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ON CLOSE-TO-CONVEX FUNCTIONS OF ORDER β

JAMES W. NOONAN

For β ^ 0, denote by K(β) the class of normalized func-
tions /, regular and locally schlicht in the unit disc, which
satisfy the condition that for each r < 1, the tangent to the
curve C(r) = {f(reίθ): 0 ^ θ < 2π} never turns back on itself as
much as βπ radians. K(β) is called the class of close-to-con vex
functions of order β. The purpose of this paper is to inves-
tigate the asymptotic behavior of the integral means and
Taylor coefficients of fe K(β). It is shown that the function
Fβ, given by Fβ(z) = (1/(203 + 1))){((1 + z)/(l - z)y+1 - 1}, is in
some sense extremal for each of these problems. In addition,
the class B(a) of Bazilevic functions of type a > 0 is related to
the class K(l/a). This leads to a simple geometric interpreta-
tion of the class B(a) as well as a geometric proof that B(a)
contains only schlicht functions.

Let / be regular in U = {z: | z \ < 1} and be given by

(1.1) f(z) = z + a2z
2 + α3z

3 + .

Following an argument due to Kaplan [9], we see that feK(β) iff,
for some normalized convex function φ and some constant c with
I c I = 1, we have for all z e U that

(1.2) arg
cf'(z) ^ βπ/2 .
φ'(z)

Equivalently,

(1.3) cf'(z) = p(z)ψ(z) ,

where p(z) = ΣSU Pn%n, \po\ = 1, has positive real part in U.

It is geometrically clear that for 0 ^ / 3 ^ 1 , K{β) contains only
schlicht functions. However, for any β > 1, Goodman [3] has shown
that K{β) contains functions of arbitrarily high valence, K(0) is the
class of convex functions, and K{1) is the class of close-to-convex
functions introduced by Kaplan [9]. For 0 ^ a ^ 1, Pommerenke
[13, 14] has studied m-fold symmetric functions of class K(a). The
following theorem shows that the study of these functions is closely
related to the study of K(β) for arbitrary β ^ 0.

THEOREM 1.1. Let β ^ 0 and m be a positive integer. Then
fe K(β) iff there exists an m-fold symmetric function g e K(β/m) such
that f'(zm) = g'(z)n.
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Proof. Suppose feK(β), and define g by g'{z) = f{zm)llm. From
(1.3) it follows that

g'{z) = c-1/mp(zmylmψ'(z)

where the convex function ψ is defined by ψ'{z) — φ\zm)ιlm. Hence
g e K(β/m), and g is clearly m-fold symmetric. To prove the converse
implication, we merely reverse the above procedure.

Finally, for k ^ 2 denote by Vk the class of normalized functions
with boundary rotation at most kπ. From the proof of [2, Theorem
2.2], it follows that VkcK(k/2 - 1). However, fe Vk implies that /
is at most k/2 valent [2], so K(k/2 — 1) is in general a much larger
class than Vk. The results in § 2 and 3 of this paper are extensions
to K{β) of results of the author [10] for the class Vk. These results
also generalize and improve some of the results of Pommerenke [13]
for K(a), 0 ̂  a ^ 1.

2* Behavior of the coefficients* We begin by studying Λf(r, /') =
max | z l = r \f(z)\.

THEOREM 2.1. Let fe K(β). Then ((1 - r)/(l + r)Y+2M{r, /') is
a decreasing function of r, and hence o) = l i m ^ (1 — r)β+2M(r, /')
exists and is finite. Ifω>0 and f is given by (1.3), then there
exists θ0 such that φ\z) = (1 - ze~iθή~2 and ω = l im^ (1 - ry+2 \f{reiθή \.

Proof. Since for each β ^ 0, K(β) is a linear-invariant family of
order β + 1 in the sense of Pommerenke [12] (See [4, Theorem 3] for
a proof.), the first two statements of the theorem follow. Also, if
φ' is not of the stated form, then φ'{z) = O(l)(l - r)~δ for some 0 <
δ < 2, and hence from (1.3) we see ω = 0. Finally, if ω > 0, then
φ'(z) = (1 — ze~iθή~2, and just as in the proof of [10, Theorem 3.1] we
see that ω = limr^ (1 - ry+2 \ f{reiθή \.

We now begin to study the coefficient behavior. Our method is
the major-minor arc technique used by Hayman [5], and the proofs
are similar to the proofs of the corresponding results for the class
Vk [10]. Hence we omit details wherever possible. We first require
two lemmas.

LEMMA 2.1 Let fe K{β) and ω = l inw (1 - r)^21 f{reiθή \ > 0.
Then given δ > 0, we may choose C = C(δ) > 0 and r0 = rQ(δ) < 1 such
that for rQ ̂  r < 1 we have
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where E = {θ: C(δ)(l - r) ^ | θ - ΘQ | ^ π}.

Proof. Without loss of generality we may assume θ0 = 0, so from
Theorem 2.1 and (1.3) we find, with z = reiθ,

I/'(*)! = \p(z)\'\l-zr.

Hence, with C > 0 and E as above, we find

(1 — r) ' 5 Jc(i-r) C (1 — r)β+1

and the lemma now follows upon choosing C sufficiently large.

L E M M A 2 .2 . Let fe K(β), ω = l i m ^ (1 - r)?+2 \ f'(reίθ«) \>Q,rn =
1 - 1/n, ωn = (1 - rny+*f\r%ei9*)y and

Lei S be a fixed but arbitrary Stolz angle with vertex eiθ\ and let
Dn = {zeS:\eiβa - z\< 2/n). Then as n-^°°,fi~ f uniformly for

Proof. Again assuming ΘQ = 0, we have from (1.3) cf'(z)
p(z)β(l — z)~2, and so

r(z) _ [(1 - r.)p(r.)p

Thus, to prove the lemma it suffices to show that as n—• oo,

uniformly for zeDn.
By a theorem of Hayman [6, Theorem 2], l i m ^ (1 — r)p(r) = L

exists, and it is clear that (1 — z)p(z) is bounded as | z | —> 1, providing
zeS. By a theorem of Lindelof [8, p. 260], we have for zeS that
l i π w (1 — z)p(z) — L where the limit is approached uniformly as |s|-->l.
But 0 < ω = l i m r ^ (1 - r)β+2 \ f'{r) \ = l i n w [(1 - r) \ p(r) \]?, so L Φ 0.

Combining these remarks with the inequality

(1 - z)p(z) χ

|(l-r.)p(r.)
• {| (1 - z)p(z) -L\ + \L-(1- rn)p{rn) |} ,
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we see that (2.1) holds, so the proof is complete.
We can now determine the asymptotic behavior of an as n —> oo.

THEOREM 2.2. Let feK(β) be given by (1.1), and let ω =
lim^i (1 — r)β+2M(r, / ' ) . Let Γ denote the gamma function. Then

' am\ co

nβ Γ(β + 2)

Also, if ω = l i m ^ (1 - ry+2 \ f'(reiθή \ > 0, then as n

f'(rne
iθo)e~i{n~1)θ°

a% n*Γ(β + 2)

w^ere rB = 1 — 1/n.

Proof. Suppose first that <y > 0, and define

fl(z) = ωκ Σ dme-imβ<>zm

as in Lemma 2.2. We note that

so dm ^ mβ+1/Γ(β + 2) as m —> oo. Computation shows that

(2.3) nan - c M ^ e " ^ - 1 ^ - — 1 — Γ {/'(rβiί?) - /^(re'OK"**"1^
2ττr % ~ 1 J-^Γ

Given δ > 0, we choose C = C(δ) and JE7 as in Lemma 2.1, and
we let rw = 1 — 1/w. With n sufficiently large, Lemma 2.1 gives

\f'(r%ei9)\dθ<δn?+ι,

and clearly this inequality is also true for /„'. Hence, we see that

(2.4) <

for n sufficiently large. We now choose a Stolz angle S, depending
on δ, such that { r / : ί e f f } c S for large n, where Ef = [~π,π]\E.
By Lemma 2.2, we have as n —> co and with θ e J5",

where o(l) is uniform for Θ&E', and hence as n—> oo, we have
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f if
(2.5)

Note that although o(l) depends on δ, o(l) —* 0 as % —> oo once δ has
been fixed.

Combining (2.3), (2.4), and (2.5), we find

\nan - ωJ^e-^-v^l < {2δ + o(l)}n*+ι

for sufficiently large n. Since δ > 0 is arbitrary and since o(l) —> 0
once δ has been fixed, we have

an = n

From (2.2) and the definition of ωn we see that as

2)

2)

In particular,

^^ Γ(/S + 2)

We now suppose ω = 0. We shall subsequently prove (Theorem
3.1 with λ = 1) that if ω = 0, then

lim (1 - ry+1 Γ | f{reiθ) \ dθ = 0 .
r->l JO

Using a standard inequality relating coefficients and integral means
[7, p. 11] we have lim^oo \an\/nβ = 0. This completes the proof of
the theorem. Note that if ω > 0, then it follows easily from the
theorem that lim^^ an+1/an = e~iθ°, and so the radius of maximal
growth can be determined from the coefficients.

We now consider the problem of determining

ΊΏSix{\an\:feK(β)}.

It is natural to conjecture that for each n ^ 2 this problem is solved
by the function

Toward this end we have the following theorem.
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THEOREM 2.3. Let feK(β) be given by (1.1) and let Fβ be as
above.

( i ) There exists an integer n0 depending on f such that | an | g
An{β) for n ^ n0.

(ii) If n^β + 2, then \an\^ An{β).
(iii) If β is an integer, then \ an | tί An(β) for all n.

Note that since VkaK(β) with β — k/2 — 1, we have from (ii)
that I a n\ ^ An{β) for w ^ k/2 + 1 and from (iii) that \an\ ^ An(β)
for all n whenever k is an even integer.

Proof. We have from (1.3), with \c\ = 1,

where £> has positive real part and φ is convex. Suppose that p(z) =
Σ~=o 3?w»

w, I ί>01 = 1> and p(zy = Σ ^ o ?*2W. Then it is easily verified
by induction that for m ^ 1,

Σ (β ~ {3 -

where JD^ (P) is a polynomial, with nonnegative coefficients, in the
variables pQ, pu , pm.

Therefore, if β is an integer, \qm\ is maximal for all m >̂ 1 when
p0 = 1 and ^ = 2 for i ^ 1, which implies #(2) = (1 + 2)/(l — z). Also,
for any /5 ^ 0, we see as above that if n ^ β + 2, then | gw | is maxi-
mal for 1 ^ m ^ n — 1 when p(s) = (1 + z)/(l — z). In addition, if
φ'(z) = 1 + ΣΓ=2 ^i^'""1, it is well-known that \uό\ <£ i for all i, with
equality for ^'(^) = (1 — z)~2. But when p(^) = (1 + z)/(l — z) and
φ'{z) = (1 — ^)""2, we have c/'(2) = ί7^^). Hence, since

n—l

cnan = Σ

where we define uλ = 1, we see that (ii) and (iii) are proved.
We now prove (i). We first note that as n—> oo,

(2.6) An{β) -
2)

Let ω = lim^i (1 - r)^+2ilί(r, / ' ) . If ω = 0, then Theorem 2.2 shows
an — o(l)nβ, and so it is clear from (2.6) that (i) holds. We now
suppose ω = l i m ^ (1 — r)β+21 f\reίθύ) \ > 0, and we recall that in this
case ω = l i m ^ [(1 — r) \ p(reiθ°) \]β. Hence, from [6, Theorem 2], it
follows easily that ω ^ 2β with equality only if
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- ze~iθ°
p(z) =

1 - zerid*

But ω > 0 implies also that φ\z) = (1 - ze~iθή~2, and thus we have
ω ^2β with equality only if cf'{z) = Fβ(e~ίθ°z), in which case | α w | =
-Au(/9) for all w, since | c | = 1. Thus we may suppose ω < 2β

9 and
using Theorem 2.2 and (2.6) we see that (i) holds. This completes
the proof of Theorem 2.3.

To conclude this section we examine the asymptotic behavior of
the quantity || an+1 \ - \ an\\ for fe K{β).

THEOREM 2.4. Let feK(β) be given by (1.1). If ω > 0, then

\\an+1\ -\an\\ _ βω

n*~ι Γ(β + 2)

The theorem is in general false when ω = 0.

Proof. If β = 0 and ω > 0, then from (1.3) it follows that
cf'(z) — (1 — ze~iθή~2, so I αΛ I = 1 for all n, and the theorem is trivially
true. Thus, we may assume without loss of generality that β > 0.
The proof will be divided into three parts.

We first claim that given δ > 0, there exists C(δ) > 0 such that

(2.7) —
2π

- rei{θ-θ*])ff{reiθ)dθ
( 1 -

where ΘQ is as in Theorem 2.1 and E = {θ: C(δ)(l - r) ^ | θ - ΘQ \ ^ π).
To prove (2.7), we note that ω > 0 implies that

where we have assumed without loss of generality that ΘQ = 0. Also,
for notational ease, we assume c = 1 and p(0) = 1, so

(1 - z)f{z) = p(s)'/(l - «) .

Choose λ > 1 such that Xβ > 1, and let 1/λ + 1/λ' = 1. If C is an
arbitrary positive constant, we have from Holder's inequality that

(2.8) j J (1 - z)f'(z) I dθ £ {j^ I p(z) \λβdήllλ{\E 11 - z r ^ } ^ ' .

Since p is subordinate to (1 + z)/(l — z), and since Xβ > 1,

(2.9)

Also, as in the proof of Lemma 2.1, we have (since λ' > 1)
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(2.10) ( 1 1 - 2 1 - ^ =
C'-i ( 1 - r

Hence, combining (2.8), (2.9), and (2.10), we find

1 1
- z)f'(z)dθ = 0(1)

C1IX ( 1 -

which gives (2.7) if we choose C sufficiently large.
From this point on we proceed essentially as in the proof of [11,

Theorem 2], and thus we merely sketch the proof. We define ωn as
in Lemma 2.2, λM = arg ωn, and

Since ωn = [(1 - rn)p(rne
iθή]β, lim^*, λΛ exists by [6, Theorem 2] As

in [11, Lemma 3] we find that as n—> oo,

(2.11) an — e"iθ^an^

and hence as %->oo

(2.12) α - ~ ^ ^
Γ(/3 + 1)

where we have used (2.11) and Theorem 2.2. Theorem 2.2 also implies
that as n —> oo,

a r g e~ίθ°an = a r g ωeia«~nθ<>> + o(l) ,

and since lim^co λΛ exists we have as % - > M that

(2.13) a r g β " ^ 0 ^ . ! = &τgweian~{n~ι)θQ) + o(l) .

Combining (2.12) with (2.13), we find

Γ(/3 + 2)
,

as n—+oo, which proves the theorem.
We now show that the theorem is false when co — 0. Let β Ξ> 0

be given, and define feK(β) by

+1

- zψ

Clearly / is an odd function, and it is easily verified that a2n+1

nβ-y2Γ(β + 1) as w—• oo, so
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n^1 2Γ(β + 1) '

However, ω = l im^ (1 - rY+2M(r, /') = l iπw (1 - r)/(l + rY+1 = 0, so
the theorem is false when ω = 0. This is in sharp contrast to the
corresponding result [11] for Vk, where the result is true for all
k > 2 even if ω = 0.

3* Behavior of the integral means* In this section we shall
investigate the behavior of Iλ(r, /') and Iλ(r, / ) , where for λ > 0 we
define

Our results again include as special cases previous results of the
author [10] for the class Vk as well as generalizing results of Pom-
merenke [13] for the classes K{a), 0 ̂  a ^ 1. Although the details
of the proofs given here are slightly more involved than those for
Vk, we refer to [10] whenever possible. We first need two lemmas,
the first of which is proved in exactly the same way as [10, Lemma
4.1].

LEMMA 3.1. Let fe K(β), ω = l im^ (1 - r)^+21 f{τeidή \ > 0. Let
C> 0 and λ > 0 be fixed, and forO<R<l define E = {θ: C(l - R) ^
I θ - θ01 ̂  TΓ}, E' = [-7Γ, π]\E. Define ω(R) = (1 - Ry+21 f'(Reiθή | and

as

\ \f'R{Rei>)\ιdθ~\ \f\Re
JE' JE'

LEMMA 3,2. Let fe K(β), ω > 0, and fR be as above. If X(β +
2) > 1, then as r —> 1,

Proof. By definition, with 3 = re**, we have

2τr I Ur, /') - jr,(r, f ' r ) \ ^ \ | /'(«) N<9 + ( | /;(a) P Λ?
JE JE

+ \sι{\f'(z)\ι-\fXr)\ΐ\dθ,

where E and E' are as in Lemma 3.1. If β = 0, then ω > 0 implies
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f\z) = (1 — z)~2, and so the lemma is trivial. With β > 0, let 7 =
1 + 21 β and Y = 1 + β/2, so 1/τ + 1/Y = 1. Recalling that in (1.3)
we have φ\z) — (1 — z)~2 since ω > 0, we have from Holder's inequality
that

2/(0+2)

^ I f'{z) \λdθ ^ j ^ I p(s) |^+2) Λ?| j j ^ 11 - z Γ^ + 2 ) dθj

As in the proof of (2.9) and (2.10) it follows that

( I p(z) \λ{β+2) dθ = O(l)(l -
JE

Also, with δ > 0, it follows that

( 11 - z \~λ{β+2) dθ <
V (1 -(1

for C(<5) depending on <5 and for λ(/3 + 2) > 1, and therefore

jj/'(z)

for r sufficiently close to 1. Clearly this inequality also holds for f'r9

and so using Lemma 3.1 we have for r sufficiently close to 1 that

2τr I I 2 (r , / ' ) - Ix{τ, f>) | < ( χ _ ^ t,. J . .,_ 1 + o(l) \ | f'r{z) \*dθ

2d , o(l)ω(rY ,• ^

o

2g
( 1 )*<j8+2)-i

Since δ > 0 was arbitrary and since o(l) approaches zero once δ has
been fixed, the lemma follows.

We can now determine the asymptotic behavior of Iχ{r, /') when
λ(/3 + 2) > 1. For notational convenience, define

G(X S) = Γ{Mβ + 2 )

THEOREM 3.1. Lei fe K(β) and x(β + 2) > 1. Then

lim (1 -

Proof. If ω > 0, then the theorem is an immediate consequence
of Lemma 3.2 and Pommerenke's result [13] that as r—>1,
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(3.1) — P 11 + re** \-™dθ ~ Γ ( m ~ 1 ) (1 -
y } 2π Jo ' ' 2m-T2(m/2) V

whenever m > 1. Hence, we now assume ω — 0, and we divide the
proof into two cases. We first assume that in (1.3) φf is not of the
form (1 - ze"iθ)-\ Then, as is well known, M(r, φf) = O(l)(l - r)~r

for some 0 < 7 < 2. Without loss of generality we assume 7λ(/S + 2)/2
> 1 . As in the proof of Lemma 3.2, we find

2/(0+2)S 2π (Γ2π ϊ βUβ+2) ( Γ2π

I f'{z) \λdθ ^ 11 I p(z) |^+2) dθ\ 11 I φ'(z)

a n d

I p(z) \X{e+2) dθ\Also, since φ is convex, zφr is starlike and schlicht, so from [7,
Theorem 3.2] we have

112π

Hence

\2π \f'(z)\λdθ =

Jo

and since 7 < 2 we have as r —* 1

(1 _ r ) ^ ^ - 1 / ^ , /') > 0 .
It remains only to consider the case ω = 0 and <p'(z) = (1 — ze~iθή~2

for some #0 Assuming without loss of generality that θ0 = 0, we
find from (1.3) and our hypothesis o) = 0 that

0 = lim (1 - r)p(r) .
r-*l

As in Lemma 2.2, it now follows that for 2 in a Stolz angle with
vertex at 1, we have lim^i^ (1 — z)p(z) = 0 where the limit is ap-
proached uniformly as | z \ —> 1. Hence, since (1 — r) | p(z) | ^ 11 — z \\p(z) |,

1 - r

for z in the Stolz angle, where h(r) —> 0 as r —> 1. Thus, given C > 0,

S C(l-r) CCa-r)

0 Jo

ϋ Ca-r) Λ βl(β+2) (ΓCa-r) ϊ 2/(0+2)

o I P
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^ (Ch(r))» 0(1)

where we have used (3.1). Exactly as in the proof of Lemma 3.2
we also have, given δ > 0,

(3.3) f \f'(z)\ιdθ<-
Jtf(l-r) (1 —(I _ ry(β+*)-i

for an appropriate choice of C — C(d), and hence from (3.2) and (3.3)

lim (1 - ryw-'Ixir, /') = 0 ,

which completes the proof of Theorem 3.1.
To complete this section, we examine Iλ(r, f).

THEOREM 3.2. Let feK(β) and let G(\ β) be as in Theorem 3.1.
( i ) If λ ^ 1, then

lim inf (1 - r)^-%(r, f) ^

(ϋ) // λ ^ 1 and \{β + 1) > 1, then

limβnp(1 - rγ^-Ur, f) ^ {β

Note that when ω = 0, lim,..,! (1 — r);i(iS+1)~1/;(r, /) = 0, and when ω > 0
the growth of Iλ{r, f) is regular in the sense that lim s u p ^ and

inf^i are either both positive or both zero.

Proof. The proof of (i) is very similar to that of [10, Theorem
4.4], and so we omit the details. To prove (ii), we first note that

f(reiθ)= [ f{teiθ)dt .
Jo

Since λ ^ 1, a generalization of Minkowski's inequality [15, p. 260]
gives

h{r,f)ιίλ^ [lλ(t,fTλdt.
Jo

Since Theorem 3.1 gives us the asymptotic behavior of Iλ(t, /') as
t —> 1, a straightforward argument shows that whenever λ(/S + 1) > 1,
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In conclusion, it should be noted that the basic result under-
lying the theorems of §§2 and 3 is the existence of ω = l im^
(1 — r)a+1M(r, /')> where a = β + 1. Since this limit exists whenever
/ belongs to a linear-invariant family of order α, it is interesting to
speculate as to whether the results of the previous sections remain
true if we assume only that / belong to such a linear-invariant family.
Nothing seems to be known concerning this question. The similarity
between the results of the previous sections and results of Hayman
[5] on mean p-valent functions should also be noted. In this direc-
tion, W. E. Kirwan has recently shown (unpublished) that given
f€Vk with 2 ^ Jc ^ 4, there exists a constant d(f) such that / — d(f)
is circumferentially mean-A /4 valent.

4* Bazilevic functions and K{0). For any a > 0, define B(a)
to be the class of functions g which are regular in U and which are
given by

(4.1) g{z) = {α

where pe^, the class of functions P regular in U satisfying
ReP(z) > 0 and P(0) = 1, and where heS^*, the class of normalized
starlike functions. The powers appearing in (4.1) are meant as
principal values. It is known [1] that B(ά) contains only schlicht
functions, and it is easy to verify that for various special choices of
a, p, and h, the class B(a) reduces to the classes of convex, starlike,
and close-to-convex functions. However, in general very little seems
to be known about the geometry of B{a). In this section we shall
relate B{a) to K(l/ά). This relationship will allow us to give a sim-
ple geometric interpretation of B{a) as well as a simple geometric
proof that B{a) contains only schlicht functions.

We first need a technical lemma.

LEMMA 4.1. Let g be given by (4.1). Then g is locally schlicht
and vanishes only at the origin.

Proof. If a = 1, then it is easily seen that g is close-to-convex,
and hence the lemma is trivial. Thus we assume aφl. Let z0 Φ 0
be given. We claim that g(z0) = 0 iff g'(z0) = 0. If g(z0) Φ 0, then
(g(z)/z)a is regular in a neighborhood of zQ, and from (4.1)

(4.2) (g(z)/zy-V(z) = P(z)(h(z)/zy .
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Since neither p nor h vanish at z0, it then follows that g'(z0) Φ 0.
Suppose now that g'(z0) Φ 0. We must show g(z) Φ 0. Since the

zeros of g and gf are isolated, it is clear that we may choose (even
if g(z0) = 0) an arc 7 ending at z0 such that (4.2) holds for z e 7, z Φ z0,
and such that g'{z) Φ 0 for z e 7. Therefore, for z e 7,

lim I g(z)/z \*~ι =

and hence (since aΦV) g(z0) Φ 0, which establishes our claim.
To prove the lemma, it is now sufficient to show that g vanishes

only at the origin. Suppose not; that is, suppose g(z) = (z — zQ)mq(z)
where m Ξ> 1, #(20) =£ 0 and 20 =£ 0. We choose an arc 7 ending at z0 such
that for zey (z Φ z0) we have g(z) Φ 0, g'{z) Φ 0, and such that (4.2)
holds. Then with 2 6 7,

[ ( g _ Zo)q>{z) + m q { z ) ] =

We now allow 2—>20> and we find that ma = 1. We now define G
for zeU by G(z)m = #(zm). From (4.1) it follows that G is close-to-
convex with respect to H, given by H{z)m = Λ(zm) where Λ is as in
(4.1). But G{z\lm)m = g(z0) = 0 and z\lm Φ 0, which contradicts the
fact that G is schlicht. This proves the lemma.

We now define K0(β) to be that subclass of K(β) such that in
(1.3) we have c = 1 and p(0) = 1. Therefore, feK0(β) iff

(4.3)

where pe^ and Z i e ^ * . We also assume β > 0.

THEOREM 4.1. If feK0(β), then geB(l/β) where

Conversely, if geB(ά), then fe KQ(l/a) where

ι~lla{g'{ξ)yι«dξ.

Proof. Suppose first that fe K0(β) and is given by (4.3). Then

and from the definition of B(l/β) it follows that g defined as in the
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theorem belongs to B(l/β).
Now we suppose geB(a), and we define / as in theorem. By

Lemma 4.1 / i s regular in U, and since g e B(a) we have from the
definition of / that

where p e ^ and heS^*. Hence feKQ(l/a).
Note that although for β > 1 / may be of arbitrarily high valence,

it is always true that the corresponding g is schlicht. Also note that
since Vk c K(k/2 — 1), we have a relation between Vk and B(2/(k — 2)).

We now investigate the geometry of B(a). We shall assume that
g is regular and locally schlicht in U, is normalized as in (1.1), and
vanishes only at the origin. Also, for 0 < r < 1, we define the curve
C(r) = {g(reiθ)a: 0 ^ θ < 2π}.

THEOREM 4.2. With the above notation and hypothesis on g, we
have that g e B(a) iff for all 0 < r < 1 the tangent to C(r) never turns
back on itself as much as π radians.

Proof. If g e B(a), then we see from Theorem 4.1 that fe KQ(l/a)
where

Denote by T(f,reiθ) the tangent to the curve f(\z\ — r) at f(rei0).
Then with z = reiθ,

arg T(f, reiθ) = (1 - I/a) arg g(z) + (I/a) arg z<?'(z) + π/2 ,

from which it follows by a standard argument that

JL arg T(f, re*°) = (1 - 1/α) Re ̂ M + 1 Re ί l
dθ g{z) a I

arg T(f, re) (1 1/α) Re ^ + Re ί l + ζ
dθ g{z) a I g'(z)

Since /eJΓ0(l/α),

2 A arg Γ(/f rβ")ίW > -ff/α

for any θt< θz< θt + 2π, and so

(4.4) (α - 1) Γ Re M ? ) dθ + Γ2 Re ( l + *£Άdθ >-π .V ^ V ^ W g(z) U V g'(z) J

Noting that locally we have (ga(z))' = ag{z)a~ιg'{z), we see by a standard
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argument that (4.4) is equivalent to the fact that the tangent to C(r)
never turns back on itself by as much as π radians.

To prove the converse, we have from Lemma 4.1 that for z Φ 0,
{g{z))a is locally regular, so we may assume that (4.4) holds. If / is
defined by

f{z) =

then / is regular in U and from (4.4) we have

(4.5) Γ2 -J- arg T(f, re«)dθ > - π/a
>i όθ

for any θ1 < θ2 < θx + 2π. Since / ' never vanishes, an argument due
to Kaplan [9] shows that (4.5) implies feK0(l/ά), and thus

z

where p e ^ and he<^*. We now see from the definition of /
that

g(z) = {a ^ ξ^p(ξ)

and so geB(a). This proves Theorem 4.2.
In conclusion, we prove geometrically that B(a) contains only

schlicht functions.

COROLLARY 4.3. B(a) contains only schlicht functions.

Proof. Suppose g e B(a) and g is not schlicht. For each 0 < r < 1,
let C(r) = {g{reiθ): 0 ^ θ ^ 2π}, and let R = inf{r: C(r) is not a simple
curve}. Since #'(0) = 1, it is clear that R > 0. Also, R < 1, since
it follows from the argument principle that there exists r < 1 such
that g is not schlicht on \z\ = r.

Consider now the curve C(R). Clearly C(R) is nonsimple, and g
is schlicht in {z: \z\ < R). Hence we may choose w, z1 = Reiθl, and
z2 = Reί&2 (with θγ < θ2) such that g(zί) = g(z2) = w, and such that the
curve C(R) is simple for θ e (ΘL, θ2).

C(R)
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By Lemma 4.1 g is locally schlicht and vanishes only at the
origin, so from Theorem 4.2, with z = Reiθ,

dargg + daτgzg'(z) > -π .

S Θ2

d arg g = 0, and so
h

(4.6) Γ2darg«flf' > -π .

But it is clear geometrically that between θγ and θ2 the argument of
the tangent vector to C{R) turns back on itself by π radians, which
contradicts (4.6). Therefore g must be schlicht.
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