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HOMOTOPY AND ALGEBRAIC if-THEORY

BARRY DAYTON

A notion of homotopy is described on a category of rings.
This is used to induce a notion of equivalence on the categories
of projective modules and to construct a iΓ-theory exact
sequence. The topological i£-theory exact sequence is then
obtained from the algebraic Ko, Kx sequence.

1* Homotopy* In this section we describe the homotopy notion
and the notion of equivalence it induces on the categories of projec-
tive modules.

A cartesian square of rings is a commutative diagram of rings

(*) Jλ, \
> Λ Q

where A = {(al9 α2) e Aγ x A2\fι(a^ = /2(α2)} and hiy h2 are restrictions
of the coordinate projections. We will further assume that fλ is sur-
jective. If S%Γ is a category of rings and F: Sf —* 3ίΓ is a functor
we call F cartesian square preserving if the functor applied to a
cartesian square gives a cartesian square.

DEFINITION 1.1. Let SΓ be a category of rings. A homotopy
theory Sίf for J ^ is an ordered quadruple (I, cQ, cl9 π) where I is a
cartesian square preserving functor and c0, ̂ : /—> 1^, π: 1^ —>I are
natural transformations such that co(A)π(A) = 1,1 = cι{A)π(A) for A e

For a homotopy theory £$f — (I, c0, cl9 π) on 3ίΓ and f,g:B—+A
morphisms in ̂ ί define / — g if there exists a morphism h: B-+IA
in J^~ such that / = coh, g — cjι\ h is called a homotopy of / to g.
Let = be the smallest equivalence relation on 3Γ(B, A) containing
— if / ~ g we say / is homotopic to g.

Note that a homotopy theory gives rise to a homotopy category,
i.e. a category whose objects are those of ,.yΓ and whose morphisms
are homotopy classes of morphisms.

Let £f be an arbitrary category and G: J%Γ —> =2f be a covariant
functor A homotopy theory £έf — (I, c0, clf π) on 3ίΓ is called compatible
with G if G(π(A)) is an isomophism for each A e 5ίΓ. Note that if
Sίf is compatible with G then G(c0) = G(O = G{π)~ι consequently if
f ~g9 then G(f) = G(g).
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For any ring A let E(A) denote the category of finitely generated
protective right A-modules. Given a ring homomorphism f: A—*B
denote by /: E(A) —> E(B) the covariant additive functor defined by
f(M) = M <&A B on objects M of E(A) and f(a) = a (x) 1 on morphisms
of E(A). It is well known that if M is A-projective then M®AB is
J?-projective.

If AQ9A19 -",An,B0,- -,Be are rings, if fiiAi-i-'+Ai and gi:Bi-1-+Bi

are ring homomorphisms, if Ao — Bo = A, An = Be = B and if /»/»_! •••/! =
^e^e-i ••• î> we denote by </χ, •• ,fjgι, •••, ge) the canonical natural
equivalence /» /i --• & &; it is straightforward to verify that

,9e\/fl, -",/n\ = //l, " ' , /n

that

g l 9 •••, g e

whenever h: B-^C and that

for fe: C —> A where the subscript M means that the natural equivalence
is evaluated at the module MeE(C).

DEFINITION 1.2. A homotopy theory ^f = (J, cQ, cl9 π) in 3ίΓ in-
duces an ^^-equivalence —^ in each category £(A), A 6 .^^ as follows:
given Λf, NeE(A) write ikΓ ~ îNΓ if there is a QeP(/A) such that
M ^ ôQ, -JV" ^ îQ and let = be the smallest equivalence relation on
the set of isomorphism classes of objects in E(A) containing ~ ^ If
M = ̂  iV we say that the modules are equivalent mod-^t

The homotopy theory β^ in j % ^ also induces an equivalence rela-
tion = ̂  in the set Iso(ikΓ, JV) of isomorphisms M —• iNΓ of A-projectives
by letting ^ 0 ^^r^i denote that there is an isomorphism θ: πM —>πN
such that

for j1 = 0, 1 and letting —^ be the smallest equivalence relation con-
taining ~ st? on the set Iso(M, N). If φo~^Φi we say the isomor-
phisms are equivalent mod έ%f.

Note that if Mf -~^-> M » JV > iV' are isomorphisms and if ^0 =

φι mod Jg^ then also μφoω — μφ,ω mod Sίf. It is not difficult to show
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that if /: A —• B is a morphism in 3£~ then M s iSΓmod Jg^ in f (A)
implies /M" = fN mod £{f in P(J5) and ̂ 0 ~ & mod 3ίf implies fφ0 =
/^mod ^ Γ in £(J5). It is also easily seen that if / = g: A—>B and
MeP(A) then /M = gM mod <£r in P(B).

Given a ring with unit R, an i?-algebra will mean a unitary iϋ-
algebra. If A is an iϋ-algebra, then α: i2 —• A will denote the unique
i?-algebra homomorphism such that α(l) = 1. In addition to the above
results we then have:

LEMMA 1.3. Let 3ίΓ he a category of R-algebras and R-algebra
homomorphίsms and let £$f = (J, c0, cjή be a homotopy theory on J%ΐ
Let f ~ g:A-+B in 3Γ, let M, Ne£(R) and let φ e Iso (άM, dN).
Then

\a, f I M \ b / N \a, g

in Iso (bM, bN).

Proof. We may assume f ~ g Letting h: A —+ IB be a homotopy
from / to g, define ω:πbM-^π$N by

ω =
6, πIN \a, hiM

It is easily verified that co shows that the two isomorphisms are
equivalent mod Sίf.

Equivalence mod £ΐf works well with cartesian squares. If (*) is
a cartesian square we can construct the fiber product category
E(A) xEUΰ)P(A2), [2, p. 358] in which objects are triples (M, φ, N)
where Me P{A^), Ne P(A2) and φ'.^M-^f^N is an isomorphism in
P(A0); and the morphisms (M, φ, N)-+(M', φ', N') are pairs (a, β)
where a: M-+M' e£(Ad, β: N-+ N' e£(A2) and φ\fa) = (ftβ)φ. By
Milnor's theorem [2, p. 479] the functor F: E{A) -+ P(AX) x P{AQ) P(A2)
given by F(M) = (h.M, (hJJhJ^M, h2M) and F{a) = (hγa, h2a) is an
equivalence of categories. Making this identification, the following
is a projective module analogue of a theorem on vector bundles. [1,
Lemma 1.4.6].

PROPOSITION 1.4. Let ^f = (/, c0, tjz) be a homotopy theory on
^Γ andj*) a cartesian square in 3ίΓ. Let Me E(A), Ne E(A) and
φ0 ~ φ,: AM-^λNmod £ίf. Then (M, φ0, N) = (M, φl9 N) mod J T in
£(A).

Proof. Assume φ0 ̂ ^ Φi and let ω: πf1M—»τtf2N show φo~^Φι-
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Define ω':ίf1πM-yίf2πN by

ft)' =

Since

IhΔ I//2

IAι JίU IA0

is by hypothesis also a cartesian square we have (πM, ω\ πN) e P(IA)
and direct calculation shows that Cj(πM, ω', πN) ρ& (M, φh N) for j =
0,1.

2* A connecting homomorphism* In this section we obtain an
explicit formula for a connecting homomorphism useful in constructing
algebraic if-theory exact sequences.

Let KQ, Kx be the algebraic if; functors [2, p. 445]. If 3ίΓ is a
category of iϋ-algebras and ϋJ-algebra homomorphisms define K^A) =
Ki(A)/lm Ki(a). If /: A —•> B is a morphism in 3ίΓ then f°a = b and
we let Ki(f): K^A) —• K^B) be the induced map. It is simple to verify
that Ko, Kx are functors on J%Γ and moreover that K^A) is isomor-
phic to the usual reduced group whenever A is an augmented ϋί-algebra.

THEOREM 2.1. Let £ίf be a homotopy theory on a category
of R-algebras compatible with Ko. Let

B >R A >R

Uo /1 Uo
•I ψ /. ψ

iJl > u^o Λ.! * -Γio

6β cartesian squares in J%7 A: ^ —+ A1 such that fh~g and
0. Then there is a unique group homomorphism 0: KQ(B) —> KQ(A) such
that

8[(StM, φ, N)] = IUM, φ(
LV \ b

u g /M

for M,NeE(R).

Proof. For Q = (b.M, ψ, N) e E{B) define

DQ = (aM, φ(^-) , N) 6 P(A) .
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Once one has established
( i ) If Q, & Q2 then DQ, ~ DQ2 mod 3έf.
(ii) D{QX 0 Q2) ™ DQX 0 DQ2

(iii) Z>(6Λf) - dM
(iv) every element of K0(B) is of the form [Q]

it follows easily that d is well defined, unique and a group homomor-
phism. Because proofs of assertions (ii)—(iv) are themselves straight-
forward and do not depend on homotopy, we will prove only ( i ) .
Suppose then that (a, β): {bxM, φ9 N) —• ($M', φ\ N') is an isomorphism.
Then we have φ' = ao(β)(φ)g(a~1). By Lemma 1.3

&i, gi *•

A direct computation gives

so

6lf

where

Therefore (using Proposition 1.4)

, N') = UM', ao(β)(Φ)(ψA /(7), JSΓΛ mod\ \b gl Ju gl M' \ \bl9 gl M

Since (7, β~ι) is an isomorphism from this latter module to

\ \bl9 glM J

the assertion ( i) is proved.

3* An exact sequence* In this section we use the homomorphism
of 2.1 and the standard Koy Kt exact sequence to construct a 5-term
exact sequence.

An ϋί-algebra A is called proper if the morphism K0(a): K0(R)—*
K0(A) is injective. We note that either of the following two conditions
is sufficient to insure that an iϋ-algebra A is proper:

(i) A has as an augmentation, i.e. there is a e: A —> R such that
ea = 1^
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(ii) R is a principal ideal domain and A is a commutative R
algebra.

LEMMA 3.1. Let (*) be a cartesian square of proper R-algebra.
Then there is an exact sequence

— K0(A)

> KM 0 KM > KM

which is functorial with respect to transformations of cartesian
squares.

Proof. Since

R >R

R >R

is a cartesian square, by [2, p. 481] we have the commutative diagram

0 0 0

Xι(Λ) -

I
K,(A) —

I
KX{A) ~

i
0

-> K^R) 0 KX{R)

1
i
I
0

i > #,(£)

I
I

1 • ^ ( A o )

I
0

> Ka(R) •

> Ka(A) >.

o ~

~ 1
0

K0(R) φ K,(E)

J
KQ{AX) Q)JC/Ao)

£o(Λ) Θ ̂ o(Λ)

i
0

• Λ.(Λ)

0

where the columns and the first two rows are exact. An easy chase
shows that the third row is exact.

We wish to give an explicit formula for the morphism d. For
this we have:

LEMMA 3.2. Let A} AQ and Aι be proper R-algebras and

f

be a cartesian square. Then the connecting homomorphism of 3.1 is
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given by

S[dQM, a] = \(aM, a(^J) , M\\ for MeE(R) .
LΛ \ a0 IM JΛ

Proof. Since the full subcategory of P{A0) with objects d0M, M e
P(R) is coίinal, .Ki(Ao) and hence K^AQ) is generated by elements of
the form [d0M, a] [2, p. 355]. But

3[α0M, a] =
\α, / , /'/if \ α0 /ifJ

- \(faM, (—^—) a(a'f''f) , SUM)] - [aM]
L\ \α, ε, ajM \ aQ IM JΛ

from [2, 4.3 p. 365] since [aM] e Im K0(a).
In order to apply 2.1 we need

LEMMA 3.3. Under the hypotheses of Theorem 2.1 the diagram

^ £ ^ 0 = 0

Proof.

aS'Ifi'M, a] = {(6, M,

^ / ) )] = 3[δ0Λί, a]

Also since ^o(-^i) = 0 it can be seen that if

[N] e K0(B), [N] = [(&>, φ, N)}, M, Ne P(R) .

Thus

Φ, 0 .

THEOREM 3.4. Let J%~ be a category of proper R-algebras and
be a homotopy theory on 3ίΓ compatible with Ko. Let
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r

(**)
R-

/
R
/ h

be a diagram in 3ίΓ where fh = g, all other squares commute and
the vertical squares are cartesian* If K^C^ = KQ(B^) = 0 then

KQ(C) ̂ ^K0(B) — K0(A)

is exact

Proof. From 3.1 and 3.3 we get a commutative diagram

1 /
/

K0(C)

KJB) K0(Bl)=0

KΛf)

where the rows are exact. A diagram chase gives the result.

4* The topological if-theory exact sequence* In this section
we use 3.4 to construct the topological i£"-Theory exact sequence.

Let R denote the real or complex numbers. For a compact
Hausdorff space X let CX be the ring of continuous R-valued functions
and for a continuous function/: X—> Yletf*: CY—>CXbe the induced
ring homomorphism. Denote the one point space by * and take 3ίΓ
to be the category of rings CX and ring homomorphisms. We will
consider ^ίΓ to be a category of C* = R algebras. Define J: J Γ —>
3ίΓ by JCX = C(X x /) where / denotes the unit interval and J(f) =
( / x 1)*. Define cQ,clfπ by i0*, if, π* where is:X—+I is given by
ij(x) = (a?, j) and π(x, t) = α?, TΓ: X x I-+X. It follows easily that Jg^ =
(J, c0, tu π) is a homotopy theory on J%Γ. We recall that Kξ{X) =
ifo(CX) where iΓ0

Γ is topological iΓ0 functor. If X is a pointed space
the reduced group as defined above coincides with the usual reduced
group. It follows from standard results on vector bundles [1, Lemma
1.4.3] and on the correspondence between vector bundles over X and
protective modules over CX that β^ is compatible with Ko

τ. Alterna-
tively it can be easily proved directly that if M, NeE(X) then M s
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AT mod £έf if and only if M & M.
We then have

THEOREM 4.1. Let X be a compact Hausdorff space, A a X a
closed subspace. Let SA, SX denote the suspensions of A, X respec-
tively. Then there is an exact sequence

KO

T(SX) > Koτ(SA) > KO

T(X/A) > Kί(X) > KO

T(A)

Proof. Consider the diagram

SX- — SA v XIA

where TX denotes the cone on X and h is any continuous function.
Applying the functor C we get a diagram of the form (*) and it is
not hard to show that the vertical squares are cartesian. Since TA
is contractible hi ~ j so i*h* = i*. Thus theorem (3.4) applies to
give the desired exact sequence.

The long exact iΓ-theory sequence follows in the usual manner
by splicing sequences of this form together.
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