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A MEAN STIELTJES TYPE INTEGRAL
D. B. PRIEST

For the extended mean Stieltjes integral R. A. Stokes has
shown that joint discontinuities of the functions involved can
be ignored just as in the ordinary mean Stieltjes integral as
considered by Porcelli and others. A Stieltjes type integral
of a function with respect to a function pair has been defind
by E. D. Roach, but existence of the integral depends upon
the simultareous continuity of two or more of the functions
involved. In this paper a mean Stieltjes type integral of a
function with respect to a function pair is defined which over-
comes these limitations. Representation theorems for the
integral are also given.

1. Definitions and notations. Unless otherwise stated or implied,
functions considered in this paper are real valued and defined on the
rectangular interval A = [a, v] x [B, 6]. Limits are of the ¢ or refine-
ment type on partitions D of A [4, 10]. If the subinterval d = [p, ] x
[g, s] of A is an element of the partition D, then the f-area of the
function f is given by f(d) = f(p, @) — f(r,q) + f(r,s) — f(», s) [6].
The horizontal and vertical contour maps of f are given by f[—, n]
and f[m, —], respectively, where (m, n)c A. The function f is of
bounded variation in the sense of Vitali provided the sums of the
type >cplf(d)| are uniformly bounded. Vi, ,.,..(f) (or V,(f)) will
denote the variation of f over d. Hardy and Krause require additionally
that at least one horizontal and at least one vertical contour map of
f be of bounded variation [1, 2]. The function f is said to be

(1) totally nondecreasing provided f(d) = 0 for each d € D, f|a,
—] is nondecreasing, and f[—, B8] is nondecreasing;

(2) partially nondecreasing provided f(d) =0 for each de D,
fla, —]1 is nondecreasing, and f[—, 6] is nonincreasing; and

(8) anchored provided f(d) =0 for each de D and fla, —] =
f[_y B] =0 [23 11]'

The (g, h)-evaluation over d € D, denoted by (g, h)(d), of the func-
tion pair (g, h) is given by (g9{r, @) — 9(p, 9))(h(p, s) — k(p, q)) — (A(r,
s) — h(p, s))(g(r, s) — g{r, ¢)). The lower (g, h)-evaluation, denoted by
(g9, )1, d) is given by an analogous expression wherein g(r, s) — g(r,
@) has been replaced by g(p, s) — g(», ). Ny(g, h) and Ly(g, k) denote
the sums >l.p (g, K)(d) and >..,(9, KA, d), respectively. If E =D
(i.e., E is a refinement of D), then FE/d denotes that portion of E
which is a partition of d. Let N'(d) = sup {Nz(g, k): E is any partition
of d}. L'(d) is defined similarly.

The function f is quasicontinuous [8] provided the limits f(s, t%),
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f(s*, t) and f(s*, t*) exist for each (s, t) in A [12, p. 3]. The boundary
of d will be denoted by d(d).

2. The integrator pair. In this section, unless otherwise stated,
we assume that g is totally nondecreasing and 4 is partially nonde-
creasing. Under these conditions, it follows directly from the definitions
that (1) N'(d) and L’(d) are finite for each de D; (2) sums of the
type Ly(g, h) are nondecreasing under refinement; and (3) L'(d) =
S, L'(e) where the summation is over all ¢ in E/d. Thus using techniques
analogous to those developed in [12, pp. 10-14] for functions of bounded
variation in the sense of Vitali we have the following two lemmas:

LEeMMA 2.1. Let ¢ >0 and d = [p,r] X lq,s] S A. Then there
exists a pairwise, disjoint collection {c;},<;<. of subintervals of d such
that

(1) each c; shares a separate vertex with d and

(2) if ¢; is a subinterval of ¢; which also shares a vertex with
d, then L'(c;) — L'(c}) < e.

LEMMA 2.2. Let ¢ >0,d = [p, r] x [q, s] E A, and b be a subin-
terval of d missing the vertices of d such that d(d) N d(b) = &. Then
there exists a proper subinterval b of b such that if E is a partition
of b, then 3, L'(e) < ¢ where the summation is over all e in E which
have no point in common with o(d).

LeEmMA 2.3. If g[—,d] or h[—, B] is continuous on [a, Y], then
Sfor each € > 0, there is a partition D of A such that 0 < Ng(g, h) —
Ly(g, h) < € where E = D.

Proof. Assume that g[—, 0] is continuous. If A[—, 8] is con-
tinuous, the proof is similar. Lete > 0. Assume that K = k(a, B) —
(7, B) # 0; otherwise, the result is immediate. There exists a partition
D ={d; = [t;_y, t;] X [B, 0l}icicn of A such that g(d;)) < ¢/K. Let E be
a refinement of D. Under the conditions on g and £, it follows
routinely that

Ni(g, b) — Lglg, h) = i (Rltis, B — h(ts, B)(9(d) <€ .

That the difference Ny(g, h) — Ly(g, k) is nonnegative follows readily
from the definitions.

LEmMA 2.4. If f is a function of bounded variation in the sense
of Vitali and each of its horizontal conmtour maps is continuous, then
the wvariation fumction V() = Vies..s () for each x in [a, 7], s
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CONLINUOUS.

The following theorem parallels a known result concerning func-
tions of bounded variation in Vitali’s sense [9, p. 250].

THEOREM 2.5. If the fumnction g is of bounded wvariation in the
sense of Hardy-Krause, then there exist totally nondecreasing functions
g, and g, and partially nondecreasing functions h, and h, such that
9=9¢,— 0. = h, — h,. Moreover, if the horizontal contour maps of g
are continuous, then g.[—, o], g.l—, 0], h[—, Bl, and h,]—, B] are con-
tinuous.

Proof. It is known that if ¢ is of bounded variation in the sense
of Hardy-Krause, then gla, —1], 9[—, B8], and g¢g[—, 6] are of bounded
variation in the usual sense [2, p. 385]. Thus let g, be the function
such that

gl(xy y) = V[a:ﬁ:x,y](g) + Vi(g[—, B]) + Vé’([a’, —])
for all (x, y) in A. Let &, be such that

hl(x, ?!) = V[a,ﬁ:x,y](g) - V[ayﬁ;a:,ri](g) + V%(g[ay _]) - VZ(g[’—y 5])

for all (x, y) in A. Additionally let g, =g + g, and k, = g + h,. The
theorem now follows from the additivity of the variation functions
on subintervals of a given interval [5, p. 107] and Lemma 2.4.

3. The integral. For the remainder of this paper, F(d) will

denote 1/4(f(p, q) + f(r,q) + f(r,s) + f(p, s)), the mean evaluation
of f at the four vertices of d in the partition D. [4, p. 274 and 12,

p. 5]

DEFINITION 3.1. The function f is (g, k)-integrable provided the
o-limit of sums of the type S,( ]:' , 0, h) = Daen (F(d)((g, h)(d)) exists.

The integral will be denoted bys f dg dh.
A

REMARKS. It follows immediately from the definition that the
integral is linear in each of its three components i.e., the integrand
f and each of its integrator function g and h Also, if each of ¢

and % is a function of a single variable, then \ f dgdh agrees readily
A
with one or the other of the extended mean Stieltjes integrals
+ m(o)S f dk where k = gh. For in this case, lim, S,(f, ¢, ») = lim, +
A

Ser F@E@) = + m(0) Lf dk [12, p. 14].



294 D. B. PRIEST

THEOREM 3.2. If f s quasicontinuous, g and h are of bounded
variation in the sense of Hardy-Krause, and either the horizontal
contour maps of g or the horizontal contour maps of h are continuous,
then f is (g, h)-integrable.

Proof. Let ¢ >0. In view of Theorem 2.5 and the remarks
preceding this theorem, it suffices to consider a totally nondecreasing
g and a partially nondecreasing % such that either g[—, d] or A[—,
Bl is continuous. There is a partition A’ = {4,, ---, Ay} of A such
that (1) |Lx(g, h) — Ly(g, h)| <e¢ where E, FF = A’ and (2) if P and
@ are in the interior of A; or in the interior of a particular edge of
A; for some 7 < N, then |f(P) — f(Q)] <e [12, p. 4]. By Lemma
2.1 and 2.2 there exists a refinement B of A’ such that B/A4; = {c;,
€;;, I},<i<s where each c;; has the property of ¢; in Lemma 2.1, each
e;; has the property of & in Lemma 2.2 and I, = A\Ui-, (¢;; U e;5),
the complement of U:-, (¢;; U e;;) relative to A;. Suppose G = B and
let C;; = {ec G/c;;|e shares a vertex with A}, E;; = {ee G/e;;10(e) N
0(A) # @), Ci; = (Gle;;)\Cyj, and Ei; = (Gle;)\Ey;. Then

'OEEZB(F ®)((g, WL, b) — 3. (F(e) g, W)L, &) | < M|La(g, ) — Lelg, 1)

o[ 53 (Lo0, 1) + Liuy(o, ) | + & 3 L9, 1)

=1 j=1
4

+ 2M[§;z S L(e) + 2§§L(e)] < ¢K

=1 j=lecE’
i=1j i

where M is a positive bound on f [12, p. 4] and K = M + L'(4) +
16 MN. Now by Lemma 2.3 there is a partition B’ of A such that
if G= B, 0= Nyg, h) — Lgg, h) < ¢/2M. Suppose D refines B and
B'. It now follows routinely that |S;(f, g, h) — Sz(f, 9, h)| < e@CK +
1), where E, F = D. It is well known that this Cauchy condition
insures the o-limit since S,(f, g, #) is a function of subdivisions [4,
Th. 2.11, p. 266] i.e., f is (g, h)-integrable.

4. Representations for the integral. We now develop certain
representation theorems for the integral, establishing relationships

between it, the ordinary mean Stieltjes integral (m(a)gr fdg [3, 10]),

and the extended mean Stieltjes integral. We shall say that f is
factorable into functions f, and f, provided there exist functions f;
and f, such that f(z, ) = fu(®)f.(y) for each (x, y) in A.

THEOREM 4.1. Suppose f is quasicontinuous and g and h are of
bounded variation in the sense of Vitali and factorable into nonconstant
Sfunctions g., 9, and h,, h, respectively. If p = hg, and v = g,h, have
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no common discontinuities, then f is (g, h)-integrable andS fdgdh=
A

m(@) Lf;z dy — m(0) S fydp.

Proof. Since g and & are of bounded variation in Vitali’s sense
and factorable into nonconstant functions, ¢ and v are of bounded
variation in Vitali’s sense [5, p. 107]. It also follows readily that

fp and fy are quasicontinuous [5, p. 40]. Thus each of m(a)g frdy
A

and m(a)gAfud‘u exists [12, Th. 3.1, p. 15]. Since S,(f, g, h) =

e o(F(@) (e, 0))(0(@) — Suen (F(D)((r, 5)(4(d)), the result follows
by showing that the o-limits of the sums on the right are m(a)g frdy

and m(a)g Sy dp respectively. An outline of the proof of the first of
A4

these is given. Suppose V = V,(v) > 0. Let J, K and L denote positive
bounds on f, g, and &, respectively and let ¢ > 0. There is a partition
A ={A,, ---, Ay} of A such that if P and @ are in the interior of
A; for some i, |p(P) — (@) < ¢/4JV; and if E = A’, {m(o)S Sfrdy —
s FM@p(e)| < /4 [12, Th. 3.1, p. 15]. Under the continuity
conditions on g and vy, there is a refinement B of A’ such that B/A; =
{¢i;, €55, Li}<j<s and such that either (1) V,(v) < ¢/64JKLN (for b =
¢;; Or e;) or (2) |pm(u, v) — (s, t)| < ¢/8JV where E = B and (s, t) €
[w, w] X [v, ] € E/b (for b = ¢;; or e;). Thus if £ = B and b ranges
over all ¢;; and e,

|mo)] frdy - 3, FE) e, M)EE)| < =

+ 3, [FM© — F@)(xw, ) |[50)]

+ 2 > [FM(e) — Fle)(te(w, v) | |vie) |

t=lecE[I;

15

<—+ =+
2

=¢.

£ £
4 4

Similarly one can see that lim, >;. ,{(F(d))(v(r, s))(¢(d)) = m(o)g fyvdpy.
A
Thus lim, S(7, g, h) = m(a)‘ frdy — m(a)g fydp.
JA A
REMARK. If in the above theorem we were to allow f to be a

nonconstant factorable function and require only that g¢; and &;(: =
1, 2) share no discontinuities from the right or from the left, then

we can show by a similar argument that the integral 3 fdgdh can
A
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be represented by
(m(o)gz flhldgl)(m(o)gz Fondhy) — (m(o)S: flgldh1><m(o)gl Findg,) -

THEOREM 4.2. Suppose f 1is quasicontinwous and g and h are
of bounded variation in the sense of Hardy-Krause. If the contour
maps of g [resp. h] are continuous, then there exists a function p of

bounded variation such that S fdgdh = m(a)g fdg.
A A

Proof. By Theorem 3.2 SA f dg dh exists. Let ¢ be such that for
each (x, y) € A,
© Y
i, ) = m@)| 1~ yldgl—, o] + m(@)|'gle, ~1dhla, —] — (@h)(z, v) .

By Theorem 2.5, it suffices to consider g and A as in Theorem 3.2.
Under these conditions and known integration by parts formulas [7,
Th. 2.1, p. 61] it follows that >;.,¢(d) is equal to

300, 0 — 9, )0, 9 — b, 0)
~ 3, (bfr, 6) — b(p, 0)(g(r, 9) — g, @)
— 3 (v, 9) — 1(p, ) (g(@d)

where d = [p, r] X [q, s], \, N €[p, 7], and 6, ¢’ € [q, s]. Whereupon it

follows that g is of bounded variation in the sense of Vitali and

hence that m(o)g fdp exists [12, Th. 3.1, p. 15]. Since the last
A

term of 3,., #(d) tends to zero under refinement, it follows that

lim, Suep F@)pu(d) = g fdgdh ie. m(a)gA fdp = L £ dg dh.

THEOREM 4.3. Suppose f 1is quasicontinuous and g and h are of
bounded variation in the semse of Hardy-Krause. If the horizontal
and vertical contour maps of h [resp. g] are continuous, them there
exist function sequences (h), (hs,), (k.), and (k) such that

oo oo

[ ragan =35 s am,ar,) - (] £ dh, k) -

p=1 p=1

Proof. By Theorem 4.2 there is a function g such that g fdgdh =
A

~

m(o)L fdy. As in that theorem, it can be shown that g is bounded

variation in the sense of Hardy-Krause. By Theorem 2.5, £ is the
difference of two nodecreasing functions F, and F,. By a theorem
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of Jolly [6, Th. 1, p. 317] there exist anchored nondecreasing functions
G, and G,, nondecreasing functions g, and g, on [«, 7], and nondecreas-
ing functions &, and A, on [g, 6] such that F, = G; + g; + h; (for 7 =
1,2). Thus g fdgdh = m(a)s FdG, — m(a)g fdG,. By a theorem of
Stokes [12, Th. 4.3, p. 34] there exist function sequences (h, ) and (4,)

each term of which is defined on [@, v] and function sequences (k, p)
and (k.,) each term of which is defined on [3, 6] such that

5 s a i) — | £ a6,

p=1

and

3| 7 o) — | 746,

p=1

as m— . Since each &, is a function of x and each k; is a fune-
tion of y, the theorem now follows from the remarks preceding
Theorem 3.2.
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