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SOUSLIN'S CONJECTURE AS A PROBLEM
ON THE REAL LINE

A. P. BAARTZ AND G. G. MILLER

This paper is concerned with properties of real sets whose
existence is related to Souslin's conjecture. One of these
results is subsequently used to show that Souslin's conjecture
is second order determined, i.e., ( ^ h-2 SC) V {% \-2 ~ SC).

By Souslin's conjecture (SC) we mean: every linearly ordered set
with at most countably many pairwise disjoint intervals is separable.
(A linearly ordered set L is separable if it has a countable subset
such that between any two points of L there is a point of the subset).
We first display a subset of the power set of the real line R whose
existence is equivalent to ~ SC. Then we reformulate the conjecture
geometrically as a question concerning a single subset of R of a
certain type. Finally we point out that Souslin's conjecture is second
order determined.

E. Miller [4] proved that ~ SC is equivalent to the existence of
a Souslin tree, i.e., an uncountable tree of countable height and
countable width. A tree is a partially ordered set in which the set
of all elements below any given element is a chain. The height of a
partially ordered set P is the least cardinal m such that no chain in
P has cardinality greater than tn. A is an antichain if no two elements
of A are related. The width of P is the least cardinal π such that
no antichain in P has cardinality greater than π.

PROPOSITION 1.1. The existence of a Souslin tree is equivalent
to the existence of an uncountable collection of real sets such that

1. any two sets in the collection are either disjoint or one of them
is a subset of the other, and

2. if Ŝ  is any uncountable subcollection, then %? has two disjoint
members and two nondisjoint members.

Proof. Assume there is a Souslin tree S. Let / be a one-to-one
function from some uncountable subset of S into R. For each xeS,
let U(x) = {y: x ^ y), and let ^ = {f(U(x))ι x e S}. Then jT" has
the desired properties.

Conversely, if there is such a collection ^ , let A ^ B mean
β £ i , for A, 5 e ^ . Then ^ is a Souslin tree.

An application of Proposition 1.1 is found in §5. In the next
section we show how a Souslin tree can be represented as a single
subset of the line.
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2* We first represent certain binary relations* For this purpose
let G c R and denote by G* the set of all those points xeG which
are midpoints of a nondegenerate segment whose endpoints are both
in G. We shall call G* the set of midpoints in G. Define a relation
α on G* by setting

xay iff x Φ y and there exists zeG such that
y is the midpoint of the segment xz.

Note that xz stands for [x, z] or [z, x] according as x < z or z < x.

PROPOSITION 2.1. a is a {strict) partial order for G* iff for all
elements x, y, zeG* we have

A. (asymmetry) if x and y are the respective midpoints of yv
and xu, and if ueG, then v & G.

B. (transitivity) if y is the midpoint of xu and z is the midpoint
of both yv and xw, and if u, v e G, then also w eG.

The proof is immediate since no point is both midpoint and end-
point of the same nondegenerate segment.

THEOREM 2.2. Let δ be any antireflexive relation on a set P of
cardinality no larger than that of the continuum. Then there exists
a subset G of the real line for which the relation a defined by (2.1)
is isomorphίc to δ.

Proof. Let / be a one-to-one function mapping P into a Hamel
basis for R. Let

(2.2) U = {2f(q) - f(p): p,qeP, pδq}

and

(2.3) G = UU 2f[P] U f[P] U {0} .

For each pe P, f(p) is the midpoint of the segment 2f(p)0, whose
endpoints belong to G. Thus f[P] c G*. If yeG*, on the other
hand, then there exist distinct points x, zeG, such that 2y = z + x.
Also, yeG. Writing x = cxaγ + c2a2 and z = c3a3 + c4a4, with a{ e f[P],
we have

cγ = 2 and c2 = — 1 if x e U ,

(2.4) c3 = 2 and c4 = - 1 if z e U ,

02*-i £ {0, 1, 2} and c2k = 0 otherwise .

Assuming now that yeU,y = 2a—b, we have 4α - 26 = 2y —
ΣCitti' a n d since a Φ b, (2.4) implies that only c1 — 2 = c3, aί = a = α3
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is possible. But this leads to c2 = — I = c4,θ2 = b = a4, and hence to
z — x, which contradicts our assumption.

The cases y e 2f[P] and y = 0 similarly lead to the conclusion
z = x. Thus by (2.3) we have y e f[P], and hence G*f[P].

To see that / is an isomorphism, let p, qe P, pdq. Then x —
2/(q) — f(p) is a member of UczG, and f(q) is the midpoint of the
nondegenerate segment xf(p). Thus f(p)af(q). Conversely, if zay
in G* = /[P], say z = f(p), y = /(«), then x = 2f(q) - f(p)eG by
(2.1). We use (2.3) and the independence of f[P] to show that x e U,
and again the independence of f[P] to see that pδq.

Comment 2.3. An obvious generalization of Theorem 2.2 permits
us to represent an arbitrary antireflexive relation in a vector space
of sufficiently large dimension over a field of characteristic 5 or larger.
Here again "y is the midpoint of xz" means 2y = z + x, x Φ Z. For
characteristic smaller than 5 we might mention that f[P] Φ G*.

COROLLARY 2.4. Let P be any partially ordered set of cardinal
number no larger than that of the continuum. Then there exists a
subset G of the real line such that P is isomorphic to the partially
ordered set G* of midpoints in G.

This follows directly from Proposition 2.1 and Theorem 2.2.

We are now ready to apply Theorem 2.2 to trees. In a slight
restatement of 2.1, A becomes: no segment with endpoints in G is
trisected by points of G; B can be summarized by the phrase: G is
midpoint transitive. Henceforth we assume that G has these two
properties.

Chains in G* are generating subsets of G* in the sense that any
two distinct points x, y of a chain generate a segment with endpoints
in G, one of x and y acting as an endpoint of the segment, the other
as the midpoint; i.e. if u = 2y — x, v = 2x — y, then ueG or v e G.
We call a subset X of G* segment free (antichain) if every subset of
X of cardinality ^ 2 fails to be generating. X is free (from above)
in G provided that for any two distict points x, y e Xand any u, v, z e G,
z is not the midpoint of both the segments xu and yv.

Combining these notions with 2.1 we obtain our main result.
Width bounds the cardinality of segment free sets and height that
of generating sets in G*.

THEOREM 2.5. The existence of a Souslin tree is equivalent to
the existence of a subset G of the real line whose set G* of midpoints
in G is uncountable and satisfies
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1. no segment with endpoίnts in G is trisected by points of G,
2. G is midpoint transitive,
3. segment free subsets of G* are free in G,
4. segment free subsets of G* are countable,
5. generating subsets of G* are countable.

Proof. 1. and 2. imply that a is a partial order, by 2.1. 3. is the
tree property, and 4. and 5. together with the fact that G* is un-
countable make the tree G* into a Souslin tree. Thus the existence
of G implies the existence of a Souslin tree, and if a Souslin tree
exists, then G exists by 2.4.

4* In this section we conclude by applying a real line character-
ization of Souslin's conjecture to obtain a foundations result. In [2]
and [3] the continuum hypothesis is shown to be second order deter-
mined, i.e.,

{%- \-tCH) V (3T \-2~CH)

where 3? denotes Zermelo's axioms with the axiom of infinity and
CH the continuum hypothesis. The reader is referred to Kreisel and
Krivine [3] for a detailed discussion.

A modification of the proof in Kreisel and Krivine applies to
Souslin's conjecture:

PROPOSITION 4.1. Souslin's conjecture is second order determined,
i.e.,

Csr h-2SC) v {%r \~2 ~ SC).

Proof. Let Cω be the collection of all hereditarily finite sets
without individuals, and for neω, let Cω+n+1 = Cω+n U <0*(Cω+n), where
& denotes the power set. From Proposition 1.1, Souslin's conjecture
states that any collection of real sets which under set inclusion forms
a tree of countable height and countable width is countable. We may
thus canonically formulate Souslin's conjecture as follows:

[ I c ^(Cω+1) A (x e X A y e -3Γ-— xΠy^ΦVxciyVycioo)

A ((YdX A ((xeY Aye Y-+x Π y = Φ)

V (xeYAye Y-+ xayvya x))) — f ^ Cω)] — Ϊ^Cω.

This is expressed by means of quantifiers over Cω+3, since one-to-one
correspondences between subsets of Cω+2 are elements of Cω+3. Con-
sequently [3; p. 192] we have ( r h-2 SC) V (%T h-2 - SC).
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