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A MEAN STIELTJES TYPE INTEGRAL

D. B. PRIEST

For the extended mean Stieltjes integral R. A. Stokes has
shown that joint discontinuities of the functions involved can
be ignored just as in the ordinary mean Stieltjes integral as
considered by Porcelli and others. A Stieltjes type integral
of a function with respect to a function pair has been defind
by E. D. Roach, but existence of the integral depends upon
the simultaneous continuity of two or more of the functions
involved. In this paper a mean Stieltjes type integral of a
function with respect to a function pair is defined which over-
comes these limitations. Representation theorems for the
integral are also given.

!• Definitions and notations* Unless otherwise stated or implied,
functions considered in this paper are real valued and defined on the
rectangular interval A — [a, 7] x [β, δ]. Limits are of the σ or refine-
ment type on partitions D of A [4, 10]. If the subinterval d = [p, r] x
[q, s] of A is an element of the partition D, then the /-area of the
function / is given by f(d) = f(p, q) - f(r, q) + f(r, s) - f(p, s) [6]
The horizontal and vertical contour maps of / are given by f[ — ,ri\
and f[m, — ], respectively, where (m, n) e A. The function / is of
bounded variation in the sense of Vitali provided the sums of the
type Σde2>l/(d)| are uniformly bounded. YίP,g r,.i(f) (or Vd(f)) will
denote the variation of / over d. Hardy and Krause require additionally
that at least one horizontal and at least one vertical contour map of
/ be of bounded variation [1, 2]. The function / is said to be

(1) totally nondecreasing provided f(d) Ξ> 0 for each de D, f[a,
— ] is nondecreasing, and /[ —, β] is nondecreasing;

(2) partially nondecreasing provided f(d) ^ 0 for each de D,
f[a, — ] is nondecreasing, and /[ —,3] is nonincreasing; and

(3) anchored provided f(d) ;> 0 for each deD and f[a, — ] =
/ I - , 0 ] = O [2,11].

The (g, /^-evaluation over deD, denoted by (g,h)(d), of the func-
tion pair (g, h) is given by (g(r, q) - g(p, q))(h(p, s) - h(p, q)) - (h(r,
s) — h(p, s))(g(r, s) — g{τ, q)). The lower (gf /^-evaluation, denoted by
(g, h){l, d) is given by an analogous expression wherein g(r, s) — g(r,
q) has been replaced by g(p, s) ~ g(p, q). ND{g, h) and LD{g, h) denote
the sums Σ*e2> (ΰ, h)(d) and Σdeato, h)(l, d), respectively. If E ^ D
(i.e., E is a refinement of D), then E/d denotes that portion of E
which is a partition of d. Let N'(d) = sup {NE(g, h): E is any partition
of d}. L'{d) is defined similarly.

The function / is quasicontinuous [8] provided the limits f(s, ί±),
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f(s±, t) and /(s±, ί±) exist for each (s, t) in A [12, p. 3]. The boundary
of d will be denoted by d(d).

2* The integrator pair* In this section, unless otherwise stated,
we assume that g is totally nondecreasing and h is partially nonde-
creasing. Under these conditions, it follows directly from the definitions
that (1) N'(d) and U(d) are finite for each deD; (2) sums of the
type LD(g, h) are nondecreasing under refinement; and (3) U(d) —
Σ L'(e) where the summation is over all e in E/d. Thus using techniques
analogous to those developed in [12, pp. 10-14] for functions of bounded
variation in the sense of Vitali we have the following two lemmas:

LEMMA 2.1. Let ε > 0 and d = [p, r] x [q, s] gΞ A. Then there
exists a pairwise, disjoint collection {cj}^^ of subintervals of d such
that

(1) each cό shares a separate vertex with d and
(2) if Cj is a subinterval of c5 which also shares a vertex with

d, then L'{c3) - L'(cβ < ε.

LEMMA 2.2. Let ε > 0, d — [p, r] x [q, s] £ A, and b be a subin-
terval of d missing the vertices of d such that d(d) Π d(b) Φ 0 . Then
there exists a proper subinterval br of b such that if E is a partition
of 6', then Σ L'{e) < ε where the summation is over all e in E which
have no point in common with d(d).

LEMMA 2.3. If g[ —, <5] or h[ —, β] is continuous on [a, Y], then
for each ε > 0, there is a partition D of A such that 0 ^ NE(g, h) —

, h) < ε where E ^ D.

Proof. Assume that g[ —, δ] is continuous. If h[ —,/3] is con-
tinuous, the proof is similar. Let ε > 0. Assume that K = h(a, β) —
h(j, β) Φ 0; otherwise, the result is immediate. There exists a partition
D = {dt = [«<_!, tt] x [β, δJhsi*. of A such that g(dt) < ε/K. Let E be
a refinement of D. Under the conditions on g and h, it follows
routinely that

NE(g, h) - Ls(g, h)^± (h(t^, β) - h(ti9 β))(g(dS < ε .
i l

That the difference NE(g, h) — LE{g, h) is nonnegative follows readily
from the definitions.

LEMMA 2.4. If f is a function of bounded variation in the sense
of Vitali and each of its horizontal contour maps is continuous, then
the variation function V(x) = Vίa,β.tX,δl(f) for each x in [a, 7], is
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continuous.

The following theorem parallels a known result concerning func-
tions of bounded variation in Vitali's sense [9, p. 250].

THEOREM 2.5. If the function g is of bounded variation in the
sense of Hardy-Krause, then there exist totally nondecreasing functions
gλ and g2 and partially nondecreasing functions hγ and h2 such that
g = g2 — gγ — h2 — hL. Moreover, if the horizontal contour maps of g
are continuous, then g\ — y δ], g2[ — , δ], h\ —, β], and h2[ — , β] are con-
tinuous.

Proof. It is known that if g is of bounded variation in the sense
of Hardy-Krause, then g[a, —],g[ — ,β], and g[ —, <?] are of bounded
variation in the usual sense [2, p. 385]. Thus let gt be the function
such that

, y) = Vίa,β;x,y](g) + V*a{g[-, β]) + F/([α, - ] )

for all (x, y) in A. Let hγ be such that

lφ, y) = V[a,β.,x,y](g) - V[a,β.,x,δ,(g) + Vl(g[a, - ] ) - Vx

a{g[-, δ\)

for all (x, y) in A. Additionally let g2 = g + g1 and h2 = g + hx. The
theorem now follows from the additivity of the variation functions
on subintervals of a given interval [5, p. 107] and Lemma 2.4.

3* The integral* For the remainder of this paper, F(d) will
denote l/4(/(p, q) + f(r, q) + f(r, s) + f(p, s)), the mean evaluation
of / at the four vertices of d in the partition D. [4, p. 274 and 12,
P. 5]

DEFINITION 3.1. The function / is (g, /^-integrable provided the
σ-limit of sums of the type SD(f, g, h) = Σ<zez> (F(d))((g, h){d)) exists.
The integral will be denoted by \ f dg dh.

JA

REMARKS. It follows immediately from the definition that the
integral is linear in each of its three components i.e., the integrand
/ and each of its integrator function g and h. Also, if each of g
and h is a function of a single variable, then \ f dgdh agrees readily

JA

with one or the other of the extended mean Stieltjes integrals

± m{σ) \ f dk where k = gh. For in this case, limσ SD(f, g, h) = limσ ±
ΣieDF{d)k{d) = ± m(σ) ί f dk [12, p. 14].
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THEOREM 3.2. If f is quasicontinuous, g and h are of bounded
variation in the sense of Hardy-Krause, and either the horizontal
contour maps of g or the horizontal contour maps of h are continuous,
then f is (g, h)-integrable.

Proof. Let ε > 0. In view of Theorem 2.5 and the remarks
preceding this theorem, it suffices to consider a totally nondecreasing
g and a partially nondecreasing h such that either g[ —, δ] or h[ —,
β] is continuous. There is a partition Af — {Al9 •••, AN) of A such
that (1) I LE(g, h) - LF(g, h) | < ε where E,F^A' and (2) if P and
Q are in the interior of A< or in the interior of a particular edge of
A, for some i ^ JV, then |/(P) - f{Q)\ < e [12, p. 4]. By Lemma
2.1 and 2.2 there exists a refinement B of A' such that B/At = {cij9
eij> Ii}i£j£4 where each ci3 has the property of c3- in Lemma 2.1, each
e{j has the property of bf in Lemma 2.2 and I; = Ai\\J4

j=1 {ci5 U β4i),
the complement of Uy=i ifiu U ei3) relative to At. Suppose G ^ B and
let Ci3 = {eeG/ci:}\e shares a vertex with AJ, Ei3 — {ee G/ei3 \d(e) Π

d(A<) Φ 0 } , Clj = (G/ci3)\Cφ and ^ = (G/etί)\EiS. Then

Σ (() ) ( to , ) ( , &)) ~ Σ TOXfo λ)(l, β))| < Jtf I^Ojr, h) - LG(g, h)
beβ eeG

] N

+ Q^ΣLσlIi(gyh)

+ 2ikfΓέ Σ Σ L'(e) + Σ Σ Σ L'(e)] < eK
\_i=l j=ίee£'. . ί=i i=i eeC. . J

where M is a positive bound on / [12, p. 4] and K — M + I/(A) +
lβΛίiV. Now by Lemma 2.3 there is a partition B' of A such that
if G ̂  5', 0 <Ξ iV^ ,̂ h) - Lσ(g, h) < ε/2M. Suppose D refines β and
B\ It now follows routinely that | SE(f, 9, h) - SF(f, 9,h)\ < e(2K +
1), where E, F ^ D. It is well known that this Cauchy condition
insures the σ-limit since SD(f, gy h) is a function of subdivisions [4,
Th. 2.11, p. 266] i.e., / is (g, /^-integrable.

4* Representations for the integral* We now develop certain
representation theorems for the integral, establishing relationships

between it, the ordinary mean Stieltjes integral (m{σ)\ f dg [3, 10]),
V Joe J

and the extended mean Stieltjes integral. We shall say that / is
factorable into functions fι and f2 provided there exist functions fγ

and /2 such that f(x, y) = fι(x)f2(v) for each (x, y) in A.

THEOREM 4.1. Suppose f is quasicontinuous and g and h are of
bounded variation in the sense of Vitali and factorable into nonconstant
functions gly g2, and hlf h2 respectively. If μ — hλg2 and v = gjι2 have
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no common discontinuities, then f is (g, h)-integrable and I f dg dh =

m(σ) \ fμdv — m(σ) \ fv dμ.
JA JA

Proof. Since g and h are of bounded variation in Vitali's sense

and factorable into nonconstant functions, μ and v are of bounded

variation in Vitali's sense [5, p. 107]. It also follows readily that

fμ and fv are quasicontinuous [5, p 40]. Thus each of m{σ) 1 fμdv

and m(σ)[ fvdμ exists [12, Th. 3.1, p. 15]. Since SD(f, g, h) =

Σ ^ z > ( W ) W , ^ the result follows

by showing that the σ-limits of the sums on the right are m{σ) \ fμ dv
JA

and m(σ)\ fvdμ respectively. An outline of the proof of the first of
JA

these is given. Suppose V = VA{v) > 0. Let J, K and L denote positive
bounds on / , g2 and ht respectively and let ε > 0. There is a partition
A' = {Aly , AN} of A such that if P and Q are in the interior of
Ai for some i, \μ{P) - μ{Q)\ < εβJV; and if E ^ A', \m{σ)\ fμdv -

ΣesEFM{e)v{e)\ < e/4 [12, Th. 3.1, p. 15]. Under the continuity
conditions on μ and v, there is a refinement B of A! such that B/Ai =
{ex, ei3 , Ii}i<iS£i and such that either (1) Vb(v) < ε/64JKLN (for 6 =
en or ê  ) or (2) |μ(u, v) - μ(s, t)\ < ε/8JV where E^B and (s, ί) e
[u, w] x [τ;, x] e E/b (for 6 = cί5 or eίy). Thus iί E ^ B and 6 ranges
over all c# and e^ ,

fμdv-Σ. (F(e))(μ(u, v)){v( i.
4

I FM(e) - F(e)(μ(u, v)) | | υ(

Σ Σ I FM(e) - F(e)0t«(it, «)) | | v{e) |
i=iβeiί/Ji

4 2

Similarly one can see that lim^ΣdeijίJ^ίίί))^^, s))(μ(d)) = m{σ)\ fvdμ.
JA

Thus limff S(/, g, h) = m(σ)\ fμdv - m(σ)\ fvdμ.
JA JA

REMARK. If in the above theorem we were to allow / to be a

nonconstant factorable function and require only that ^ and hi(i =

1, 2) share no discontinuities from the right or from the left, then

we can show by a similar argument that the integral I f dg dh can
JA
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be represented by

ym{σ)VfAdgή[m{σ)\ f2g2dh2) - \^{σ)\jιgιdhή(m(σ)\ f2h2dg2) .

THEOREM 4.2. Suppose f is quasicontinuous and g and h are
of bounded variation in the sense of Hardy-Krause. If the contour
maps of g [resp. h] are continuous, then there exists a function μ of

bounded variation such that \ f dg dh — m(σ) \ f dμ.
JA JA

Proof. By Theorem 3.2 \ f dg dh exists. Let μ be such that for
JA

each {x, y) e A,

μ(x, y) = m(σ)\ h[-, y]dg[-, y] + m(σ)\g[x, -]dh[x, -] - (gh)(x, y) .
Jo Jo

By Theorem 2.5, it suffices to consider g and h as in Theorem 3.2.
Under these conditions and known integration by parts formulas [7,
Th. 2.1, p. 61] it follows that ΣdeDμ(d) is equal to

Σ (g(r, q) - g{p, q))(h(\ s) - h{X, q))
den

- Σ (Hr, θ) - h(p, θ))(g(r, s) - g(r, q))
deϋ

- Σ (h(\'t s) - h(p, θ')
d

where d = [p, r] x [g, s], λ, λ' e [p, r], and θ, θf e [q, s]. Whereupon it
follows that μ is of bounded variation in the sense of Vitali and

hence that m(σ)\ f dμ exists [12, Th. 3.1, p. 15]. Since the last

term of ΣjdeDμ{d) tends to zero under refinement, it follows that

HmσΣ,denF(d)μ(d) = \ f dg dh i.e., m{σ)\ f dμ = \ f dg dh.
JA JA JA

THEOREM 4.3. Suppose f is quasicontinuous and g and h are of
bounded variation in the sense of Hardy-Krause. If the horizontal
and vertical contour maps of h [resp. g] are continuous, then there
exist function sequences (hlp), (h2p), (klp)y and (k2p) such that

y dg dh = Σ ( j / dhlp dk^ - Σ ( J / dh2

r
Proof. By Theorem 4.2 there is a function μ such that I f dgdh —

ΪA

m(σ) \ f dμ. As in that theorem, it can be shown that μ is bounded

variation in the sense of Hardy-Krause. By Theorem 2.5, μ is the
difference of two nodecreasing functions Fγ and F2. By a theorem
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of Jolly [6, Th. 1, p. 317] there exist anchored nondecreasing functions

(?! and G2, nondecreasing functions gx and g2 on [a, 7], and nondecreas-

ing functions hλ and h2 on [β, δ] such that Ft = G< + & + A{ (for i =

1, 2). Thus ί fdgdh = m(σ) \ fdG1 - m{σ)\ f dG2. By a theorem of
JA JA JA

Stokes [12, Th. 4.3, p. 34] there exist function sequences (hi ) and (h2)
each term of which is defined on [a, 7] and function sequences (kx )
and (k2p) each term of which is defined on [β, δ] such that

±\ fd{hlpklp) Λ fdGι
P=1JA P P )A

and

Σ ( fd(h2pk2p) >\ fdG2
P=1JA V V JA

as n —• 00. Since each hip is a function of α; and each kip is a func-
tion of y, the theorem now follows from the remarks preceding
Theorem 3.2.
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