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A COMPLETE COUNTABLE L: THEORY WITH
MAXIMAL MODELS OF MANY CARDINALITIES

J. I. MALITZ AND W. N. REINHARDT

Because of the compactness of first order logic, every
structure has a proper elementarily equivalent extension.
However, in the countably compact language Lg1 obtained
from first order logic by adding a new quantifier Q and inter-
preting Qx as “there are at least w; 2’s such that...,” the
situation is radically different. Indeed there are structures
of countable type which are maximal in the sense of having
no proper Lgx-extensions, and the class S of cardinals admit-
ting such maximal structures is known to be large. Here it
is shown that there is a countable complete L$1 theory T
having maximal models of cardinality « for each ~ = 2, which
is in S. The problem of giving a complete characterization
of the maximal model spectra of LS, theories 7' remains open:
what classes of cardinals have the form Sp (T) = {x: there is
a maximal model of T of cardinality x} for T a (complete,
countable) L theory.

That S is large is shown in [4]. Assuming the GCH, it is
particularly simple to describe: S is the set of uncountable cardinals
which are less than the first uncountable measurable cardinal and
not weakly compact. Here we will need the fact that 2,€ S; this is
proved in [4] without assuming the GCH. The countable compactness
of L¢ is shown in Fuhrken [2]. For additional results and references
on the model theory of L¢ see Kiesler [3].

1. Notation and preliminaries.

1.1. Relatively common mnotation. We identify cardinals with
initial ordinals, and each ordinal with the set of smaller ordinals.
We use «, 8, v for ordinals, «, )\, p¢ for cardinals, and m, n for finite
cardinals. S(X) = {t:t & X}; ¢X is the cardinality of X; 3, is the
cardinality of the continuum; ®, the first uncountable cardinal;
II;cy X; the cartesian product; ¥ X the set of all functions on Y into
X, f |« the restriction of the function f to z.

The type ¥ of a set X of formulas is the set of non-logical
symbols occurring 3.

In this paper all structures will be relational structures. Capital
german letters are used for structures, and the corresponding roman
letters for their universes. Alternatively we may write |2 | for the
universe of 2. The type 7 of A is the set of non-logical symbols
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having denotations in A, so that A =<4, $".c... We use sans
serif letters for non-logical symbols, and if % is understood we may
use roman letters for the corresponding denotations, so S =s% IfS
is a relation with rank n + 1, and the last argument is a function
of the first n places, we call S a function. If R; (ieI) are relations,
then (2, R;);.; is a structure B which results from 2 by extending
the type of A to include new relation symbols R, (1€I), where R?
is the relation R; (appropriately restricted to A).

The phrase “k admits a structure such that...” means “there
is a structure 2[ such that ¢|%| =« and....”

1.2. Less common mnotation, special sums and products. As usual
A<B and A =B mean respectively that U is an elementary sub-
structure of B, U is elementarily equivalent to B. Similarly A =, B
means that 2, 2B are L{ -equivalent, i.e. that 2, B have the same true
Lg -sentences, and 2 <,, B means that 2 is an L¢-substructure of
B, i.e. that A & B and for every L formula ¢, and every assignment
zin %A, A = 0[z] iff B = 0[z]. If K is a class of structures, Th,, K
is the set of LZ-sentence true in every Ac K. If ¥ is a set of sen-
tences, Mod ¥ is the class of structures (of some fixed type) such
that 3 & Th, 2.

Let t< 7% and let ¢ = V< |A|. Then A|(V,t) is the t-reduct
of the substructure of 9 determined by V, i.e. if B is the substruc-
ture of % determined by V, 2| (V, ) is the structure € with universe
[%B| and type t determined by R® = R® for R in . We write 2|t for
A, t). If v is a unary relation symbol, then we will write
A (v, t) for (the relativized reduct) | (VY ?).

If ¢ is a relational type, we can find a relational type t* 2 ¢, and
a set Sk(t) of first order sentences of type ¢* with the following
properties: (i) if 7% = ¢, then there is an expansion A* of A with
q* = t* and 2A* e Mod Sk(¢) (ii) if A, B e Mod Sk(t) and A = B, then
A < B. In fact we may take Sk(f) to be the set of sentences which
assert that the Skolem relations satisfy their defining sentences, e.g.

vz[Vy(R,(x, y) — 0(x, y)) A\ (Ayo(z, y) — FyR,(x, y))] .

If {A;:4el) is a family of relational structures all of type ¢,
and having pairwise disjoint universes, then 3;.; 2 is the structure
B of type ¢ such that B = U;.; 4:;; and R® = U;.;R* for each Ret.
If the universes of the ; are not disjoint, then >;., 2, is >, Wi
where 9} is some isomorphic copy of 2;, and the universes of the
are pairwise disjoint. If 9, and 9, have different types, U P, is
defined as follows. First expand each to a strueture of type 7%, U 7%,
by adding empty relations, to obtain U], A, respectively. Then
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AL DA = A + A.

Let (A;:7eI) be a family of structures, with z; = ¢,. Choose
t: = {R*: Re t;} pairwise disjoint copies of the ¢; (i.e. R—R* is 1 —1 and
R, R® have the same rank). Let A; (¢€I) be new unary relation sym-
bols. Define B =.2:1el) of type t = {Aziel)UU{ti:iel} as
follows: |B| = Uier 4s, AY = A;, and (R;)® = R™.

Define P;., (W, D) = (A (D, Siienr MWy), K), where K = {{z, 1):1€ D
and 2 |%;|}.

DEFINITION 1. (a) 2 is maximal iff wherever A & B and A =, B
then A = B.

(b) A is strongly maximal iff A = (W', U*), where U is unary,
and whenever A =B, A =B, and cU® = W,, then A = B.

(¢) S is the set of cardinals £ which admit a maximal model
of countable type; S'={keS: k£ = 3,}.

(d) Sp(T) = {£: £ admits a maximal model of T}

REMARK. This notion of strongly maximal is weaker than the
notion of strongly maximal introduced in [4], but is all that is needed
in this paper.

2. Products and preservation of L{-equivalence. We will need
to know that L¢ -equivalence is preserved under the operations X and
p defined above. The results we need follow from Wojciechowska’s
generalizations of the Feferman-Vaught theorems on generalized pro-
ducts [5]. The following corollary of Wjociechowska’s main theorem
will suffice for our purpose. In this corollary, & is an expansion of
{SI), U, ~>, A= WAD;.; is a family of structures (of fixed type)
indexed on I, and (¥, &) is the Feferman-Vaught generalized pro-
duct [1].

COROLLARY 2.1. Suppore that UA; =, B;, i€l. Then F(KW:Dicr
©) =,, Z(Bi)icn ©). Similarly if A <, B;, 1 € I then FP((W)ic1,S) <o,
g(<%i>ielr @)’

From this corollary we prove

COROLLARY 2.2. (a) If % =, B; then 3, W =, e Bi, and
of Uy <o, B; then e Wi <oy Sies Bie
(b) If Ay =,,B; then Picp (A, D) =, Picp (B, D).

Proof of (a). If c¢¢|2|, and U is a unary predicate not in 2,
we define 2’ of type 72 U {U} by

N = (I QII U {0}, A, Ra)Rer{ .
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In Feferman-Vaught [1] it is shown that the cardinal sum 3., %, is
a (relativized reduct of) a generalized product .Z2((UD;.;, &). Thus
we can obtain Corollary 2.2a from Corollary 2.1 and the following
simple modification of Lemma 4.7 of Feferman-Vaught [1].

LEMMA 2.3. (a) For every formula 6 of L¢ of type tU {U}
there is a formula ® of type t such that 0 and @ have the same free
variables and for all A of type t,

91’%:0"—'9)1]:

(where @Y s obtained from @ by relativizing all quantifiers to U).
(b) Hence A=, B if A' =, B, and A<, B if A <, B
Proof. The proof of (a) is an easy induction on 6 based on the

following fact: If ® is any formula of type 7', and ®* is obtained

from @ by replacing each atomic subformula in which the variable x

occurs by JzUx A —(x = x)), then W = Jzu(—Ux A ®) — p*. Part (b)

follows easily from part (a) using the fact that ¢ is definable in .

This proves the lemma.

Proof of Corollary 2.2b. We now consider the product P;., (;, D).
We may assume that 0¢ D and that i¢|¥;|, i€ D. Then we can
form U, as in Lemma 2.3a with |0}| = | ;| U {¢}, and A with || =
AU {7} U {0}, Let & =<SD, U, ~,R%rccr Where R® = {{{w}, ---,
(o} L@y, =+, 2, €R?}. We show that P;., (;, D) is isomorphic to
a relativized reduct of the generalized product &F.,(¥Y, S). Now
C=Piep, Uy D) = (KD, 2ucp W), K) has type t= (D) U (zA) U
{D, A, K}, where D denotes |D| and A denotes |>,;., ;| and K =
Ko, y>:xe; and y =4}, (Thus C=AUD.) We define :|C|—
Tl:ep A7 as follows: For 7€ D, %, is the function which is 0 except
at 4, where 7,(¢) =+¢. For aec|;|, 7, is the function which is 0
except at ¢, where 7,(t) = a. Clearly 7 is 1 — 1. For Ret we write
R, for the relation induced on [];., A7 by R via 3, i.e., & =,<{D, U
Aoy RoDne:e We show that for each R e ¢, R, is definable in .7 ({U;);. », ©).
For Ret we define an acceptable sequence £, such that R, is easily
defined using Q., (for the definition of acceptable sequence &, and of
Q:, see Feferman-Vaught {1]). To describe the sequence &, we suppose
that I(x), Z(z) are formulas of type ¢(;) which define 7 and 0 re-
spectively, and that Sing{z) is a formula of type t& which asserts
that X < D is a singleton.

Note that feb, iff X, = {i: f(#) = 0} is a singleton, and X, & X, =
{i: f(t) = i}. Thus D, = Q:,, where &, is the sequence which asserts
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Sing (X,) A X, & X, .

R v,
%= {7“ W E ) [f(i)]}

.. QY Vo
X= {z' W I [f(i)J}

(i.e., &, = {Sing (X)) A Xo & X,, —Z(v), I(v,))). Similarly A, is given by

Sing (X)) < X, & X,
Xo: —Z(v,)
X2 —I(vy) .

Now {f, 9> €K, iff feA,geD, and f(i) # 0 exactly when g(¢) = 4.
Thus K, is definable using the sequences for A, D and the sequence
given by

Xo = X,
XO: ——|Z(/vo)
X I(v) .

For RetD, use

RXo X,
Xot I(v)
X, I(v,)

and for Re ¥, use

Xo i 0
Kot RVGY,

3. Main result.

3.1. Some maximal structures with many automorphisms.

Let . =<¢2U"“2, 2, <, "2, F),.., where F is a four place rela-
tion: Fabxy iff a,b€“2 and xS a,y &b and x, ye™2 for some n.
The structure (¢2, &) is the full binary tree, “2 is the set of branches,
"2 the set of nodes at the nth level, and for each pair of branches
b, b’ the set {(x, y): Fbb'xy} is an order preserving function on the
nodes contained in b onto the nodes contained in &'. In [4], .7~ was
shown to be maximal.

We now construet two structures .7, and .9, both of type
() U {B}; in T, B denotes the set R of eventually right turning
branches; in .77, B denotes R U {¢}, where ¢ always turns left. More
precisely,
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%= (9, R where R= {be %0, 1): lim b, = 1} ,

n—oco

and

Ts=(7,8) where S=RU/{e} and ce“{0}.

LEMMA 8.1. Let f:“2— 2. Then there is a unique automorphism
g of . such that for all n and xe| 7 |,

oy, = [T Selm =0
I z, iof flw|m) =1 (ie., twist when f=1).

Proof. Clearly, g is 1 — 1 and onto; it is also an automorphism
since x £ y iff g(x) S g(y), and any automorphism of (£2 U “2, &) is
an automorphism of 7.

LEmMMA 8.2. If DS | T | ~{c} and D 1is finite, then there is an
isomorphism g on 7, onto g such that for all be D, g(b) = b.

Proof. Clearly we may assume that D & “2. Let m be chosen
so that if be D then b(m) = 1 for some m < n. Let e be the branch
such that e(m) = 0 for m < n and e(m) =1 when m = n. Define
f:22—2 by fle|m) =1 if m = n, f(x) = 0 in all other cases. Let g
be the automorphism of .~ induced by f as in Lemma 3.1. Clearly,
if be R and b+ e¢ then g(b) € R since ¢(b), = (b), except for finitely
many p. Similarly, if b¢ R and b +# e, then f(b) ¢ B. Finally f(e) = e,
so f takes R to R U {c}.

3.2. Main lemma. Next we show that for every £€ S, £ = 2,, we
can find T with {3, £k} < Sp(T). In fact what we need is the following

LemMA 8.3. For each k€8, £ = 1,, there are structures 2., B,
such that

(i) e, = 2, and B, = &,

(ii) YU, = B, is countadble and the same for all k, and A, =, B,.
Also, if 2 = Nies Tha, A, then

(ili) €eMod X and B, & € implies B, = €,

(iv) €eMod ¥ and U, & € implies A, = €.

Proof. We construct %,, B, from the structures .73, 75 defined
above, and M, which we now describe.

In [4] it was shown that for each x € S there is a strongly maxi-
mal structure I, of power £ and countable type. Since any expansion
of a strongly maximal model is strongly maximal, we may assume
without loss of generality that all It, have the same type ¢ = = Sk (¢),



AN L?,1 THEORY WITH MANY MAXIMAL MODELS 697

and that I, e Mod Sk (¢). Thus for all «, if M, = M  Mod Sk (¢)
then MM, < M’'. Hence there is a Uer Sk () such that for all &,
M, =& M e Mod Sk (t) and cU™ = @ implies that M, = D,

We now fix £ and construect %,, B,; to simplify notation we drop
the subseript £. By the downward Lowenheim-Skolem theorem for
L, there is N <, M with N = 2,. Let N, be R, be pairwise disjoint
copies of M, each disjoint from 7~ and M, and let N, = N. Let A, =
Suer e Bl = Dy + N = Dies N, and B, = 3, N, + WM.

Let H be the function on 3B, into R U {¢} defined by

b if axeM,

Hw) = ¢ if xeM’

Let .7, be a copy of .7~ disjoint from the structurres so far mentioned.
For each be R, let G, be a function on .7, onto N,.
Now we define

S*)I = (y(*%, %1’ *7;)’ H’ Gb)beR
B = (y(j;" %1’9 j;)y H’ Gb)beR
% = (g(ﬁy §B, %), H’ Gb)beR .

It is evident that ¢ = 2, and ¢B =, and that A = B is
countable. Moreover this type is independent of £ because all the
M. have the same type. To establish A =, B, we prove that A =, B’
and ¥’ <,, B.

We now show that A =, ®’. In fact, we show that if ¢ is a
finite subset of 7%A, then |t = B’|t. Given the finite type ¢, let
D ={beR:G,ct}]. By Lemma 3.1, there is an isomorphism f on 7,
onto .9 such that for all be D, f(b) = b. For each b, b’ €S choose
an isomorphism g;, on N, onto N;., with g,,, the identity when b = ¥’.
Now it is easily seen that we can extend f to an isomorphism on
A |t onto B'|t by defining f(x) = g,,;x(x) for all xeMN, and f(x) = «
for xe 7.

We complete the proof that % =, B by showing that %' <, B.
Let € = (¥ (95 N, F4), H, Gy, ¢),.r (treat ¢ as the unary relation
{¢}). Now let D=CPH (M, w"), D" = ECP R, Ww") where W* = ||
and w* = |9N|. By Corollary 2.2a and the definition of @, we have
D' <,,D. It is enough to show that to every formula @ of type %',
there is a fomula @* of type 72’ such that for all assignments z to
B, B E plz] if D = ¢*z], and B = @[z] iff D" = ¢¥z]. We define
@* inductively as follows:

R#uo cee Upy = RUg*** Uy, for all Ref%’, R#H
Hugu, = Huu, V [Wu, A %, ~ c]
(—o) = o'
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(P N )f = Pt A P
Auep)? = Ju,P*
(Qu,P)* = QuP* .

An easy induction on @ shows that the function taking @ into @* is
as required. This completes the proof that %A =, B.

Now we prove (iii). Suppose that €eMod ¥ and B €. We
must show that B = €. Since 7 is maximal it is easy to see that
€ has the form (7 (7%, €.75), HS, Gi)scp, for some €, 2 B. Thus for
each be R, domain of G{ = TS, since there is a sentence true in all
A’s which asserts that G, is a function with domain 7, Thus G{ = GJ.
It follows that in €, range G, meets H™'(b). But in all s, if range G,
meets H7'(z), then H™'(z) & range G,, and this is expressible by the
sentence

vz[3edy(H(x, y) N G, y)) — Vy(H(y, 2) — 386(x, ¥))] .

Thus for each beR, (H®)'(b) S rangeG,. Now in all %, || <&
Uiz H'(b). Since there are unary predicate symbols A, B such
(A)* = |¥, |, B* = R, this is expressible by a first order sentence.
Now | A, |* = |€,], and B* = S = R U {c}, so we have

61S U 6970 U H)E) -

Since we already have (H*)™'(b) S |B| for be R, it remains only to
show that (H®)™*(c) & M. Now each M, and hence each N;, is a model
of Sk (¢). It follows that if o €Sk (¢), then for each % we have

Vz(B(x) — 07)

where o° is obtained from ¢ by relativizing all quantifiers to H{x, z)
(treating z as a constant). In particular then,

€, = G, | (H)"(c), =) € Mod Sk (2) .

Evidently, we also have It & €,. Also since in each U, U% = u*n
(H)7'(z) is countable for each zeB", there is an (L¢) sentence in 3
which asserts this. It follows that U = U* N (H®)'(c) is countable.
Thus since I is strongly maximal, it follows that (H%)™'(c) = | ].
This completes the proof of (iii); the proof of (iv) is exactly the same;
replacing B by % and deleting reference to MM and ¢. This completes
the proof of Lemma 3.3.

3.3. Main theorem.

THEOREM 3.4. There is a complete countable L& -theory T such
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that for every k£ = 2,, T has a maximal model of power k if there
s @ maximal structure of power k, i.e., Sp(T) = SN{k:x = 2,}.

Proof. Let 2., B, be the structures given by Lemma 3.3. Let
{Ty:de )} ={Th, A.:xcecS}. Wenow construct L¢ -equivalent maxi-
mal structures €, for each k¢S, with €, of power £. Taking T =
Th,, €, will complete the proof. First let

B, if T, = Th, B,

C.q.=
o A, otherwise, where Th, A= T,.

Let © be any maximal structure with |®©| = 2,, and let

C,= P(€,.,9).
deD

Evidently €, is of power £. By Corollary 2.2 for #,xe S, and
E,vz 3,6, =, 6,

It remains to show that each €, (¥ € S’) is maximal. To simplify
notation we omit the subscript £ from 2, B, € in the remainder of
the proof (thus we write €, for €,,). Suppose € =, €’ and € & €.
We must show € = €’. Clearly ® = €| (D, t) for some type ¢. It is
easy to see that if ®" = €'[(D, ) then ® =, D" and DS D', Since
D is maximal it follows that ®© = D. Notice that for de D, €, =
€| (K'(d), t), where t is the type of €. Clearly vz(Dx VV 3y(Dy A Kxy))
is true in € and hence in €. Thus, putting €, = €| ((K*)~(d), t)
we have |€'| = DU Uien |€'|. To see € = €' it suffices to show that
¢, = &) for each de D.

It is evident that €, & €;. Although € =, €', we cannot im-
mediately conclude that €, =, €; (and hence by the maximality of
€, that €, = €}) because d may not be definable in €. However, to
conclude that €); = ¢,, it suffices to show, by parts (iii) and (iv) of
Lemma 3.3, that €; e Mod (3) where 3 = N..s Th,,A,. Now in € we
have, for each g€ 2,

vd(D(d) —> %)

where ¢? is obtained from ¢ by relativizing all quantifiers to K(z, d)
(treating d as a constant). Thus, since € =, €', we have for each
deD, € eModS. Thus |C;] =|€,;|, and hence € = €', as was to
be shown. This completes the proof of Theorem 3.4.

4. Problems.

(1) Is there a set I" (I" countable, I" complete) of L¢-sentences
such that both SN Sp () and S ~ Sp (") are cofinal with the first
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measurable cardinal? I.e. is there a cardinal k£ less than the first
measurable such that whenever |J(k N SpI") = £ we have SpI"'2 S~ K?

(2) Is Theorem 3.4 true if we replace 2, by ®,?

(8) What is the least £ such that whenever Uk NSp (D) =«
we have USp () 2 S ~ «.

(4) More generally, we would like a characterization of those
classes of cardinals of the form Sp (I") (I" countable, I" complete).
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