι^\ fdH1 ,

/or ê er?/ nonnegative lower semicontinuous function f: Em —> Eι.

Proof. There exists an integer K such that 70 and all 7Λ(0) lie
in B(0, K). In each closed ball cl J3(0, k), k >̂ if, reparametrize a
restriction of 7W by arc length

?**: [0, sΛw] -> 7Λ ,

where 0 < sfe% g Lfc is either the first real number such that 7kn(skn)
lies in dB(0, k) or fl"i(7Λ), if no such number exists. If denumerably
many 7» He in some 5(0, ft) the proof follows by Corollary 2.6. Other-
wise, delete all yn which lie in 5(0, ft + 1) Then a subsequence of
{7(*+i)n(l)} converges to a point ^ in cl 5(0, if + 1), and Theorem 2.3
yields a subsequence {y(K+1)ni} converging uniformly on [0, 1] to a curve
71 containing 70 and p,. Delete all yn. lying in 5(0, K + 2). A sub-
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sequence of {7(̂ +2)̂ .(2)} converges to a point p2 in cl 5(0 + 2), implying
a subsequence, which we also denote by {7(̂ +2)Λi}> converges uniformly
on [0, 2] to a curve 72 containing 70 and p2. Continuing in this manner
we note that Ίk is an extension of 7y, for k > j , hence there is a
7: [0, 00) —• Em and a subsequence {7W.} obtained by Cantor's diagonali-
zation process such that {yn.} converges uniformly to 7 on compact
subsets of [0, co). By Theorem 2.3 we have that for every real number
S>0,

lim inf ί fdH1 ̂  \ fdH1 ,
j-,00 JrnΛS] JrίS]

for every nonnegative lower semicontinuous function, hence the proof
is complete.

REMARK 2.8. Observe, from the construction above, that 7 is
bounded if denumerably many yn lie in some .5(0, k), and is unbounded
otherwise, as a consequence of the hypothesis Hl(Ίn Π cl 5(0, k)) ^
Lk < °°.

Theorem 2.7 is true if we replace this condition by the requirement
that H*(yn Π cl 5(0, k)) < 00, for all positive integers n and &, since if
denumerably many Ί% lie in some 5(0, k) and no uniform bound exists
on their lengths, an argument similar to the rest of the proof above,
using curves of length ^ j , sequences of points {yn(j)}9 j = 1, 2, ,
and diagonalization, yields a subsequence {7̂ .} converging uniformly
on compact subsets of [0, <>o) to a curve 7 for which (7) holds. Of
course, 7 might then be a constant function as in Example 2.5.
Moreover, it is no longer true that 7 is unbounded if only finitely
many yn lie in each 5(0, k), as is seen in the next example.

EXAMPLE 2.9. In E2, select the points

n — 1 n — 1\ -, Λ n
) K = ( 1n n / \ ^ + 1

\ n +

Let Ίn be the polygonal arc obtained by joining the points al9 bly α2,
δ2, , an, bn9 cn be straight line segments in their given order. Clearly
fiΓi(7« Π cl 5(0, k))< oo, for all n, and 7n lies in 5(0, k) iff n g k - 2.
However, if we parametrize these arcs by arc length, then {yn} con-
verges uniformly on compact subsets of [0, oo) to the polygonal arc
7 joining the points al9 bu α2, 62,

LEMMA 2.10. Let K be a closed subsets of the bounded arcwίse
connected set A in Em, y a point in A — K, Γ the family of curves
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joining y to K in A, and f: Em —> E1 a positive lower semicontinuous
function. Then there is a curve 7/ in Γ such that

(8) ( fdH1 = inf [ fdH1 .

Proof. Assume the right side of (8) equals M< °o as otherwise
any 7 will do. Let {7*} be a minimizing sequence of curves in Γ.
Since f(x) ^ a > 0 on cl A, for sufficiently large n we have flϊ(7») ^
2M/a. Parametrizing these rectiίiable curves by arc length so that
7»(0) = y and Ύn(sn) belongs to K, for sn <* 2M/a, Corollary (2.6) and
the compactness of K imply the existence of a curve 7/ in Γ such
that

M ^ ί fdH1 ^ lim inf f fdH1 = M .

REMARK 2.11. If A is unbounded, the same result may be obtained
by requiring that the lower semicontinuous function / be bounded
below, by a positive constant, on A.

One may also weaken the requirement on the lower semi-continuous
function / by asking that it be nonnegative and satisfy

(9) Hι({x: f(x) < e}) = o(l) .

Then M > 0 and a minimizing sequence {yn} can be chosen, for M < oo
and sufficiently small ε, such that

Hi(Ύn) < o(l) + 2M/e .

The proof follows as before. Condition (9) can not be removed entirely
as is seen by letting A be the closed unit disk in &, K = dA, y = 0,
and / be the characteristic function on the complement of the set

{*(*): z(t) - (1 - r 1 ) ^ , 1 ^ t < oo} .

3* Some compactness theorems* Let 91 be the set of functions
/ : Em -> E1 for which Theorem 2.3 (2.6, or 2.7) holds, and S3 the set
of functions which permit the verification of Lemma 2.10. Clearly 21
and 35 properly contain the nonnegative and positive lower semi-
continuous function respectively, since the function values may be
changed on sets of ίΓ-measure zero without affecting (1) or (8).

THEOREM 3.1. Let {fk} be a nondecreasing sequence of functions
in % and f(x) = limkfk(x). Then f is also in 2t. The same result
also holds for 33 provided fx(x) ̂  a > 0 on cl A.

Proof. Let {7J be a sequence of curves satisfying the hypothesis
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of Theorem (2.3). Then by the Lebesgue monotone convergence theorem
and (2.3), we have

(10) f fdH1 £ lim sup (lim inf ί fkdHι) rg lim inf ί fdH1 ,

implying that / lies in 21. Let M equal the right side in equation
(8). There is nothing to prove if M = <>o, so let M< °o. For each
fk there is a curve yk such that

( fkdHι = inf ( fkdHι = Mk ^ M.
hk r h

Since

(11) M, = ( f dH1 < \ fjdH1 £Mkyj ^ & ,
J Tj J rk

the sequence {Mk} has a limit ikf * ^ M. Moreover

)rk

so the curves {yk} satisfy the hypothesis in Corollary (2.6). Hence
there is a curve 7 such that (6) holds for each/*. Thus by (10) and (11)

M ^ ( fdH1 ^ lim sup (lim inf ( fjdH1)

^ lim sup (lim inf Mk) = M* ̂  Λf .

Now let A be a subset of Em, 0 < S < ^, f: Em -> E?1 a nonnega-
tive lower semicontinuous function, and

®. = suf, S) = {7:7(0) G A, 17(8) - 7(0) 1 ^ f /dirι, 0 ̂  s ^ s } .
I his] )

Then ®^ is a subset of the Banach space of all continuous functions
on [0, S] with the sup norm.

THEOREM 3.3. If A is compact, then 2)^ is compact.

Proof. Let {yn} be a sequence of curves in ®^. By Theorem (2.3),
some subsequence, which will also be denoted be {yn}, converges uni-
formly on [0, S] to a curve 7, with 7(0) in A, and satisfies

[ fdH1 ^ lim inf ( fdH1 ^ | Ύ(S) - 7(0) |, 0 ^ s ^ S .

Reparametrizing 7 by arc length (Hi(j) ^ S) and extending it to
[0, S], as in the proof of (2.6) shows that 7 belongs to ®^.
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