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SLICES, MULTIPLICITY, AND LEBESGUE AREA

W. D. PEPE AND WILLIAM P. ZIEMER

For a large class of k& dimensional surfaces, S, it is
shown that the Lebesgue area of S can be approximated by
the integral of the k—1 area of a family, F, of k—1 dimen-
sional surfaces that cover S. The family F is regarded as
being composed of the slices of the surface S. In addition,
a topological characterization of a certain maultiplicity func-
tion is given. This multiplicity function when integrated
with respect to %k dimensional Hausdorff measure, yields the
Lebesgue area of f.

Suppose X is a smooth compact k& dimensional manifold and let
f: X— E™ be a continuous map into Euclidean n-space, k¥ < n, which
has finite Lebesgue area. Let u: E*— E' be a Lipshitz function
with Lipschitz constant no greater than one. In [7], it was shown
that if k£ = 2 or if the £ + 1 Hausdorff measure of f(X) is zero, then
the Lebesgue area of f, & (f), can be approximated by the integral of
the £—1 area of f restricted to the boundary of {x: u o f(x) < t}, pro-
vided that the function % has been chosen appropriately. Of course, the
important element of this problem is to give a reasonable interpreta-
tion to the concept of the k—1 area of f restricted to the boundary
of our open set. In [7], this was expressed in terms of the theory
developed by H. Federer [4]. It is the purpose of this paper to show
that a definition given by J. Cecconi in [1] can be used to obtain
results similar to those found in [7].

During the development of this paper, we were able to provide
a topological characterization of the multiplicity function which was
shown, in [4], to yield the Lebesgue area when integrated with
respect to k& dimensional Hausdorff measure. It turns out that this
characterization is not needed to prove the main theorem of this
paper, but we include its proof because of its independent interest.

2. Slices and Cecconi area. In this section we will give a defini-
tion of the k—1 area of f restricted to the boundary of an open set.
This definition is a slight modification of the one given by Cecconi
in [1]. The modification is desirable since our domain is taken to be
a smooth oriented compact k-manifold, X. Our development relies
heavily on the work of Federer [4] and consequently the notation
of that paper will be used here without change. Thus, a continuous
map f: X— E" has a monotone-light factorization f = #; o m, where
the light factor ~; is defined on the middle space M;. Moreover, if
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kE=2or H*"[f(X)] =0, (H*' denotes k¥ + 1 dimensional Hausdorff
measure) then there is current-valued measure g, defined on the
Borel sets of M, whose total variation [| ¢, is equal to <~ (f). If
T is a current, we will denote by:

M(T), the mass of T
F(T), the flat norm of T
0T, the boundary of T .

Finally, L, will denote Lebesgue measure on E* and B(x, r) will be
the closed ball with center # and radius 7.

DEFINITION 2.1. Let U be an open set in X. Then, the k—1
area of f restricted to the boundary of U, C(f, U) is defined as fol-
lows. Let {m;} be a sequence of open subsets of U whose boundaries
are smooth manifolds. Assume also that every compact subset of U
is eventually in every m,. Let f; be a sequence of smooth maps
defined on X that converge uniformly to f. Then

C(f, U) = inf {lim inf <(f, | bdry 7))

where the infimum is taken over all {z,} and {f;} as described above.
Here, &~ (f|bdry «;), is used to denote the Lebesgue area of f; res-
tricted to the boundary of =,.

DEFINITION 2.2. Let u: E*— E* be a Lipschitz function. Then
C(f; u, t) is defined to be C(f, U,) where U, is the open set

{x: wo flx) <t}.

LEmMmA 2.3. Let u;: E*—E' 1=0,1,2, --- be a sequence of
Lipschitzian maps such that w, = u, = «+- and lim, . u; = u,. Then

C(f; o, t) = liminf C(f; u;, t)

for every te K.

Proof. For te E' observe that the sets V,, = {x: u; o f(x) < t}
1=1,2 ..+, are nested and that their union is equal to V,,. For
each positive ¢, select a smooth map f; and an open set 7,cV,;, with
smooth boundary such that

(i) [filwy —f(x)| <" for all xe X

(if) [ (filbdrym) — C(f; u;,y 8)) [ <17

(iii) dist (closure 7;, X — V,,) < i~
Now, the sequences {7,} and {f;} will be admissible in the definition
of C(f; u,, t). Hence,



SLICES, MULTIPLICITY, AND LEGESGUE AREA 703
C(f; ty, ©) < liminf 2(f;|bdry 7;) = lim inf C(f; us, ¢) .

The following theorem was proved in [1], but for completeness,
we will exhibit a different and perhaps simpler proof here.

THEOREM 2.4. Let u: E™— E' be a Lipschitzian map with Lip-
schitz constant K > 0. Then

A OEANGERLIACR

Proof. It is easy to see using the techniques of Lemma 2.3 that
C(f; u, t) is lower-semicontinuous in ¢ and, hence, L, integrable. Now
select a sequence of C= maps {f;} such that f; converge to f uniformly
on X and such that #(f)) — £ (f). Choose a sequence of C* maps
{u;} decreasing to u with the Lipschitz constant of u; less or equal
to K +47'. Fixing ¢, then with ¢; = sup,.y | %; o f;(@)—u; o f(x) |, and
with ¢,(@) = u; o f.(x) + 7;, {9.} converges uniformly to u;of on X
and each g, is smooth and greater than u,; o f. Thus, for every ¢,

Ve = {#: gu(®) < GV, = {20 w; 0 f2) < B}

and for every compact subset K of V,, V,, contains K for m suf-
ficiently large. In addition, for almost every ¢, V,, . is a C* manifold
so the pairs f,, and V,, . approximate f and V, for almost every ¢ and

C(f; us, ) = lim C (f, Vit
(1) e

= H__n.lc(fm; u’i; t— 0',,,) .

m—oo

However, it is immediate that for smooth functions, f,, on open sets
with smooth boundaries, V., that

(2) C(fm, Vm,t) é g(f ‘bdryVm't) .
From [3, Theorem 6.18] with N(y, f) denoting the number of points
in f~'(y) (possibly o) follows

(3) Ll = | . N, fIdE= ) |
Combining (1), (2), and (8) and using Fatou’s lemma gives

(4) " ctiu, 9a L < lim

Mm—r00

5” S P, N @ L) dH " ()d L(?)

—oo

with P, = w;'(t — 0,). However, [5, Theorem 3.2.12] gives
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5) ||, N foaE=@aLe = || Nw, £ erad .| Quld &

where Q,, is the image of x under f,. As the Lipschitz constant of
u; dominates the gradient of u;|@Q,, (4) and (5) give

|” ciu,0d L < lim (K + )| N, fd B

m—oco

= lim (K + i) Z(f.)

m—>co

= (K + 1) =) -

The result now follows from Lemma 2.3.

In [7] if was shown that with \N(f; u, ) = >, M [op,(V)], where
the summation is taken over all components V of o '({x: u(z)<t}),
that an inequality holds which is similar to 2.2 where C(f; u, t) is
replaced by M(f; u, t). Moreover, it was also shown that if £ = 2 or
H**[f(X)] = 0, then

sup { | M3 w, 94L.0} = ()

where the supremum is taken over all Lipschitz functions u: £ — E*
whose Lipschitz constants are no greater than one. We will show in
Theorem 2.8 below that this result is valid with M(f; u, t) replaced
by C(f; w, t).

In the case k = 2, it was show that Cesari’s definition of length
[2,20.2] also worked satisfactorily in this theory. In [1], Cecconi
showed that C (f; u,¢) agreed with Cesari’s definition. Thus, in
Theorem 2.8, it will be only necessary to consider k& > 2.

DEFINITION 2.5. Let X be a compact oriented k-manifold and
suppose f: X — E* is continuous. For each ze M,, let 4(z, r) be the
component of £ [B(/(2), )] that contains z. Consider the induced
homomorphism on Cech cohomology groups,

HYE*, B* — B (4(2), 7)) o HYX, X — m7'(4(z, 1)) -

We assume the generators of these groups chosen to agree with the
orientations on X and E*. Then, f* maps a generator of one group
onto a multiple of the second. Call this integer d (2, r). Let

d,(®) = lim d,(z )
if this limit exists and is finite. If not, let d,(z) = o-.

DEFINITION 2.6. Let W be an open connected set in X and let
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fi: X—E* Suppose ye E* — f(bdry W), and choose 0 < r <1 so
that f(W)cB(y, r™) and f(bdry W) N B(y,r) = 0. Then d(f, W, y)
is defined as in 2.5 when the following is considered:

H*[B(y, v, B(y, r™) — By, »] Lo H(W, bdry W) .
Observe, that
(6) d(f, W, 9) = 5.,

where the summation is taken over all z in the set #7'(y) N m(W).
This equation is valid if ye E*—f(bdry W) and if each d,(z) < .

REMARK 2.7. Let f: X— E" be a continuous map with
L(f) < e

Suppose that p: E” — E* is an orthogonal projection and consider the
following diagram:

Z
X ik M, ! E*
h | |

It follows from [4, 3.8] that with C, = {z: »~'(z) is a non-degenerate
continuum},

(7) e[| (7H(Cy)) = 0 and  Ly(4.4(Cp) = 0

for almost all p: E*— E*. For such projections, it is easily seen
that the current valued measure corresponding to po f is hy(p, o ).
Thus, it follows from [4, 2.1 and 4.1] that for any Borel set EcM,,

(8) hie 1) B () = | |3 d,.,2)d Lutw)

where A(y) = {2: 2€ 4} (y) N h(E)} and where w, = p*(dx, A -+ Adz,).
However, in view of (7), it follows that for L, almost all yc E*,

(9) 5 ds® = 3 4., (@)

where B(y) = {z:2€ (po 4)~'(y) N E}. Observe that if E is an open
connected set, W = m7'(F), and if L,[p o f(bdry W)] = 0, then (6)



706 W. D. PEPE AND WILLIAM P. ZIEMER
implies
(10) dpof, W,y) = % dy.1(2)

for L, almost all yc E*.

THEOREM 2.8. Let f: X— E™ be a continuous map with finite
Lebesgue area and let k > 2 with H*'(f(X)) = 0 then

sup Sj C @ f,wdx = Z(f, X)

where U s the set of all real valued Lipschitzian maps on E™ with
constant less or equal to one.

Proof. In [7], it was shown that for every e > 0, there is a
function u: E" — E* with Lipshitz constant one such that

(1) IR AL OETS

The function w was obtained in the following manner: a certain
family of closed disjoint w-balls, B; = B;(y;, r;) with center y; and
radius r;, was produced and % was defined by

u(@) = 3 u@)
where u;(x) = —dist (v, E» — B;). Thus,
MF3 &) = SMF5 e ), 0 <t < o,

and the same equality holds with ) replaced by C. At each point
y; there is a k-dimensional plane P; containing y; that describes the
essential tangential behavior of the set f(X). Let p;: E"— P; be
the orthogonal projection. Let Z(t) be the set of components of
& {x: w(x) < ¢}]. In order to establish (11) it was shown in the
proof of [7, Theorem 3.3] that

(5 5 MEPpNALG > 2() —e.

J =1 VSZj

Thus, in order to prove our theorem, it will suffice to show that for
almost every ¢,

12) C(f, W) = M[oP,p, (V)] .

Here it is understood that V is a component of /~*(B) where B is
an n-ball of radius ¢ in E” whose center is at ¥ and that p: E*— P
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is the orthogonal projection where P is an approximate tangent
k-plane at y as desctibed in (11) of [7]. Also, W = m7 (V) and for
simplicity, take y = 0.

To this end, we will consider only those ¢ for which

13) H* [{y: dist (y,0) =} N f(@)] = 0.

From [5, Theorem 2.10.25] it follows that this will be true for almost
all ¢. From the definition of C (f, W) it follows that there is a
sequence of regions 7, C W and Lipshitzian maps f,.: X — E" such
that

lim & (f,. | bdry z,) = C(f, W) .

m—»co

Let T, denote the integral k-current f,.(7,) and observe that
(14) M@T,) = & (fu|bdryz,)

since #(f,|bdry ,) can be expressed as the integral of an elemen-
tary counting function, [3, Theorem 6.18]. Without loss of generality,
we may assume that C(f, W) < «, and therefore, there is a constant
K > 0 such that

(15) MOET)<K, m=12 «--.

If the orthogonal projection p: E* — P does not satisfy the con-
ditions of Remark 2.7, select a projection p*: E™ — P that does. Let
S, = »#(T,) and observe that (15) implies that M (9S,) is a bounded
sequence. since S, is an integral k-current in E*, the isoperimetric
inequality [5, Theorem 4.5.9(32)] is applicable and we can conclude
that N(S,) is a bounded sequence. Hence, by the compactness
theorem for integral currents [5, Theorem 4.2.17] there is an integral
current S and a subsequence of the S, such that F(S, — S)— 0.
But for k-currents in E*, the flat norm agrees with the mass norm
and thus

(16) M@, —S)— 0.

Since S is an integral k-current in E*, there is an integer valued
density function s: E* — E* such that for each C*~ differential k-form
@ with compact support,

S@ =|s-2.

The density function s, associated with S,, is s,(¥) = d(D* o fr, T, ¥)
and (16) implies



708 W. D. PEPE AND WILLIAM P. ZIEMER

S |8y — 8|dL,— 0.
Ek

In view of (18), it follows [6, p. 131] that as m — oo,
$a(y) — d(p* o f, W, y)
for L, almost all y. Thus,
s(y) =d(p*f, W,y) for L, almost all y.
Consequently, by Remark 2.7,
S = (i o 1) (V)] = pE[(V)] -

Let \* be the Lipschitz constant of p*. Then, from (14) and the
lower semi-continuity of mass,

C(f, bdry W) = limsup M(@T,) = (\*)~* lim sum M (0S,,)
= (V)7 M(0S)
= (V)P M©@pi (V)] .

Now, in order to establish (12), note that a sequence of projections
pii E*— P can be selected that satisfy the conditions of 2.7 and
that converge to the orthogonal projection p. Then, A;— 1 and

lim inf M [0pn, (V)] =2 M [0P,1,(V)] -
This completes the proof of the theorem.

3. Maultiplicity and topological degree. Let f: X — E™ have
finite Lebesgue area and suppose that k¥ =2 or H*'[f(X)] = 0.
Then, it follows from [4, 2.1] that there is a Hausdorff k-rectifiable
set RC E" and a Baire function v defined on M,, such that for || z,||
almost all ze My, v(z) is a simple k-vector that lies in the approximate
tangent k-plane to R at #x2). For H”* almost all ye R, let z(y) be
a simple k-vector of unit norm that lies in the approximate tangent
plane to R at y. It can be assumed that = is a H* measurable
function. Further, for || z,|| almost all ze M,, |v(z)| is an integer
and

Il @ = v |aH*@)

for every Borel set AcM,;. The following theorem shows that |v(z)|
can be described topologically.

THEOREM 3.1. For almost all projections p: E™ — KE*,



SLICES, MULTIPLICITY, AND LEGESGUE AREA 709

|dpr [M(D)] | = [v(2) |
for || 1| almost all ze M,.
Proof. Choose p: E*— E* as in 2.7 and define

P(2) = dyos [MR)] [ P[T(7(2)] |

for || ¢s|| almost all ze M,. Let D be the set where v(2) = 0 and A
any Borel subset of D. Let

F(y) = 3 dps [M(2)]

where the summation is taken over all ze /~(y) N A. An application
of [5, Theorem 13.2.22] yields

|, FoisE@lare = |, 5 Faduw

B yep~T(w)nR

=, 2 dor M@1dLyw)
where B(w) = {z: 2€ AN (p > 2)~"(w)}. However, [4, 2.2] implies
[, F@) p[@)dH'0) = | S +@dH*w)
= | @@
where C(y) = {z: 26 4~'(y)N A}). By appealing to 2.7, it is clear that
) v o 1) A () = | @AHE) ,

where w, is the orienting unit & form for E*. However,

hy(D; © 1) [M(A))(wi) = s ot [R7(R(A))] (wy)
= s [ ((4))] P*w,

- Lp*wk [4,(2)] - v(2)dH* .
Combining this with (17) yields
|, @ = | puls@] - v@ar*;
and since A is arbitrary,

(18) ¥(@) = pPwi[4()] - v() ,

H* almost everywhere in D. As |[¢#/||(M;— D) =0 and || &/]|| is
absolutely continuous with respect to H* in D, (18) and the defini-
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tion of (z) gives

(19) A [R] | 2 [T(4@D] | = PPwi[4(2)] - v(2) ,
|| £ || almost everywhere. As v(z) and 7(«(2)) are parallel k-vectors,
(20) | pwi [(@)] - v(2) | = |v(2) || ple(/(2D] ]

The result follows from (19) and (20) provided |p[z(4(2))]] = 0, || 2/]|
almost everywhere for almost all p.

To this end, observe that for H* almost all ye R, 7(y) exists
and, thus, for almost all p, p[c(y)] = 0. However, the set of pairs
(y, p) so that ye R and p[z(y)] = 0 is a Borel set. Thus, Fubini’s
theorem gives for almost all p, p[z(y)] # 0 for H* almost all ye R.
Further, if BcDc M, and H*[/(B)] =0 then [4, 2.2] gives
[l s [|(B) = 0. So for almost all p, p[r(#(2))] # 0 for ||| almost all
ze€ M;, and the result follows.

REMARK 3.2. It is interesting to note that an application of
Fubini’s theorem gives the following conclusion to Theorem 3.1: for
[| s || almost ze My,

[dps[R(2)]| = |v(z)| for almost every p .
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