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DECOMPOSITION OF SEMILATTICES WITH
APPLICATIONS TO TOPOLOGICAL

LATTICES

JOE B. RHODES

Every element with finite extent in a meet-continuous semi-
lattice with complete chains is the meet of a finite number
of meet irreducibles. This includes both semilattices with the
ascending chain condition and compact topological semilattices
with finite breadth. By applying this decomposition to to-
pological lattices on an n-cell, the following results are obtained:
If L and M are topological lattices on n and m-cells respec-
tively and there is an order isomorphism between the bound-
aries of L and M, then L and M are homeomorphic. If, in
addition, L and M are distributive, L and M are isomorphic.

1* Finite extent* The most general existence theorem for meet
irreducible decompositions in a lattice has been proved for com-
pactly generated (algebraic) lattices by Dilworth and Crawley [4].
While this includes the theory of lattices with ascending chain con-
dition, it does not include the class of topological lattices on an n-
cell. The results herein include the latter class and lattices with
ascending chain condition. We do not know of existence theorem
which includes these topological lattices and compactly generated
lattices as well.

Several concepts are needed. A subset A of a poset is called a
factor of B and we write A \ B when for each xeB, there exists y e
A such that x ^ y. A subset of a poset is independent when no two
elements in it are comparable. It is easy to prove the following.

THEOREM 1.1. If P is a poset, the factor relation on the subsets
of P is reflexive and transitive. The factor relation on the independent
subsets of P is a partial order.

An element x όΐ a semilattice S has extent n iff x is the irre-
dundant meet of a set M with n elements but M is not a factor
of a finite set with more than n elements whose irredundant
meet is x. We say that x has breadth n iff x is the irredundant meet
of a set with n elements but x is not the irredundant of a finite set
witc more than n elements. A semilattice has breadth n iff one of
its elements has breadth n and the breadth of every other element is
less than or equal to n. It should be clear that breadth of elements
is a function from a lattice to Z+ U {°°}; extent, on the other hand, is
not, as the next example shows.
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EXAMPLE 1.2. For each positive integer n, let Bn be the Boolean
Algebra of all subsets of a set with n elements, chosen so that Bn Π
Bm = {φ} if n Φ m. Let S = U ~=i Bn be the semilattice with operation
set intersection. The element φ has extent n for each positive
integer n. Moreover, φ does not have finite breadth, even though
every chain in S is finite.

THEOREM 1.3. If x has breadth n, x has extent no greater than
n. The breadth of x is the least positive integer n such that ifx=Λ
M and M is finite, then there exists a subset F of M such that card
F ^ n and A F = x.

The proof of Theorem 1.3 is a straightforward application of the
definitions.

We shall rely on the following result of Birkhoff [2, p. 182] in
the proof of two subsequent theorems. His result is stated dually
for our purposes.

THEOREM 1.4. Let P be a poset with ascending chain condition
and let S be the set of finite independent subsets of P. If S is ordered
by the factor relation, S has the ascending chain condition also.

THEOREM 1.5. Each element of a semilattice with ascending chain
condition has finite extent.

Proof. Suppose a does not have finite extent. Let Mx = {α}.
Since a does not have extent 1, M1 is a factor of a finite set M2 with
more than one element such that a is the irredundant meet of M2. Since
the meet is irredundant, M2 is independent. By an inductive process
we may define an infinite ascending chain of finite independent sets

Λfi I Λίi I Λfβ - -

contrary to the preceding theorem. Hence the assumption that a
does not have finite extent is incorrect, and this proves the theorem.

THEOREM 1-6. Let S be a semilattice with ascending chain
condition with x e S. The breadth of x is n — sup {j \ x has extent j}
if this supremum exists.

Proof. Clearly, x has extent n, so there exists a set M with n
elements such that x is the irredundant meet of M. Suppose x is
the irredundant meet of a finite set Mί with more than n elements.
Since x does not have extent greater than n, there exists a finite
set M2 with more elements than M1 such that MX\M% and x is the
irredundant meet of M2. As in the preceding theorem, this procedure
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generates an infinite ascending chain of finite independent sets, contrary
to Birkhoff's theorem. Hence x is not the irredundant meet of a
set with more than n elements, and thus x has breadth n.

2* Meet decompositions* A subset A of a poset is (up) directed
when it contains an upper bound for each pair of its elements. A
semilattice S is meet-continuous if for each directed subset A of S
for which V A exists, we have \J (w A A) e S and w A V A = V
(w A A) for all weS.

We now prove the basic existence theorem for finite meet-decom-
positions.

THEOREM 2.1. If S is a meet-continuous semilattice in ivhich all
chains have suprema, then each element of S with extent n is the
irredundant meet of n irreducibles.

Proof. Let a be an element of S with finite extent. By definition,
there exists a set F with n elements such that a is the irredundant
meet of F and F is not a factor of a finite set with more than n
elements whose irredundant meet is α. Enumerate F by F = {xl9 x2,
• xn}. Let Ct be a maximal chain in M1 — {x ^ xγ \ x A x2 A Axn —
a] and let bx = V CΊ By meet-continuity bγ e ilίi; hence ί>L is a maximal
element in Mx. With a similar argument, a maximal element 62 in
{xl^XzWAx^x A xz A Λ ^ = α} may be obtained, and this process
is continued until the set B = {bίy b2 bn) is achieved. Clearly,
A B = a. Suppose be B and 6 — x A y. Since Fis a factor of (JB\&) U
{x, y} and this set has more than n elements, its meet is redundant.
Since Λ (J5\δ) > α, Λ \{B\b) (J M] = α or Λ [(B\b) U {2/}] = α, either of
which contradicts the maximality of b unless x — b or y = 6. Thus
the elements of B are irreducible. Moreover, the meet of B is
irredundant since F\B and a is the irredundant meet of F. This
completes the proof. Notice that the set B is maximal with respect
to these properties: F\B, card B = card F, and α is the irredundant
meet of B.

Stralka and Baker [10] independently of the author and at about
the same time proved that a complete meet-continuous lattice with
finite breadth has finite irreducible decompositions. This is a special
case of Theorem 2.1: however, the proofs are quite similarβ

By virtue of the fact that a semilattice with ascending chain
condition is meet-continuous [4], we have the well-known corollary:

COROLLARY 2.2. Every element of a semilattice with ascending
chain condition is the irredundant meet of a finite number of irre-
ducibles.
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Finite extent is not a necessary condition for the existence of
finite irreducible representations. There are, however, some special
cases in which the stronger condition of finite breadth is necessary.

THEOREM 2.3. Let S be a semilattίce with finite irreducible de-
compositions for each y ^ x. If all irredundant irreducible decom-
positions of x have n elements, then x has breadth n.

The straightforward proof of Theorem 2.3 is omitted. Modular
semilattices were defined in [8] and the semilattice version of the
Kurosh Ore theorem was proved.

COROLLARY 2O4O If S is a modular semilattice with finite irre-
ducible decompositions for each element, then each element of S has
finite breadth.

THEOREM 2.5* (Newman [7, p. 31]) If every element of a com-
plete distributive lattice L has a finite rmeet irreducible decomposition,
then L is meet-continuous.

THEOREM 2.6. Let L be a complete distributive lattice. Every
element of L has a unique irredundant decomposition into a finite
meet of irreducίbles if and only if L is meet-continuous and each
element of L has finite breadth*

The uniqueness of decompositions in a distributive lattice was
first shown by Birkhoff.

The next two theorems deal with decompositions of product
semilattices.

THEOREM 2.7. If each element of each Sa has an irreducible
decomposition and precedes a maximal element, then every element
of πSa has an irreducible decomposition.

Proof. Let / e πSa. Let f(a) = Λ xit(X be an irreducible decom-
position of f(a) in Sa. Define

j ,,* K « if t = a
[mt li t Φ a

where mt is a maximal element containing f(t). Clearly, each hi>a is
irreducible and Λ*,Λ,α = / .
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THEOREM 2.8. // every element of πSa has an irreducible decom-
position, then every element of each Sex has an irreducible decomposi-
tion. If there is an a such that some element of Sa does not precede
a maximal element, then every element of Sβ precedes a maximal
element if B Φ a.

Proof. We prove only the second part. Suppose there exist Sd,
Sβ with xθ e S0 and xβ e Sβ and neither xθ nor xβ precedes a maximal
element. By the Axiom of Choice, there exists x e πSa such that
x(β) = xβ and x{θ) = xθ. Suppose m e πSa and m ^ x. Since m(θ) ;>
xθ and m{β) ^ xβ and neither of these elements precedes a maximal
element, there exist yβ > m(β) and yθ > m(θ). Define

m{a) if a Φ β \m(a) if a Φ θ
. - n

 a n d & ( a ) = 1 - 4 . β

yβ if a = β [yθ if a = θ .

Then m = h Λ g. This proves that every element greater than x is
reducible, contrary to hypothesis, and this contradiction completes
the proof.

3* Applications to topological semilattices and lattices* A
semilattice whose operation is continuous in an underlying Hausdorff
topology is called a topological semilattice. Continuity of the semilattice
operation does not imply meet-continuity generally, but there are
exceptions.

THEOREM 3.1. S be a semilattice and a topological space in which
each ascending net converges to the supremum of its range. If the
operation of S is continuous, then S is meet-continuous.

Lawson [5] has shown that ascending nets converge to suprema
in a compact topological semilattice. Thus a compact topological
semilattice is meet-continuous.

THEOREM 3.2. Let {Sa\aeΓ) be a family of compact topological
semilattices with finite breadth. Then every element of πSa has an
irreducible decomposition.

Proof. Combine Theorems 2.1 and 2.7 with the preceding remarks.

THEOREM 3.3. {Lawson [6]) Let S be a locally compact topological
semilattice in which M{x) = {y\y ϊ> x} is connected for each x e S. If
S has positive codimension n, S has breadth less than or equal to
n + 1. // each pair of elements of S has an upper bound, then S
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has breadth less than or equal to n.

The special case of Theorem 3.3 for distributive lattices was first
proved by Anderson [1].

THEOREM 3.4. Let S be a compact topological semilattice in which
M(x) is connected for each x. If x has positive codimensίon n, then
each element of S has an irredundant decomposition into no more than
n + 1 irreducibles. If S is a lattice, each element of S has an
irredundant decomposition into no more than n irreducibles.

In particular, topological semilattices on the n-ceϊl have irreducible
decompositions.

THEOREM 3.5. Let S be a topological semilattice on an n-cell
(n ^ 2). Then all the irreducibles of S lie on the boundary.

Proof. Modify the proof of Theorem 1, p. 37, in Brown [3].

THEOREM 3.6. (Lawson [5, p. 89], and Strauss [11].) A compact
metrizable topological lattice has the order topology.

THEOREM 3.7. Let L and M be topological lattices on n and m
cells respectively. If there is an order isomorphism between the
boundaries of L and M, then n — m and L and M are homeomorphic.

Proof. The case m = 1 is straightforward. Assume m > 1. By
Theorem 3.6, L and M have the order topology and by Theorem 3.3,
L and M have finite breadth. In lattices of finite breadth the order
topology coincides with the interval topology [2, p. 250]. Thus the
closed intervals [a, b] constitute a subbasis for L and M.

Let / : B(L) —> B(M) be an order isomorphism from the boundary
of L onto the boundary of M. We must show / is continuous, that
is, f~\[a, b] ΓΊ B{M)) is closed in B{L). Let x be a sequence in f~λ

([a, b] Π B(M)) with x converging to some xoeB(L). Clearly f(x0) is
defined and f(x0) e B(M). By Theorem 3.4, b has an irreducible
decomposition b = A B and by Theorem 3.5, B S B(M). Since f(xn) ^
b for every n, f(xn) ^ y for every yeB. Since / is an isomorphism,
%n ^ f~\v) for every yeB. By continuity of the semilattice operation,
x0 ^ f~\y) for every yeB. Hence f(x0) ^ Λ B = b. Using join
irreducible decompositions we may show a ^ f(x0). Thus Xoef^da,
b] Π B{M)) and this set is closed. This proves that / is continuous
and since B{L) and B(M) are compact Hausdorff spaces, / is a
homeomorphism. Since the boundaries are homeomorphic, n — 1 =
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m — 1. Hence n — m and L and M are homeomorphic.
Shields [9] has shown that if there is a homeomorphism φ from

the boundary of a topological semigroup S on an n-ceϊl onto the
boundary of the product semigroup T on the same cell, and φ is an
isomorphism, then S and T are isomorphic. The above theorem shows
that order isomorphism is sufficient in the lattice case when one is
the product lattice. Theorem 3.8 below shows that the requirement
that one be the product lattice may be dropped if both lattices are
distributive. We note that distributive lattices on an n-cell are not,
in general, isomorphic.

THEOREM 3.8. // L and M are distributive topological lattices
on an n-cell, and f: B(L) —-» B(M) is an order isomorphisms, then there
exists a lattice isomorphism g: L —• M that is an extension of f.

Proof. The case n = 1 is trivial. Assume n > lo Define g: L —*
M by

g(x) = f(Xl) A f{x,) Λ • Λ f(xm)

where x — x1 A x2 Λ
 β Λ xm is the unique irredundant decomposition of

x into irreducibles. Since this representation is unique and irreducibles
lie in the boundary, g is well-defined. The proof is carried out in a
sequence of lemmas.

1. If A R = Λ T and R and T are finite sets of irreducibles in
L (in M), then A f(R) = A f(T)[ A f~\R) = A f-\T)\.

Proof. We prove only the first part. Suppose x e R. Since x is
irreducible, L is distributive, and x ^ Λ Γ, x ^ y for some yeT.
Thus T\R and since / is an order isomorphism, f(T) \f(R). Similarly,
f(R)\f(T); hence Λ f(R) = A f{T).

2. g is a semilattice hornomorphism.

Proof. Suppose x = Λ X and y = Λ Y are irredundant irreducible
decompositions in L. There is a set T S X U Y such that x A y = AT
is an irredundant irreducible decomposition of x A y. Then by part(l),

g{% Ay) = g(Λ R) = A f(R) = A / ( I u Y) - g(x) A g(y) .

3. The image and preimage of irreducibles under f are irreducible.

Proof. Suppose x is irreducible in L. Let f(x) = ^ Λ a ; 2 Λ « Λ

xm be an irreducible decomposition of f(x) in M. Since xl9 x2, xn e
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B(M) and / is an order isomorphism, x = f~\x^ Λ f~ι(x2) Λ Λ
Z " 1 ^ ) ; this implies that x = f^fa) or /(#) = α?< for some ί. Thus the
image of an irreducible is irreducible and a similar argument holds
for preimages as well.

4. g is an injection.

Proof. Suppose g(x) — g(y) with x = xx A x2 A A xm and 7/ =
yι A Λ yp the irredundant irreducible decompositions of x and ?/
in L. Then /(a^) Λ Λ f{xm) = f{y^ Λ Λ f(yp). These meets are
irredundant, for if A^y /(<&<) = Af{x%), then by part 1, Λ«*y »< = Λ a\ ,
contrary to the irredundancy of the decomposition of a?. Since each
f(Xi) and /(#*) is irreducible (by part 3) and M is distributive, {/(a?*)} =
{/(!/*)}• Thus {ajj = {Vi} because / is an isomorphism; and it follows
that x = y.

5. g is a surjection.

Proof. Suppose yeM. Let y — yxA Λ ym be the irredundant
irreducible decomposition of y in M and let x — f~\yd Λ Λ f~\y«)
Clearly #(#) = y.

This proves that ^ is a semilattice isomorphism and since L and
M are lattices, g is a lattice isomorphism.

COROLLARY 3.9. If L and M are distributive topological lattices
on n and m cells respectively, and the boundaries of L and M are
isomorphicy then L and M are homeomorphic and isomorphic.

The preceding results, with the exception of Theorems 3.7, 3.8
and 3.9, were part of a paper presented to the American Mathematical
Society in January, 1969, under the title "Chain Conditions in To-
pological Semilattices".

I would like to thank Professor Don E. Edmondson for his advice
during the preparation of this paper.
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