A COMPLETE COUNTABLE $L^{q}_{w_1}$ THEORY WITH MAXIMAL MODELS OF MANY CARDINALITIES

J. I. MALITZ AND W. N. REINHARDT

Because of the compactness of first order logic, every structure has a proper elementarily equivalent extension. However, in the countably compact language $L^{Q}_{\omega_{t}}$ obtained from first order logic by adding a new quantifier Q and interpreting Qx as "there are at least ω_1 x's such that...," the situation is radically different. Indeed there are structures of countable type which are maximal in the sense of having no proper $L^{Q}_{\omega_{1}}$ -extensions, and the class S of cardinals admitting such maximal structures is known to be large. Here it is shown that there is a countable complete $L^{Q}_{\omega_{1}}$ theory T having maximal models of cardinality κ for each $\kappa \geq \mathfrak{I}_1$ which is in S. The problem of giving a complete characterization of the maximal model spectra of $L^{Q}_{\omega_1}$ theories T remains open: what classes of cardinals have the form $Sp(T) = \{\kappa: there is$ a maximal model of T of cardinality κ } for T a (complete, countable) $L^{Q}_{\omega_1}$ theory.

That S is large is shown in [4]. Assuming the GCH, it is particularly simple to describe: S is the set of uncountable cardinals which are less than the first uncountable measurable cardinal and not weakly compact. Here we will need the fact that $\beth_1 \in S$; this is proved in [4] without assuming the GCH. The countable compactness of $L^q_{\omega_1}$ is shown in Fuhrken [2]. For additional results and references on the model theory of $L^q_{\omega_1}$ see Kiesler [3].

1. Notation and preliminaries.

1.1. Relatively common notation. We identify cardinals with initial ordinals, and each ordinal with the set of smaller ordinals. We use α , β , γ for ordinals, κ , λ , μ for cardinals, and m, n for finite cardinals. $S(X) = \{t: t \subseteq X\}$; cX is the cardinality of $X; \supset_1$ is the cardinality of the continuum; ω_1 the first uncountable cardinal; $\prod_{i \in Y} X_i$ the cartesian product; ${}^{Y}X$ the set of all functions on Y into X, $f \mid x$ the restriction of the function f to x.

The type $\tau \Sigma$ of a set Σ of formulas is the set of non-logical symbols occurring Σ .

In this paper all structures will be relational structures. Capital german letters are used for structures, and the corresponding roman letters for their universes. Alternatively we may write $|\mathfrak{A}|$ for the universe of \mathfrak{A} . The type $\tau \mathfrak{A}$ of \mathfrak{A} is the set of non-logical symbols

having denotations in \mathfrak{A} , so that $\mathfrak{A} = \langle A, S^* \rangle_{s \in r\mathfrak{A}}$. We use sans serif letters for non-logical symbols, and if \mathfrak{A} is understood we may use roman letters for the corresponding denotations, so $S = S^*$. If Sis a relation with rank n + 1, and the last argument is a function of the first n places, we call S a function. If R_i $(i \in I)$ are relations, then $(\mathfrak{A}, R_i)_{i \in I}$ is a structure \mathfrak{B} which results from \mathfrak{A} by extending the type of \mathfrak{A} to include new relation symbols R_i $(i \in I)$, where $R_i^{\mathfrak{B}}$ is the relation R_i (appropriately restricted to A).

The phrase " κ admits a structure such that..." means "there is a structure \mathfrak{A} such that $c |\mathfrak{A}| = \kappa$ and"

1.2. Less common notation, special sums and products. As usual $\mathfrak{A} \prec \mathfrak{B}$ and $\mathfrak{A} \equiv \mathfrak{B}$ mean respectively that \mathfrak{A} is an elementary substructure of $\mathfrak{B}, \mathfrak{A}$ is elementarily equivalent to \mathfrak{B} . Similarly $\mathfrak{A} \equiv_{\omega_1} \mathfrak{B}$ means that $\mathfrak{A}, \mathfrak{B}$ are $L^{\varrho}_{\omega_1}$ -equivalent, i.e. that $\mathfrak{A}, \mathfrak{B}$ have the same true $L^{\varrho}_{\omega_1}$ -sentences, and $\mathfrak{A} \prec_{\omega_1} \mathfrak{B}$ means that \mathfrak{A} is an $L^{\varrho}_{\omega_1}$ -substructure of \mathfrak{B} , i.e. that $\mathfrak{A} \subseteq \mathfrak{B}$ and for every $L^{\varrho}_{\omega_1}$ formula θ , and every assignment z in $\mathfrak{A}, \mathfrak{A} \models \theta[z]$ iff $\mathfrak{B} \models \theta[z]$. If K is a class of structures, $Th_{\omega_1}K$ is the set of $L^{\varrho}_{\omega_1}$ -sentence true in every $\mathfrak{A} \in K$. If Σ is a set of sentences, Mod Σ is the class of structures (of some fixed type) such that $\Sigma \subseteq Th_{\omega_1}\mathfrak{A}$.

Let $t \subseteq \tau \mathfrak{A}$ and let $\phi \neq V \subseteq |\mathfrak{A}|$. Then $\mathfrak{A}|(V, t)$ is the *t*-reduct of the substructure of \mathfrak{A} determined by V, i.e. if \mathfrak{B} is the substructure of \mathfrak{A} determined by V, $\mathfrak{A}|(V, t)$ is the structure \mathfrak{C} with universe $|\mathfrak{B}|$ and type t determined by $\mathbb{R}^{\mathfrak{C}} = \mathbb{R}^{\mathfrak{B}}$ for \mathbb{R} in t. We write $\mathfrak{A}|t$ for $\mathfrak{A}|(|\mathfrak{A}|, t)$. If V is a unary relation symbol, then we will write $\mathfrak{A}|(V, t)$ for (the relativized reduct) $\mathfrak{A}|(V^{\mathfrak{B}}, t)$.

If t is a relational type, we can find a relational type $t^* \supseteq t$, and a set Sk(t) of first order sentences of type t^* with the following properties: (i) if $\tau \mathfrak{A} = t$, then there is an expansion \mathfrak{A}^* of \mathfrak{A} with $\tau \mathfrak{A}^* = t^*$ and $\mathfrak{A}^* \in \operatorname{Mod} Sk(t)$ (ii) if $\mathfrak{A}, \mathfrak{B} \in \operatorname{Mod} Sk(t)$ and $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$. In fact we may take Sk(t) to be the set of sentences which assert that the Skolem relations satisfy their defining sentences, e.g.

$$orall z [orall y(R_{ heta}(x, y) \longrightarrow heta(x, y)) \land (\exists y heta(x, y) \longrightarrow \exists y R_{ heta}(x, y))]$$
 .

If $\langle \mathfrak{A}_i: i \in I \rangle$ is a family of relational structures all of type t, and having pairwise disjoint universes, then $\sum_{i \in I} \mathfrak{A}_i$ is the structure \mathfrak{B} of type t such that $B = \bigcup_{i \in I} A_i$, and $\mathbb{R}^{\mathfrak{B}} = \bigcup_{i \in I} \mathbb{R}^{\mathfrak{A}_i}$ for each $\mathbb{R} \in t$. If the universes of the \mathfrak{A}_i are not disjoint, then $\sum_{i \in I} \mathfrak{A}_i$ is $\sum_{i \in I} \mathfrak{A}_i'$ where \mathfrak{A}_i' is some isomorphic copy of \mathfrak{A}_i , and the universes of the \mathfrak{A}_i' are pairwise disjoint. If \mathfrak{A}_1 and \mathfrak{A}_2 have different types, $\mathfrak{A}_1 \oplus \mathfrak{A}_2$ is defined as follows. First expand each to a structure of type $\tau \mathfrak{A}_1 \cup \tau \mathfrak{A}_2$ by adding empty relations, to obtain \mathfrak{A}_i' , \mathfrak{A}_2' respectively. Then $\mathfrak{A}_1 \bigoplus \mathfrak{A}_2 = \mathfrak{A}'_1 + \mathfrak{A}'_2.$

Let $\langle \mathfrak{A}_i: i \in I \rangle$ be a family of structures, with $\tau \mathfrak{A}_i = t_i$. Choose $t'_i = \{R^i: R \in t_i\}$ pairwise disjoint copies of the t_i (i.e. $R \mapsto R^i$ is 1 - 1 and R, R^i have the same rank). Let A_i $(i \in I)$ be new unary relation symbols. Define $\mathfrak{B} = \mathscr{S} \langle \mathfrak{A}_i: i \in I \rangle$ of type $t = \{A_i: i \in I\} \cup \bigcup \{t'_i: i \in I\}$ as follows: $|\mathfrak{B}| = \bigcup_{i \in I} A_i, A_i^{\mathfrak{B}} = A_i$, and $(R_i)^{\mathfrak{B}} = R^{\mathfrak{A}_i}$.

Define $P_{i \in D} (\mathfrak{A}_i, \mathfrak{D}) = (\mathscr{S}(\mathfrak{D}, \sum_{i \in D} \mathfrak{A}_i), K)$, where $K = \{\langle x, i \rangle : i \in D \text{ and } x \in |\mathfrak{A}_i|\}$.

DEFINITION 1. (a) \mathfrak{A} is maximal iff wherever $\mathfrak{A} \subseteq \mathfrak{B}$ and $\mathfrak{A} \equiv_{\omega_1} \mathfrak{B}$ then $\mathfrak{A} = \mathfrak{B}$.

(b) \mathfrak{A} is strongly maximal iff $\mathfrak{A} = (\mathfrak{A}', U^{\mathfrak{A}})$, where U is unary, and whenever $\mathfrak{A} \subseteq \mathfrak{B}, \mathfrak{A} \equiv \mathfrak{B}$, and $cU^{\mathfrak{B}} = \mathfrak{R}_{0}$, then $\mathfrak{A} = \mathfrak{B}$.

(c) S is the set of cardinals κ which admit a maximal model of countable type; $S' = \{\kappa \in S : \kappa \geq \beth_1\}$.

(d) Sp $(T) = \{\kappa : \kappa \text{ admits a maximal model of } T\}$

REMARK. This notion of strongly maximal is weaker than the notion of strongly maximal introduced in [4], but is all that is needed in this paper.

2. Products and preservation of $L^{\varphi}_{\omega_1}$ -equivalence. We will need to know that $L^{\varphi}_{\omega_1}$ -equivalence is preserved under the operations Σ and p defined above. The results we need follow from Wojciechowska's generalizations of the Feferman-Vaught theorems on generalized products [5]. The following corollary of Wjociechowska's main theorem will suffice for our purpose. In this corollary, \mathfrak{S} is an expansion of $\langle S(I), \cup, \sim \rangle$, $\mathfrak{A} = \langle \mathfrak{A}_i \rangle_{i \in I}$ is a family of structures (of fixed type) indexed on I, and $\mathscr{P}(\mathfrak{A}, \mathfrak{S})$ is the Feferman-Vaught generalized product [1].

COROLLARY 2.1. Suppose that $\mathfrak{A}_i \equiv_{\omega_1} \mathfrak{B}_i$, $i \in I$. Then $\mathscr{P}(\langle \mathfrak{A}_i \rangle_{i \in I}, \mathfrak{S}) \equiv_{\omega_1} \mathscr{P}(\langle \mathfrak{B}_i \rangle_{i \in I}, \mathfrak{S})$. Similarly if $\mathfrak{A}_i \prec_{\omega_1} \mathfrak{B}_i$, $i \in I$ then $\mathscr{P}(\langle \mathfrak{A}_i \rangle_{i \in I}, \mathfrak{S}) \prec_{\omega_1} \mathscr{P}(\langle \mathfrak{B}_i \rangle_{i \in I}, \mathfrak{S})$.

From this corollary we prove

COROLLARY 2.2. (a) If $\mathfrak{A}_i \equiv_{\omega_1} \mathfrak{B}_i$ then $\sum_{i \in I} \mathfrak{A}_i \equiv_{\omega_1} \sum_{i \in I} \mathfrak{B}_i$, and if $\mathfrak{A}_i \prec_{\omega_1} \mathfrak{B}_i$ then $\sum_{i \in I} \mathfrak{A}_i \prec_{\omega_1} \sum_{i \in I} \mathfrak{B}_i$. (b) If $\mathfrak{A}_i \equiv_{\omega_1} \mathfrak{B}_i$ then $P_{i \in D}(\mathfrak{A}_i, \mathfrak{D}) \equiv_{\omega_1} P_{i \in D}(\mathfrak{B}_i, \mathfrak{D})$.

Proof of (a). If $c \notin |\mathfrak{A}|$, and U is a unary predicate not in $\tau \mathfrak{A}$, we define \mathfrak{A}' of type $\tau \mathfrak{A} \cup \{U\}$ by

$$\mathfrak{A}' = (|\mathfrak{A}| \cup \{c\}, A, R^{\mathfrak{A}})_{R \in \mathfrak{rA}}$$
 .

In Feferman-Vaught [1] it is shown that the cardinal sum $\sum_{i \in I} \mathfrak{A}_i$ is a (relativized reduct of) a generalized product $\mathscr{P}(\langle \mathfrak{A}'_i \rangle_{i \in I}, \mathfrak{S})$. Thus we can obtain Corollary 2.2a from Corollary 2.1 and the following simple modification of Lemma 4.7 of Feferman-Vaught [1].

LEMMA 2.3. (a) For every formula θ of $L^{\varrho}_{\omega_1}$ of type $t \cup \{U\}$ there is a formula φ of type t such that θ and φ have the same free variables and for all \mathfrak{A} of type t,

$$\mathfrak{A}' \models \theta \longleftrightarrow \varphi^{U}$$
,

(where φ^{U} is obtained from φ by relativizing all quantifiers to U). (b) Hence $\mathfrak{A} \equiv_{\omega_{1}} \mathfrak{B}$ iff $\mathfrak{A}' \equiv_{\omega_{1}} \mathfrak{B}'$, and $\mathfrak{A} \prec_{\omega_{1}} \mathfrak{B}$ iff $\mathfrak{A}' \prec_{\omega_{1}} \mathfrak{B}'$.

Proof. The proof of (a) is an easy induction on θ based on the following fact: If φ is any formula of type $\tau \mathfrak{A}'$, and φ^* is obtained from φ by replacing each atomic subformula in which the variable x occurs by $\exists x(Ux \land \neg(x = x))$, then $\mathfrak{A}' \models \exists x(\neg Ux \land \varphi) \leftrightarrow \varphi^*$. Part (b) follows easily from part (a) using the fact that c is definable in \mathfrak{A}' . This proves the lemma.

Proof of Corollary 2.2b. We now consider the product $P_{i \in D}$ $(\mathfrak{A}_i, \mathfrak{D})$. We may assume that $0 \notin D$ and that $i \notin |\mathfrak{A}_i|$, $i \in D$. Then we can form \mathfrak{A}'_i as in Lemma 2.3a with $|\mathfrak{A}'_i| = |\mathfrak{A}_i| \cup \{i\}$, and \mathfrak{A}''_i with $|\mathfrak{A}''_i| =$ $|\mathfrak{A}_i| \cup \{i\} \cup \{0\}$. Let $\mathfrak{S} = \langle SD, \cup, \sim, \mathfrak{R}^{\mathfrak{S}} \rangle_{\mathfrak{R} \in \tau\mathfrak{D}}$ where $\mathfrak{R}^{\mathfrak{S}} = \{\langle \{x_0\}, \cdots, \rangle \}$ $\{x_{n-1}\}$: $\langle x_0, \dots, x_{n-1}\rangle \in \mathbb{R}^2$. We show that $P_{i \in D}(\mathfrak{A}_i, \mathfrak{D})$ is isomorphic to a relativized reduct of the generalized product $\mathscr{P}_{i \in D}(\mathfrak{A}_{i}^{\prime\prime}, \mathfrak{S})$. Now $\mathfrak{C} = \mathrm{P}_{i \in D} \left(\mathfrak{A}_i, \mathfrak{D} \right) = (\mathscr{S}(\mathfrak{D}, \sum_{i \in D} \mathfrak{A}_i), K) \text{ has type } t = (\tau \mathfrak{D})' \cup (\tau \mathfrak{A}_i)' \cup$ {D, A, K}, where D denotes $|\mathfrak{D}|$ and A denotes $|\sum_{i \in D} \mathfrak{A}_i|$ and K = $\{\langle x, y \rangle : x \in \mathfrak{A}_i \text{ and } y = i\}.$ (Thus $C = A \cup D$.) We define $\eta : |\mathfrak{C}| \to \mathfrak{A}$ $\prod_{i \in D} A''_i$ as follows: For $i \in D$, η_i is the function which is 0 except at *i*, where $\eta_i(i) = i$. For $a \in |\mathfrak{A}_i|$, η_a is the function which is 0 except at i, where $\eta_a(i) = a$. Clearly η is 1 - 1. For $R \in t$ we write R_0 for the relation induced on $\prod_{i \in D} A_i''$ by R via η , i.e., $\mathfrak{S} \cong_{\eta} \langle \mathcal{D}_0 \cup$ $A_0, R_0 \rangle_{R \in t}$. We show that for each $R \in t$, R_0 is definable in $\mathscr{P}(\langle \mathfrak{A}_i \rangle_{i \in D}, \mathfrak{S})$. For $R \in t$ we define an acceptable sequence $\hat{\xi}_R$ such that R_0 is easily defined using Q_{ξ_R} (for the definition of acceptable sequence ξ , and of Q_{ξ} , see Feferman-Vaught [1]). To describe the sequence ξ_{R} we suppose that I(x), Z(x) are formulas of type $\tau(\mathfrak{A}'_i)$ which define i and 0 respectively, and that Sing(x) is a formula of type $\tau \mathfrak{S}$ which asserts that $X \subseteq D$ is a singleton.

Note that $f \in D_0$ iff $X_0 = \{i: f(i) = 0\}$ is a singleton, and $X_0 \subseteq X_1 = \{i: f(i) = i\}$. Thus $D_0 = Q_{\xi_D}$, where ξ_D is the sequence which asserts

694

$$egin{array}{lll} ext{Sing} \left(X_{\scriptscriptstyle 0}
ight) \wedge X_{\scriptscriptstyle 0} & \subseteq X_{\scriptscriptstyle 1} \ . \ X_{\scriptscriptstyle 0} & = \left\{i \colon \mathfrak{A}_i^{\prime\prime} Dots -
otag Z(v_{\scriptscriptstyle 0}) iggl[egin{array}{c} v_{\scriptscriptstyle 0} \ f(i) \end{array} iggr]
ight\} \ X_{\scriptscriptstyle 1} & = \left\{i \colon \mathfrak{A}_i^{\prime\prime} Dots I(v_{\scriptscriptstyle 0}) iggl[egin{array}{c} v_{\scriptscriptstyle 0} \ f(i) \end{array} iggr]
ight\} \end{array}$$

(i.e., $\xi_D = \langle \text{Sing}(X_0) \land X_0 \subseteq X_1, \neg Z(v_0), I(v_0) \rangle$). Similarly A_0 is given by

Sing
$$(X_0) < X_0 \subseteq X_1$$

 $X_0: \neg Z(v_0)$
 $X_1: \neg I(v_0)$.

Now $\langle f, g \rangle \in K_0$ iff $f \in A_0, g \in D_0$, and $f(i) \neq 0$ exactly when g(i) = i. Thus K_0 is definable using the sequences for A, D and the sequence given by

$$egin{aligned} \mathbf{X}_0 &= \mathbf{X}_1 \ \mathbf{X}_0 &: \neg \mathbf{Z}(\mathbf{v}_0) \ \mathbf{X}_1 &: \mathbf{I}(\mathbf{v}_1) \ . \end{aligned}$$

For $R \in \tau D$, use

$$RX_0X_1$$

 $X_0: I(v_0)$
 $X_1: I(v_1)$

and for $R \in \tau \mathfrak{A}_i$ use

$$X_0
eq 0$$

 $K_0: Rv_0v_1$

3. Main result.

3.1. Some maximal structures with many automorphisms.

Let $\mathscr{T} = \langle \overset{\omega}{2} \cup \overset{\omega}{2}, \overset{\omega}{2}, \subseteq, \overset{n}{2}, F \rangle_{n \in \omega}$, where F is a four place relation: Fabxy iff $a, b \in \overset{\omega}{2}$ and $x \subseteq a, y \subseteq b$ and $x, y \in \overset{n}{2}$ for some n. The structure $\langle \overset{\omega}{2}, \subseteq \rangle$ is the full binary tree, $\overset{\omega}{2}$ is the set of branches, $\overset{n}{2}$ the set of nodes at the *n*th level, and for each pair of branches b, b' the set $\{(x, y): Fbb'xy\}$ is an order preserving function on the nodes contained in b onto the nodes contained in b'. In [4], \mathscr{T} was shown to be maximal.

We now construct two structures \mathscr{T}_R and \mathscr{T}_s , both of type $\tau(\mathscr{T}) \cup \{B\}$; in \mathscr{T}_R , B denotes the set R of eventually right turning branches; in \mathscr{T}_s , B denotes $R \cup \{c\}$, where c always turns left. More precisely,

$$\mathscr{T}_{R}=(\mathscr{T},R) \quad ext{where} \quad R=\left\{b\in {}^{\omega}\{0,\,1\}\colon \lim_{n\to\infty}b_{n}=1\right\},$$

and

 ${\mathscr T}_s=({\mathscr T},S) \ \ {
m where} \ \ S=R\cup\{c\} \ \ {
m and} \ \ c\in {}^{{\scriptscriptstyle {\sf W}}}\!\{0\}$.

LEMMA 3.1. Let $f: {}^{\circ}2 \rightarrow 2$. Then there is a unique automorphism g of \mathscr{T} such that for all n and $x \in |\mathscr{T}|$,

$$(gx)_n = \begin{cases} x_n & \text{if } f(x \mid n) = 0 \\ 1 - x_n & \text{if } f(x \mid n) = 1 \end{cases}$$
 (i.e., twist when $f = 1$).

Proof. Clearly, g is 1-1 and onto; it is also an automorphism since $x \subseteq y$ iff $g(x) \subseteq g(y)$, and any automorphism of $({}^{\underline{\omega}}2 \cup {}^{\underline{\omega}}2, \subseteq)$ is an automorphism of \mathscr{T} .

LEMMA 3.2. If $D \subseteq |\mathcal{T}| \sim \{c\}$ and D is finite, then there is an isomorphism g on \mathcal{T}_R onto \mathcal{T}_S such that for all $b \in D$, g(b) = b.

Proof. Clearly we may assume that $D \subseteq {}^{\omega}2$. Let n be chosen so that if $b \in D$ then b(m) = 1 for some m < n. Let e be the branch such that e(m) = 0 for m < n and e(m) = 1 when $m \ge n$. Define $f: {}^{\omega}2 \rightarrow 2$ by $f(e \mid m) = 1$ if $m \ge n$, f(x) = 0 in all other cases. Let gbe the automorphism of \mathscr{T} induced by f as in Lemma 3.1. Clearly, if $b \in R$ and $b \ne e$ then $g(b) \in R$ since $g(b)_p = (b)_p$ except for finitely many p. Similarly, if $b \notin R$ and $b \ne e$, then $f(b) \notin R$. Finally f(e) = e, so f takes R to $R \cup \{c\}$.

3.2. Main lemma. Next we show that for every $\kappa \in S$, $\kappa \geq \beth_1$, we can find T with $\{\beth_1, \kappa\} \subseteq \operatorname{Sp}(T)$. In fact what we need is the following

LEMMA 3.3. For each $\kappa \in S$, $\kappa \geq \beth_1$, there are structures \mathfrak{A}_{κ} , \mathfrak{B}_{κ} such that

(i) $c\mathfrak{A}_{\kappa} = \beth_1$ and $c\mathfrak{B}_{\kappa} = \kappa$,

(ii) $\tau \mathfrak{A}_{\kappa} = \tau \mathfrak{B}_{\kappa}$ is countable and the same for all κ , and $\mathfrak{A}_{\kappa} \equiv_{\omega_1} \mathfrak{B}_{\kappa}$. Also, if $\Sigma = \bigcap_{\kappa \in S} Th_{\omega_1} \mathfrak{A}_{\kappa}$ then

(iii) $\mathbb{C} \in \operatorname{Mod} \Sigma$ and $\mathfrak{B}_{\kappa} \subseteq \mathbb{C}$ implies $\mathfrak{B}_{\kappa} = \mathbb{C}$,

(iv) $\mathbb{C} \in \text{Mod } \Sigma$ and $\mathfrak{A}_{\kappa} \subseteq \mathbb{C}$ implies $\mathfrak{A}_{\kappa} = \mathbb{C}$.

Proof. We construct $\mathfrak{A}_{\kappa}, \mathfrak{B}_{\kappa}$ from the structures $\mathscr{T}_{R}, \mathscr{T}_{S}$ defined above, and \mathfrak{M}_{κ} which we now describe.

In [4] it was shown that for each $\kappa \in S$ there is a strongly maximal structure \mathfrak{M}_{κ} of power κ and countable type. Since any expansion of a strongly maximal model is strongly maximal, we may assume without loss of generality that all \mathfrak{M}_{κ} have the same type $t = \tau \operatorname{Sk}(t)$,

696

and that $\mathfrak{M}_{\kappa} \in \operatorname{Mod} \operatorname{Sk}(t)$. Thus for all κ , if $\mathfrak{M}_{\kappa} \subseteq \mathfrak{M}' \in \operatorname{Mod} \operatorname{Sk}(t)$ then $\mathfrak{M}_{\kappa} \prec \mathfrak{M}'$. Hence there is a $U \in \tau \operatorname{Sk}(t)$ such that for all κ , $\mathfrak{M}_{\kappa} \subseteq \mathfrak{M}' \in \operatorname{Mod} \operatorname{Sk}(t)$ and $cU^{\mathfrak{M}'} = \omega$ implies that $\mathfrak{M}_{\kappa} = \mathfrak{M}'$.

We now fix κ and construct $\mathfrak{A}_{\kappa}, \mathfrak{B}_{\kappa}$; to simplify notation we drop the subscript κ . By the downward Lowenheim-Skolem theorem for $L^{q}_{\omega_{1}}$ there is $\mathfrak{N} \prec_{\omega_{1}} \mathfrak{M}$ with $c\mathfrak{N} = \beth_{1}$. Let $\mathfrak{N}_{b}, b \in \mathbb{R}$, be pairwise disjoint copies of \mathfrak{N} , each disjoint from \mathscr{T} and \mathfrak{M} , and let $\mathfrak{N}_{c} = \mathfrak{N}$. Let $\mathfrak{A}_{1} =$ $\sum_{b \in \mathbb{R}} \mathfrak{N}_{b}, \mathfrak{B}'_{1} = \sum_{b \in \mathbb{R}} \mathfrak{N}_{b} + \mathfrak{N} = \sum_{a \in S} \mathfrak{N}_{a}$, and $\mathfrak{B}_{1} = \sum_{b \in \mathbb{R}} \mathfrak{N}_{b} + \mathfrak{M}$.

Let H be the function on \mathfrak{B}_1 into $R \cup \{c\}$ defined by

$$H(x) = egin{cases} b & ext{if} & x \in \mathfrak{N}_b \ c & ext{if} & x \in \mathfrak{M} \end{cases} \, egin{array}{c} egin{array}{c} & egin{ar$$

Let \mathscr{T}_0 be a copy of \mathscr{T} disjoint from the structures so far mentioned. For each $b \in R$, let G_b be a function on \mathscr{T}_0 onto \mathfrak{R}_b .

Now we define

$$\begin{split} \mathfrak{A} &= (\mathscr{S}(\mathscr{T}_R, \mathfrak{A}_1, \mathscr{T}_0), H, G_b)_{b \in R} \\ \mathfrak{B}' &= (\mathscr{S}(\mathscr{T}_S, \mathfrak{B}_1', \mathscr{T}_0), H, G_b)_{b \in R} \\ \mathfrak{B} &= (\mathscr{S}(\mathscr{T}_S, \mathfrak{B}, \mathscr{T}_0), H, G_b)_{b \in R} . \end{split}$$

It is evident that $c\mathfrak{A} = \beth_1$ and $c\mathfrak{B} = \kappa$, and that $\tau\mathfrak{A} = \tau\mathfrak{B}$ is countable. Moreover this type is independent of κ because all the \mathfrak{M}_{κ} have the same type. To establish $\mathfrak{A} \equiv_{\omega_1} \mathfrak{B}$, we prove that $\mathfrak{A} \equiv_{\omega_1} \mathfrak{B}'$ and $\mathfrak{B}' \prec_{\omega_1} \mathfrak{B}$.

We now show that $\mathfrak{A} \equiv_{\omega_1} \mathfrak{B}'$. In fact, we show that if t is a finite subset of $\tau \mathfrak{A}$, then $\mathfrak{A} \mid t \cong \mathfrak{B}' \mid t$. Given the finite type t, let $D = \{b \in R: \mathbf{G}_b \in t\}$. By Lemma 3.1, there is an isomorphism f on \mathscr{T}_R onto \mathscr{T}_S such that for all $b \in D$, f(b) = b. For each $b, b' \in S$ choose an isomorphism $g_{b,b'}$ on \mathfrak{N}_b onto $\mathfrak{N}_{b'}$, with $g_{b,b'}$ the identity when b = b'. Now it is easily seen that we can extend f to an isomorphism on $\mathfrak{A} \mid t$ onto $\mathfrak{B}' \mid t$ by defining $f(x) = g_{b,f(b)}(x)$ for all $x \in \mathfrak{N}_b$ and f(x) = x for $x \in \mathscr{T}'$.

We complete the proof that $\mathfrak{A} \equiv_{\omega_1} \mathfrak{B}$ by showing that $\mathfrak{B}' \prec_{\omega_1} \mathfrak{B}$. Let $\mathfrak{C} = (\mathscr{S}(\mathscr{T}_s, \mathfrak{A}_1, \mathscr{T}_0), H, G_b, c)_{b \in \mathbb{R}}$ (treat c as the unary relation $\{c\}$). Now let $\mathfrak{D} = \mathfrak{C} \bigoplus (\mathfrak{M}, \mathsf{W}^{\mathfrak{R}}), \mathfrak{D}' = \mathfrak{C} \bigoplus (\mathfrak{N}, \mathsf{W}^{\mathfrak{R}})$ where $\mathsf{W}^{\mathfrak{R}} = |\mathfrak{M}|$ and $\mathsf{W}^{\mathfrak{R}} = |\mathfrak{N}|$. By Corollary 2.2a and the definition of \bigoplus , we have $\mathfrak{D}' \prec_{\omega_1} \mathfrak{D}$. It is enough to show that to every formula φ of type $\tau \mathfrak{B}'$, there is a fomula φ^{\sharp} of type $\tau \mathfrak{D}'$ such that for all assignments z to $\mathfrak{B}', \mathfrak{B}' \models \varphi[z]$ iff $\mathfrak{D}' \models \varphi^{\sharp}[z]$, and $\mathfrak{B} \models \varphi[z]$ iff $\mathfrak{D}^{\mathbb{F}} \models \varphi^{\sharp}[z]$. We define φ^{\sharp} inductively as follows:

$$egin{aligned} R^{st}u_{_{0}}\cdots u_{_{n-1}}&= Ru_{_{0}}\cdots u_{_{n-1}} & ext{for all} \quad R\in au\mathfrak{B}', \ R
eq H\ H^{st}u_{_{0}}u_{_{1}}&= Hu_{_{0}}u_{_{1}}\lor [\mathbb{W}u_{_{0}}\land u_{_{1}}pprox c]\ (
eg arphi)^{st}&=
eg arphi^{st} \end{aligned}$$

$$egin{aligned} & (arphi \wedge \psi)^{st} = arphi^{st} \wedge \psi^{st} \ & (\exists u_{\scriptscriptstyle 0} arphi)^{st} = \exists u_{\scriptscriptstyle 0} arphi^{st} \ & (Qu_{\scriptscriptstyle 0} arphi)^{st} = Qu_{\scriptscriptstyle 0} arphi^{st} \ . \end{aligned}$$

An easy induction on φ shows that the function taking φ into φ^* is as required. This completes the proof that $\mathfrak{A} \equiv_{\omega_1} \mathfrak{B}$.

Now we prove (iii). Suppose that $\mathfrak{C} \in \operatorname{Mod} \Sigma$ and $\mathfrak{B} \subseteq \mathfrak{C}$. We must show that $\mathfrak{B} = \mathfrak{C}$. Since \mathscr{T} is maximal it is easy to see that \mathfrak{C} has the form $(\mathscr{S}(\mathscr{T}_s, \mathfrak{C}_1 \mathscr{T}_0), H^s, \mathbf{G}_b^s)_{b \in \mathbb{R}}$, for some $\mathfrak{C}_1 \supseteq \mathfrak{B}$. Thus for each $b \in \mathbb{R}$, domain of $\mathbf{G}_b^s = \mathbf{T}_0^s$, since there is a sentence true in all \mathfrak{A} 's which asserts that \mathbf{G}_b is a function with domain \mathbf{T}_0 . Thus $\mathbf{G}_b^s = \mathbf{G}_d^s$. It follows that in \mathfrak{C} , range \mathbf{G}_b meets $H^{-1}(b)$. But in all \mathfrak{A} 's, if range \mathbf{G}_b meets $H^{-1}(z)$, then $H^{-1}(z) \subseteq \operatorname{range} G_b$, and this is expressible by the sentence

$$\forall z [\exists x \exists y (\mathsf{H}(x, y) \land \mathsf{G}_{b}(x, y)) \longrightarrow \forall y (\mathsf{H}(y, z) \longrightarrow \exists x \mathsf{G}(x, y))] .$$

Thus for each $b \in R$, $(H^{\mathfrak{s}})^{-1}(b) \subseteq \operatorname{range} \mathsf{G}_b$. Now in all $\mathfrak{A}_i \mid \mathfrak{A}_i \mid$

$$|\mathfrak{C}_1| \subseteq \bigcup_{b \in R} (H^{\mathfrak{c}})^{-1}(b) \cup (H^{\mathfrak{c}})^{-1}(c)$$
.

Since we already have $(H^{\varepsilon})^{-1}(b) \subseteq |\mathfrak{B}|$ for $b \in \mathbb{R}$, it remains only to show that $(H^{\varepsilon})^{-1}(c) \subseteq \mathfrak{M}$. Now each \mathfrak{M} , and hence each \mathfrak{N}_{b} , is a model of Sk (t). It follows that if $\sigma \in$ Sk (t), then for each \mathfrak{A} we have

$$\forall z(\mathbf{B}(x) \longrightarrow \sigma^z)$$

where σ^z is obtained from σ by relativizing all quantifiers to H(x, z) (treating z as a constant). In particular then,

$$\mathbb{G}_{c} = \mathbb{G}_{1} | ((H^{\varepsilon})^{-1}(c), \tau \mathfrak{M}) \in \mathrm{Mod} \, \mathrm{Sk} \, (t) \, .$$

Evidently, we also have $\mathfrak{M} \subseteq \mathfrak{C}_c$. Also since in each $\mathfrak{A}, U^{\mathfrak{R}_z} = U^{\mathfrak{R}} \cap (H^{\mathfrak{R}})^{-1}(z)$ is countable for each $z \in \mathfrak{B}^{\mathfrak{R}}$, there is an $(L^q_{\omega_1})$ sentence in Σ which asserts this. It follows that $U^{\mathfrak{R}_c} = U^{\mathfrak{R}} \cap (H^{\mathfrak{R}})^{-1}(c)$ is countable. Thus since \mathfrak{M} is strongly maximal, it follows that $(H^{\mathfrak{R}})^{-1}(c) \subseteq |\mathfrak{M}|$. This completes the proof of (iii); the proof of (iv) is exactly the same; replacing \mathfrak{B} by \mathfrak{A} and deleting reference to \mathfrak{M} and c. This completes the proof of Lemma 3.3.

3.3. Main theorem.

THEOREM 3.4. There is a complete countable L^{ϱ}_{ω} , theory T such

that for every $\kappa \geq \beth_1$, T has a maximal model of power κ if there is a maximal structure of power κ , i.e., $\operatorname{Sp}(T) = S \cap \{\kappa: \kappa \geq \beth_1\}$.

Proof. Let $\mathfrak{A}_{\kappa}, \mathfrak{B}_{\kappa}$ be the structures given by Lemma 3.3. Let $\{T_d: d \in \beth_1\} = \{Th_{\omega_1}\mathfrak{A}_{\kappa}: \kappa \in S'\}$. We now construct $L^{\circ}_{\omega_1}$ -equivalent maximal structures \mathfrak{C}_{κ} for each $\kappa \in S'$, with \mathfrak{C}_{κ} of power κ . Taking $T = Th_{\omega_1}\mathfrak{C}_{\kappa}$ will complete the proof. First let

$$\mathbb{G}_{\kappa,d} = egin{cases} \mathfrak{B}_\kappa & ext{if} \quad T_d = Th_{\omega_1}\mathfrak{B}_\kappa \ \mathfrak{A}_\kappa & ext{otherwise, where} \quad Th_{\omega_1}\mathfrak{A} = T_d \;. \end{cases}$$

Let \mathfrak{D} be any maximal structure with $|\mathfrak{D}| = \beth_1$, and let

$$\mathfrak{G}_{\kappa} = \Pr_{d \in D} (\mathfrak{G}_{\kappa,d}, \mathfrak{D})$$
.

Evidently \mathfrak{G}_{κ} is of power κ . By Corollary 2.2 for $\kappa, \lambda \in S$, and $\kappa, \lambda \geq \beth_1, \mathfrak{G}_{\kappa} \equiv \square_0 \mathfrak{G}_{\lambda}$.

It remains to show that each \mathbb{G}_{κ} ($\kappa \in S'$) is maximal. To simplify notation we omit the subscript κ from \mathfrak{A} , \mathfrak{B} , \mathfrak{C} in the remainder of the proof (thus we write \mathbb{G}_d for $\mathbb{G}_{\kappa,d}$). Suppose $\mathfrak{C} \equiv_{\omega_1} \mathfrak{C}'$ and $\mathfrak{C} \subseteq \mathfrak{C}'$. We must show $\mathfrak{C} = \mathfrak{C}'$. Clearly $\mathfrak{D} = \mathfrak{C} \mid (D, t)$ for some type t. It is easy to see that if $\mathfrak{D}' = \mathfrak{C}' \mid (D, t)$ then $\mathfrak{D} \equiv_{\omega_1} \mathfrak{D}'$ and $\mathfrak{D} \subseteq \mathfrak{D}'$. Since \mathfrak{D} is maximal it follows that $\mathfrak{D}' = \mathfrak{D}$. Notice that for $d \in D$, $\mathfrak{C}_d =$ $\mathfrak{C} \mid (K^{-1}(d), t)$, where t is the type of \mathfrak{A} . Clearly $\forall x(\mathsf{D}x \lor \exists y(\mathsf{D}y \land \mathsf{K}xy))$ is true in \mathfrak{C} and hence in \mathfrak{C}' . Thus, putting $\mathfrak{C}'_d = \mathfrak{C}' \mid ((\mathsf{K}^{\mathfrak{C}'})^{-1}(d), t)$ we have $|\mathfrak{C}'| = D \cup \bigcup_{d \in D} |\mathfrak{C}'|$. To see $\mathfrak{C} = \mathfrak{C}'$ it suffices to show that $\mathfrak{C}_d = \mathfrak{C}'_d$ for each $d \in D$.

It is evident that $\mathbb{C}_d \subseteq \mathbb{C}'_d$. Although $\mathbb{C} \equiv_{\omega_1} \mathbb{C}'$, we cannot immediately conclude that $\mathbb{C}_d \equiv_{\omega_1} \mathbb{C}'_d$ (and hence by the maximality of \mathbb{C}_d that $\mathbb{C}_d = \mathbb{C}'_d$) because d may not be definable in \mathbb{C} . However, to conclude that $\mathbb{C}'_d = \mathbb{C}_d$, it suffices to show, by parts (iii) and (iv) of Lemma 3.3, that $\mathbb{C}'_d \in \text{Mod}(\Sigma)$ where $\Sigma = \bigcap_{x \in S} Th_{\omega_1}\mathfrak{A}_x$. Now in \mathbb{C} we have, for each $\sigma \in \Sigma$,

$$\forall d(\mathsf{D}(d) \longrightarrow \sigma^d)$$

where σ^d is obtained from σ by relativizing all quantifiers to K(x, d) (treating d as a constant). Thus, since $\mathfrak{C} \equiv_{\omega_1} \mathfrak{C}'$, we have for each $d \in D$, $\mathfrak{C}'_d \in \operatorname{Mod} \Sigma$. Thus $|\mathfrak{C}'_d| = |\mathfrak{C}_d|$, and hence $\mathfrak{C} = \mathfrak{C}'$, as was to be shown. This completes the proof of Theorem 3.4.

4. Problems.

(1) Is there a set Γ (Γ countable, Γ complete) of $L^{\varrho}_{\omega_1}$ -sentences such that both $S \cap \text{Sp}(\Gamma)$ and $S \sim \text{Sp}(\Gamma)$ are cofinal with the first

measurable cardinal? I.e. is there a cardinal κ less than the first measurable such that whenever $\bigcup (\kappa \cap \operatorname{Sp} \Gamma) = \kappa$ we have $\operatorname{Sp} \Gamma \supseteq S \sim K$?

(2) Is Theorem 3.4 true if we replace \beth_1 by ω_1 ?

(3) What is the least κ such that whenever $\bigcup(\kappa \cap \operatorname{Sp}(\Gamma)) = \kappa$ we have $\bigcup \operatorname{Sp}(\Gamma) \supseteq S \sim \kappa$.

(4) More generally, we would like a characterization of those classes of cardinals of the form Sp (Γ) (Γ countable, Γ complete).

References

1. S. Feferman and R. Vaught, The first order properties of algebraic systems, Fundamenta Math., 47 (1959), 57-103.

2. G. Fuhrken, Skolem-type normal forms for first-order languages with a generalized quantifier, Fundamenta Math., 54 (1964), 291-302.

3. J. Keisler, Logic with the quantifier "there exist uncountably many," Annals of Math. Logic, 1 (1969), 1-100.

4. J. Malitz and W. Reinhardt, Maximal models in the language with quantifier "there exist uncountable many," to appear in Pacific J. Math.

5. A. Wojciechowska, Generalized products for Q_{α} -languages, Bulletin de l'Academie Polonaise des Sciences, Série des sciences math., astr. et phys., **17** (1969), 337-339.

Received May 4, 1971. This work was supported in part by NSF grants GP-19405 and GP-19655.

UNIVERSITY OF COLORADO