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A COMPLETE COUNTABLE LI, THEORY WITH
MAXIMAL MODELS OF MANY CARDINALITIES

J. I. MALITZ AND W. N. REINHARDT

Because of the compactness of first order logic, every
structure has a proper elementarily equivalent extension.
However, in the countably compact language L%L obtained
from first order logic by adding a new quantifier Q and inter-
preting Qx as "there are at least ωx x'a such that .," the
situation is radically different. Indeed there are structures
of countable type which are maximal in the sense of having
no proper L^-extensions, and the class S of cardinals admit-
ting such maximal structures is known to be large. Here it
is shown that there is a countable complete L^ theory T
having maximal models of cardinality /c for each K ̂  Hi which
is in S. The problem of giving a complete characterization
of the maximal model spectra of L<iι theories T remains open:
what classes of cardinals have the form Sp(Γ) = {κ\ there is
a maximal model of T of cardinality K] for T a (complete,
countable) L^ theory.

That S is large is shown in [4]. Assuming the GCH, it is
particularly simple to describe: S is the set of uncountable cardinals
which are less than the first uncountable measurable cardinal and
not weakly compact. Here we will need the fact that 21 e S; this is
proved in [4] without assuming the GCH. The countable compactness
of L2A is shown in Fuhrken [2]. For additional results and references
on the model theory of L%x see Kiesler [3].

1* Notation and preliminaries*

1.1. Relatively common notation. We identify cardinals with
initial ordinals, and each ordinal with the set of smaller ordinals.
We use a, β, 7 for ordinals, tc, λ, μ for cardinals, and m, n for finite
cardinals. S{X) = {t: t g X}; cX is the cardinality of X; 3L is the
cardinality of the continuum; ωΣ the first uncountable cardinal;
ILer Xi the cartesian product; YX the set of all functions on Y into
X, f\x the restriction of the function / to x.

The type TΣ of a set Σ of formulas is the set of non-logical
symbols occurring Σ.

In this paper all structures will be relational structures. Capital
german letters are used for structures, and the corresponding roman
letters for their universes. Alternatively we may write [Sl| for the
universe of 2L The type rSl of 51 is the set of non-logical symbols
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having denotations in 21, so that 21 = {A, S%)seτ%. We use sans
serif letters for non-logical symbols, and if 21 is understood we may
use roman letters for the corresponding denotations, so S = S*. If S
is a relation with rank n + 1, and the last argument is a function
of the first n places, we call S a function. If Ri (i e I) are relations,
then (SI, Ei)ieI is a structure 33 which results from 21 by extending
the type of 21 to include new relation symbols Rt (iel), where βf
is the relation Ri (appropriately restricted to A).

The phrase "K admits a structure such t h a t . . ." means "there
is a structure 21 such that c\%\ = tc and . . .."

1.2. Less common notation, special sums and products. As usual
21 •< 93 and 21 = 93 mean respectively that 2ί is an elementary sub-
structure of 33, 2t is elementarily equivalent to S3. Similarly 21 = ωι 23
means that 2t, S3 are L^-equivalent, i.e. that 2t, 93 have the same true
L^-sentences, and 2t-<ωi93 means that 2t is an L^-substructure of
93, i.e. that 21 £ 93 and for every L?ϋί formula θ, and every assignment
z in 21, 2t t= θ[z] iff 93 μ θ[z\. If K is a class of structures, ThωχK
is the set of L^-sentence true in every 21 e K. If Σ is a set of sen-
tences, Mod Σ is the class of structures (of some fixed type) such
that Σ S Thωμ.

Let ί £ τSt and let 0 ^ 7 g | 2t |. Then %\(V,t) is the ί-reduct
of the substructure of 21 determined by V, i.e. if 93 is the substruc-
ture of % determined by V, 2t | (V, t) is the structure (£ with universe
193 I and type t determined by R® = R* for R in t. We write 2C | ί for
2t|(|2t|, t). If V is a unary relation symbol, then we will write
2t|(V, t) for (the relativized reduct) 2t|(V*, t).

If t is a relational type, we can find a relational type t* 3 t, and
a set Sk(t) of first order sentences of type t* with the following
properties: (i) if τ2C = t, then there is an expansion 2t* of 21 with
r2t* = ί* and 21* e Mod Sk(t) (ii) if St, 93 e Mod Sk(t) and 2t £ 93, then
21 •< 93. In fact we may take Sk(t) to be the set of sentences which
assert that the Skolem relations satisfy their defining sentences, e.g.

Vz[Vy(B0(x, y) > θ(x, y)) A (lyθ(x, y) > lyRθ(x9 y))] .

If <2t;: ieiy is a family of relational structures all of type ty

and having pairwise disjoint universes, then χ ί 6 7 2 ί ί is the structure
93 of type t such that B= \Ji^Ai9 and R33 = \JieIR

%i for each Ret.
If the universes of the 2t; are not disjoint, then Σ<e/3ϊi is Σie/2tΐ
where 2t is some isomorphic copy of 21;, and the universes of the 2t{
are pairwise disjoint. If 21̂  and 2^ have different types, 2tx φ % is
defined as follows. First expand each to a structure of type r2t! U ^2t2

by adding empty relations, to obtain 2C', % respectively. Then
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3k θ a, = «[ + «;.
Let <SCi: i e I> be a family of structures, with τ%, = ίί# Choose

ίj = {R*: Re ίi} pairwise disjoint copies of the t{ (i.e K\-^Ki is 1 — 1 and
R, K* have the same rank). Let A* (iel) be new unary relation sym-
bols. Define S3 = £*(%: iel) of type t = {A*: ieI) U Uί& * e J } a s
follows: I S3 I = U*ei A,, A? - A,, and (a,)8 = R1*.

Define P,ez) (SI,, ®) = (^(3), Σ*ez>«<), K), where iΓ - {(x, i):ieD
and α?G IStJ}.

DEFINITION 1. (a) 21 is maximal iff wherever St £ 33 and St = ωi S3
then 21-93.

(b) 21 is strongly maximal iff 21 = (2ί', l/a), where U is unary,
and whenever 21 £ S3, 2ί == S3, and cU* = ^ 0 , then 21 = S3.

(c) S is the set of cardinals tz which admit a maximal model
of countable type; S' = {fc e S: fc ̂  3J .

(d) Sp (Γ) = {Λ:: K admits a maximal model of T)

REMARK, This notion of strongly maximal is weaker than the
notion of strongly maximal introduced in [4], but is all that is needed
in this paper.

2. Products and preservation of Inequivalence* We will need
to know that L^-equivalence is preserved under the operations Σ and
p defined above. The results we need follow from Wojciechowska's
generalizations of the Feferman-Vaught theorems on generalized pro-
ducts [5]. The following corollary of Wjocieehowska's main theorem
will suffice for our purpose. In this corollary, @ is an expansion of
<S(I), U, ~>, 21 = <2Ii>ίe/ is a family of structures (of fixed type)
indexed on I, and ^(2t, @) is the Feferman-Vaught generalized pro-
duct [1].

COROLLARY 2.1. Suppore that % =ωi^8i, iel. Then

/,@). Similarly ifn^vSSi, iel then

From this corollary we prove

COROLLARY 2.2. (a) If % =^83, then Σiβ/St, s ^ S i β i © * and
if % <ωiS3, then Σiei% <<o1Σ*iei®i.

(b) If % = β l S3, then PίeZ> (%, ®) = ω i P ί e I ) (S3,, ®).

Proof of (a). If eg |Sl|, and ϋ is a unary predicate not in τ2t,
we define 21' of type τ% u {ϋ} by
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In Feferman-Vaught [1] it is shown that the cardinal sum Σίe/St* is
a (relativized reduct of) a generalized product ^ « 2 t >,eJ, @). Thus
we can obtain Corollary 2.2a from Corollary 2.1 and the following
simple modification of Lemma 4.7 of Feferman-Vaught [1].

LEMMA 2.3. ( a ) For every formula Θ of LQ

ωi of type t U {U}
there is a formula φ of type t such that θ and φ have the same free
variables and for all 2X of type t,

{where φu is obtained from φ by relativizing all quantifiers to ϋ).
(h) TTPΎIPP 9ί = SA «ff 9f = W πnrl 9T -^ SA off 9T' -^ 9ft'

Proof. The proof of (a) is an easy induction on θ based on the
following fact: If φ is any formula of type r2Γ, and φ* is obtained
from φ by replacing each atomic subformula in which the variable x
occurs by lx{Ux A —\(x — x))9 then 21' |= 1X{-ΊUX A φ) <->φ*. Part (b)
follows easily from part (a) using the fact that c is definable in 21'.
This proves the lemma.

Proof of Corollary 2.2b. We now consider the product PieD (21,, 5)).
We may assume that OίD and that ί g | 2 t , |, ieD. Then we can
form 2I as in Lemma 2.3a with [ %[\ = [ 2t, | U {ΐ}, and 2CΓ with |2ίΓ| =
I % I U {ί} U {0}. Let @ = <SJD, U , ~ , ΛΘ>Λ6r3) where Rs = {({x0}, ,
{a?Λ_J>: <α;0, , xn^) e R^}. We show that PieD (21,, ©) is isomorphic to
a relativized reduct of the generalized product ^,e^(2C-', @) Now
(j- _ p Λ)Ϊ <φ\ _ / ς / 7 ^ V . 9TΛ /Γ'i haq t v n p f — (τ^Y I 1 Γτ^ΐ.V I ι
xίs — i jg£) i-vΛ>,, '**-') — \< ' \'^^> / 9̂,g j) -vΛ/,y, JLX I l i d o \jy p c (/ — \ t- ̂ i> i Ό y^ -^i/ \J

{D, A, K}, where D denotes 12) | and A denotes | Σ eD%\ and if =
{<x,̂ />: 0̂ 6 21, and 1/= i}. (Thus C = A U 2?.) We define η: \ K | ->
ΠieD^Γ as follows: For ieZ), 57, is the function which is 0 except
at ΐ, where ^(ΐ) = i. For α e | 2 ί , |, >yα is the function which is 0
except at i, where ηa{i) = α. Clearly 77 is 1 — 1. For Ret we write
i?0 for the relation induced on HieDAi' by i? via η, i.e., @ — v <D0 U
Ao, /?o)/ίeίo We show that for each Ret, Ro is definable in .^«2ϊ,>, e I ), @).
For R 6 ί we define an acceptable sequence ξR such that Ro is easily
defined using QζR (for the definition of acceptable sequence ξ, and of
Qξ, see Feferman-Vaught [1]). To describe the sequence ξR we suppose
that I(x), Z{x) are formulas of type r(2t ') which define i and 0 re-
spectively, and that Sing($) is a formula of type r@ which asserts
that X S JD is a singleton.

Note that /GD 0 iff Xo = {i' f(ϊ) = 0} is a singleton, and l o i l ^
{̂ : /(<£) — ̂ }. Thus Do = Qe n> where ςD is the sequence which asserts
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Sing (Xo) Λ l i i ί .

(i.e., ίχ> = <Sing (x0) Λ X o i Xi, -τZ(v0), / (O». Similarly A0 is given by

Sing (Xo) < X o i X !

Xo:

Now </, #>eκo iff feAo,geDo, and /(i) ^ 0 exactly when #(i) = v
Thus Ko is definable using the sequences for A, D and the sequence
given by

Xo — Xi

Xo: -iZ(v0)

Xx I(vd

For R e τD, use

Xo: I(v0)

and for R e τS^ use

3* Main result*

3.1. Some maximal structures with many automorphisms.
Let JT~ = <̂ 2 U ω2, ω2, S, W2, F>neω, where ί7 is a four place rela-

tion: Fabxy iff α, b e ω2 and a;gfl, |/gί) and x, y e n2 for some n.
The structure < 2̂, S> is the full binary tree, ω2 is the set of branches,
*2 the set of nodes at the πth level, and for each pair of branches
b, br the set {(x, y): FWxy} is an order preserving function on the
nodes contained in 6 onto the nodes contained in δ'. In [4], JT~ was
shown to be maximal.

We now construct two structures ά7~R and ^ s y both of type
τ(^) U {β}; in J7~R, β denotes the set R of eventually right turning
branches; in J7^s, β denotes R U {c}> where c always turns left. More
precisely,
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^~R = (J^~, R) where # = \b e ω{0,1}: lim bn = l } ,

and

S) where S = ί U { c } and ce ω{0} .

LEMMA 3.1. Let f: ω2 —•2. Then there is a unique automorphism
g of J7~ such that for all n and x e | ̂  |,

_ xn if f(x I n) = 0
1 — xn if f{x\n) = 1 (i.e., £msί wλβw / = 1) .

Proof. Clearly, g is 1 — 1 and onto; it is also an automorphism
since x £ y iff g(x) S #G/)> and any automorphism of (~2 U ω2, g ) is
an automorphism of

LEMMA 3.2. If D Q \ ^7~ \ ~ {c} and D is finite, then there is an
isomorphism g on J7~R onto J?~s such that for all be D, g(b) = b.

Proof. Clearly we may assume that D S ω2. Let n be chosen
so that iΐbeD then b(m) = 1 for some m < n. Let e be the branch
such that e(m) = 0 for m < n and e(m) = 1 when m ^ n. Define
/: ω2 -> 2 by /(e \m) = I if m^n, f(x) = 0 in all other cases. Let #
be the automorphism of ^~ induced by / as in Lemma 3.1. Clearly,
if b 6 R and b Φ e then g(b) e R since g(b)p = (b)p except for finitely
many p. Similarly, if b$R and b Φ e, then f(b) $R. Finally f{e) = β,
so / takes R to R U {c}.

3.2. Main lemma. Next we show that for every tc e S, it ^ 219 we
can find T with {2ly K} S Sp(T). In fact what we need is the following

LEMMA 3.3. For each tee S, tc ;> 3X, there are structures %κy S&κ

such that
( i ) c2CΛ = k21 and c^8K = /c,
(ii) τSI^ = τ?βκ is countable and the same for all tc9 and %κ =ωi^8κ.

Also, if Σ = f\κes Thωχ StΛ then
(iii) & 6 Mod 2 αt^d 33Λ S E implies S3, = <£,
(iv) © G Mod J α^d Ste S <£ implies %κ = K.

Proof. We construct 2[Λ, 35Λ from the structures _ ^ , ̂ ^ defined
above, and Hft* which we now describe.

In [4] it was shown that for each tc e S there is a strongly maxi-
mal structure Έlκ of power tc and countable type. Since any expansion
of a strongly maximal model is strongly maximal, we may assume
without loss of generality that all ΪUtκ have the same type t = r Sk (£),
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and that Mκ e ModSk (ί). Thus for all *, if Mκ s W e Mod Sk (ί)
then Ttκ < W. Hence there is a υ e τ Sk (ί) such that for all /c,
3ft, s SW' G Mod Sk (t) and cϋ3"' = α> implies that Wκ = 2ft'.

We now fix Λ: and construct 3£r, 33Λ; to simplify notation we drop
the subscript K. By the downward Lowenheim-Skolem theorem for
L%γ there is 3Ϊ -<ωi SK with c3i = 2 l e Let 3Ϊ6, 6 e R, be pairwise disjoint
copies of 3i, each disjoint from ^~ and SOΐ, and let 3ϊc = 31. Let St =
Σ>e*3iδ, 33ί - Σ»e*3ϊ6 + 3ί = Σ«e.3iα, and S3, = Σ * . * ^ + SK.

Let JHΓ be the function on SBi into i2 U {c} defined by

» i f a : 6 3 ! ' .

(c if a e l

Let ^ be a copy of ^ disjoint from the structurres so far mentioned.
For each b e R, let Gb be a function on ^ onto %lb.

Now we define

), Jϊ, Gb)beB

), jar, G 6 ) 6 6 ^

It is evident that c% — *2X and ά8 = /c, and that r2t = τS3 is
countable. Moreover this type is independent of K because all the
SPΐff have the same type. To establish St Ξω iS3, we prove that 21 = ω i S3'
and 33'<ω iS3.

We now show that 2tΞΞωi33\ In fact, we show that if t is a
finite subset of rSt, then S£| ί ~ 93'| ί. Given the finite type ί, let
JD = {6 e R: Gb € ί}. By Lemma 3.1, there is an isomorphism / on J7~n

onto ^ ς such that for all b e D, f(b) = b. For each b,b'eS choose
an isomorphism #6,6, on 3Ϊ6 onto 3Ϊ^, with sr6,6, the identity when b = 6'.
Now it is easily seen that we can extend / to an isomorphism on
St | t onto S3' 11 by defining f(x) = gb,f(b)(x) for all #e3ϊ 6 and /(α?) = a?
for xe^~'.

We complete the proof that SI Ξω i33 by showing that 33' < ω i 33.
Let © = (£s(^~8, %.f ̂ o), H, Gb, c)beR (treat c as the unary relation
{c}). Now let ® - <E θ (SK, W3"), S)f = (E φ (31, w*) where w332 = | m \
and wR = |3 l | . By Corollary 2.2a and the definition of φ , we have
©' < ω i ® It is enough to show that to every formula φ of type τSB',
there is a fomula ^* of type τ©' such that for all assignments ^ to
35', 33' |= cp[z] iff ©' μ ^*[4, and S3 N ^ M iff ® F μ q*[z\. We define
<??* inductively as follows:

R%0 u»-i = Ru0'" un^ for all R e rSS', /? Φ H

= HWo !̂ V [W^o Λ VsX p# c]
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(φ Λ f)* = ^ Λ f *

An easy induction on φ shows that the function taking φ into φ* is
as required. This completes the proof that Sί Ξ=ωi93.

Now we prove (iii). Suppose that & e Mod Σ and 33 £ (£. We
must show that 93 = (£. Since J7~ is maximal it is easy to see that
<£ has the form («5^(J^, K ^ ) , H\ Gt)beR, for some (Si 3 S3. Thus for
each be R, domain of Gb = TQ, since there is a sentence true in all
2Γs which asserts that Gb is a function with domain Γo. Thus G® = G?.
It follows that in E, range G& meets H"1^). But in all Si's, if range Gb

meets H~\z), then H~~\z) £ range (?δ, and this is expressible by the
sentence

Vz[lxly(H(x, y) A Gb(x, y)) > Vy(H(y, z) > lxG{x, y))} .

Thus for each b e R, (H^φ) S range Gb. Now in all 2t, | % \ £
Uί-eis H"1^). Since there are unary predicate symbols Aίy B such
(Ai)* = |2ti|, βa = JB, this is expressible by a first order sentence.
Now I Ai Is = I eL I, and β5 = S = # U {c}, so we have

I ®i I £ U (W)"1^) U (H ) - 1 ^ ) .

Since we already have (H^)~ι(b) £ | S3 | for 6 e R, it remains only to
show that (H8)""1^) £ 3K. Now each 3K, and hence each %, is a model
of Sk (ί). It follows that if σ e Sk (ί), then for each 2t we have

where σ" is obtained from σ by relativizing all quantifiers to H(x, z)
(treating z as a constant). In particular then,

e e = ®! I ((H8)-1^), τ9K) G Mod Sk (ί) .

Evidently, we also have Έl £ (Ee. Also since in each 2t, L/̂^ = ϋ9t D
(H2ί)-1(^) is countable for each z e W, there is an {LI) sentence in Σ
which asserts this. It follows that USc = L/α Π {H^)~ι(c) is countable.
Thus since SK is strongly maximal, it follows that (H0)"1^) £ | 3K |.
This completes the proof of (iii); the proof of (iv) is exactly the same;
replacing S3 by ϊt and deleting reference to 9K and c. This completes
the proof of Lemma 3.3.

3.3. Main theorem.

THEOREM 3.4. There is a complete countable L%-theory T such
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that for every ιc }> 219 T has a maximal model of power K, if there
is a maximal structure of power tc, i.e., Sp (T) = S Π {%: K ^ 3 J .

Proof. Let 31,, 33* be the structures given by Lemma 3.3. Let
{Td: d e 13 J = {Thωi 3tβ: tt e S'}. We now construct ^-equivalent maxi-
mal structures (£Λ for each it e S', with (£Λ of power K. Taking T —
Thωi&κ will complete the proof. First let

= (SB. if Γ< = Thmi®.
κ>d \%κ otherwise, where Thωi% = Td .

Let S) be any maximal structure with | ® | = 2lf and let

Evidently &κ is of power K. By Corollary 2.2 for Λ:, λ e S, and

It remains to show that each (£Λ (tc e S') is maximal. To simplify
notation we omit the subscript tc from 21, 33, (£ in the remainder of
the proof (thus we write (£d for 6 ^ ) . Suppose 6 = e i S ' and (£ £ (£'.
We must show K = (£'• Clearly © = K | (D, t) for some type ί. It is
easy to see that if ©' = <£'| (D, t) then © Ξ=ωi©' and © £ ©'. Since
© is maximal it follows that ©' = ©. Notice that for d e D, &d =
(£ I (Krι{d), ί), where ί is the type of St. Clearly Vx(Dx V 3̂ /(02/ Λ Kxy))
is true in (£ and hence in (£'. Thus, putting &'d — (£' | ((K^)"1^), ί)
we have | (£'| = i) U Urfez> I &Ί To see K = (£' it suffices to show that
Kd — Ki for each deD.

It is evident that Kd S £ i Although Gf Ξ ω i K', we cannot im-
mediately conclude that (£d Ξ= ω i K̂  (and hence by the maximality of
(£d that (£d = Ei) because d may not be definable in (£. However, to
conclude that K̂  = (£d, it suffices to show, by parts (iii) and (iv) of
Lemma 3.3, that &'d e Mod (Σ) where Σ = 0,65 Thωi%κ. Now in (£ we
have, for each σ e Σ,

Vd(D(d) > σd)

where σd is obtained from σ by relativizing all quantifiers to K(x, d)
(treating ί as a constant). Thus, since K Ξ

ω i ® ' , we have for each
deD, &deM.oάΣ. Thus |6/d| = |KJ, and hence (£ = (£', as was to
be shown. This completes the proof of Theorem 3.4.

4* Problems*

(1) Is there a set Γ (Γ countable, Γ complete) of LgΓsentences
such that both S Π Sp (Γ) and S - Sp (Γ) are cofinal with the first
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measurable cardinal? I.e. is there a cardinal it less than the first
measurable such that whenever \J(tc Π SpΓ) = fc we have SpΓ a S~ Kt

(2) Is Theorem 3.4 true if we replace Πx by ωj
(3) What is the least K such that whenever \J(κ Π Sp (Γ)) = tz

we have U S p ( Γ ) 2 S - /c.
(4) More generally, we would like a characterization of those

classes of cardinals of the form Sp (Γ) (Γ countable, Γ complete).
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