ON CLOSE-TO-CONVEX FUNCTIONS OF ORDER β

James W. Noonan

For $\beta \geqq 0$, denote by $K(\beta)$ the class of normalized functions f, regular and locally schlicht in the unit disc, which satisfy the condition that for each $r<1$, the tangent to the curve $C(r)=\left\{f\left(r e^{i \theta}\right): 0 \leqq \theta<2 \pi\right\}$ never turns back on itself as much as $\beta \pi$ radians. $K(\beta)$ is called the class of close-to-convex functions of order β. The purpose of this paper is to investigate the asymptotic behavior of the integral means and Taylor coefficients of $f \in K(\beta)$. It is shown that the function F_{β}, given by $F_{\beta}(z)=(1 /(2(\beta+1)))\left\{((1+z) /(1-z))^{\beta+1}-1\right\}$, is in some sense extremal for each of these problems. In addition, the class $B(\alpha)$ of Bazilevic functions of type $\alpha>0$ is related to the class $K(1 / \alpha)$. This leads to a simple geometric interpretation of the class $B(\alpha)$ as well as a geometric proof that $B(\alpha)$ contains only schlicht functions.

Let f be regular in $U=\{z:|z|<1\}$ and be given by

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1.1}
\end{equation*}
$$

Following an argument due to Kaplan [9], we see that $f \in K(\beta)$ iff, for some normalized convex function φ and some constant c with $|c|=1$, we have for all $z \in U$ that

$$
\begin{equation*}
\left|\arg \frac{c f^{\prime}(z)}{\varphi^{\prime}(z)}\right| \leqq \beta \pi / 2 \tag{1.2}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
c f^{\prime}(z)=p(z)^{\beta} \varphi^{\prime}(z) \tag{1.3}
\end{equation*}
$$

where $p(z)=\sum_{n=0}^{\infty} p_{n} z^{n},\left|p_{0}\right|=1$, has positive real part in U.
It is geometrically clear that for $0 \leqq \beta \leqq 1, K(\beta)$ contains only schlicht functions. However, for any $\beta>1$, Goodman [3] has shown that $K(\beta)$ contains functions of arbitrarily high valence. $K(0)$ is the class of convex functions, and $K(1)$ is the class of close-to-convex functions introduced by Kaplan [9]. For $0 \leqq \alpha \leqq 1$, Pommerenke [13, 14] has studied m-fold symmetric functions of class $K(\alpha)$. The following theorem shows that the study of these functions is closely related to the study of $K(\beta)$ for arbitrary $\beta \geqq 0$.

Theorem 1.1. Let $\beta \geqq 0$ and m be a positive integer. Then $f \in K(\beta)$ iff there exists an m-fold symmetric function $g \in K(\beta / m)$ such that $f^{\prime}\left(z^{m}\right)=g^{\prime}(z)^{m}$.

Proof. Suppose $f \in K(\beta)$, and define g by $g^{\prime}(z)=f^{\prime}\left(z^{m}\right)^{1 / m}$. From (1.3) it follows that

$$
g^{\prime}(z)=c^{-1 / m} p\left(z^{m}\right)^{\varepsilon / m} \psi^{\prime}(z)
$$

where the convex function ψ is defined by $\psi^{\prime}(z)=\varphi^{\prime}\left(z^{m}\right)^{1 / m}$. Hence $g \in K(\beta / m)$, and g is clearly m-fold symmetric. To prove the converse implication, we merely reverse the above procedure.

Finally, for $k \geqq 2$ denote by V_{k} the class of normalized functions with boundary rotation at most $k \pi$. From the proof of [2, Theorem 2.2], it follows that $V_{k} \subset K(k / 2-1)$. However, $f \in V_{k}$ implies that f is at most $k / 2$ valent [2], so $K(k / 2-1)$ is in general a much larger class than V_{k}. The results in $\S 2$ and 3 of this paper are extensions to $K(\beta)$ of results of the author [10] for the class V_{k}. These results also generalize and improve some of the results of Pommerenke [13] for $K(\alpha), 0 \leqq \alpha \leqq 1$.
2. Behavior of the coefficients. We begin by studying $M\left(r, f^{\prime}\right)=$ $\max _{i z \mid=r}\left|f^{\prime}(z)\right|$.

Theorem 2.1. Let $f \in K(\beta)$. Then $((1-r) /(1+r))^{\beta+2} M\left(r, f^{\prime}\right)$ is a decreasing function of r, and hence $\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2} M\left(r, f^{\prime}\right)$ exists and is finite. If $\omega>0$ and f is given by (1.3), then there exists θ_{0} such that $\varphi^{\prime}(z)=\left(1-z e^{-i \theta_{0}}\right)^{-2}$ and $\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right|$.

Proof. Since for each $\beta \geqq 0, K(\beta)$ is a linear-invariant family of order $\beta+1$ in the sense of Pommerenke [12] (See [4, Theorem 3] for a proof.), the first two statements of the theorem follow. Also, if φ^{\prime} is not of the stated form, then $\varphi^{\prime}(z)=O(1)(1-r)^{-5}$ for some $0<$ $\delta<2$, and hence from (1.3) we see $\omega=0$. Finally, if $\omega>0$, then $\varphi^{\prime}(z)=\left(1-z e^{-i \theta_{0}}\right)^{-2}$, and just as in the proof of [10, Theorem 3.1] we see that $\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right|$.

We now begin to study the coefficient behavior. Our method is the major-minor arc technique used by Hayman [5], and the proofs are similar to the proofs of the corresponding results for the class V_{k} [10]. Hence we omit details wherever possible. We first require two lemmas.

Lemma 2.1 Let $f \in K(\beta)$ and $\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right|>0$. Then given $\delta>0$, we may choose $C=C(\delta)>0$ and $r_{0}=r_{0}(\delta)<1$ such that for $r_{0} \leqq r<1$ we have

$$
\int_{E}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta<\frac{\delta}{(1-r)^{\beta+1}}
$$

where $E=\left\{\theta: C(\delta)(1-r) \leqq\left|\theta-\theta_{0}\right| \leqq \pi\right\}$.
Proof. Without loss of generality we may assume $\theta_{0}=0$, so from Theorem 2.1 and (1.3) we find, with $z=r e^{i \theta}$,

$$
\left|f^{\prime}(z)\right|=|p(z)|^{\beta}|1-z|^{-2}
$$

Hence, with $C>0$ and E as above, we find

$$
\int_{E}\left|f^{\prime}(z)\right| d \theta=\frac{O(1)}{(1-r)^{\beta}} \int_{C(1-r)}^{\pi} \theta^{-2} d \theta=O(1) \frac{1}{C} \frac{1}{(1-r)^{\beta+1}},
$$

and the lemma now follows upon choosing C sufficiently large.

Lemma 2.2. Let $f \in K(\beta), \omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right|>0, r_{n}=$ $1-1 / n, \omega_{n}=\left(1-r_{n}\right)^{\beta+2} f^{\prime}\left(r_{n} e^{i \theta_{0}}\right)$, and

$$
f_{n}^{\prime}(z)=\frac{\omega_{n}}{\left(1-z e^{-i \theta_{0}}\right)^{\beta+2}}
$$

Let S be a fixed but arbitrary Stolz angle with vertex $e^{i \theta_{0}}$, and let $D_{n}=\left\{z \in S:\left|e^{i \theta_{0}}-z\right|<2 / n\right\}$. Then as $n \rightarrow \infty, f_{n}^{\prime} \sim f^{\prime}$ uniformly for $z \in D_{n}$.

Proof. Again assuming $\theta_{0}=0$, we have from (1.3) $c f^{\prime}(z)=$ $p(z)^{\beta}(1-z)^{-2}$, and so

$$
f_{n}^{\prime}(z)=\frac{\left[\left(1-r_{n}\right) p\left(r_{n}\right)\right]^{\beta}}{c(1-z)^{\beta+2}}
$$

Thus, to prove the lemma it suffices to show that as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{\left(1-r_{n}\right) p\left(r_{n}\right)}{(1-z) p(z)} \longrightarrow 1 \tag{2.1}
\end{equation*}
$$

uniformly for $z \in D_{n}$.
By a theorem of Hayman [6, Theorem 2], $\lim _{r \rightarrow 1}(1-r) p(r)=L$ exists, and it is clear that $(1-z) p(z)$ is bounded as $|z| \rightarrow 1$, providing $z \in S$. By a theorem of Lindelöf [8, p. 260], we have for $z \in S$ that $\lim _{z \rightarrow 1}(1-z) p(z)=L$ where the limit is approached uniformly as $|z| \rightarrow 1$. But $0<\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2}\left|f^{\prime}(r)\right|=\lim _{r \rightarrow 1}[(1-r)|p(r)|]^{\beta}$, so $L \neq 0$. Combining these remarks with the inequality

$$
\begin{aligned}
& \left|\frac{(1-z) p(z)}{\left(1-r^{n}\right) p\left(r_{n}\right)}-1\right| \\
& \quad \leqq \frac{1}{\left|\left(1-r_{n}\right) p\left(r_{n}\right)\right|}\left\{|(1-z) p(z)-L|+\left|L-\left(1-r_{n}\right) p\left(r_{n}\right)\right|\right\}
\end{aligned}
$$

we see that (2.1) holds, so the proof is complete.
We can now determine the asymptotic behavior of a_{n} as $n \rightarrow \infty$.
Theorem 2.2. Let $f \in K(\beta)$ be given by (1.1), and let $\omega=$ $\lim _{r \rightarrow 1}(1-r)^{\beta+2} M\left(r, f^{\prime}\right)$. Let Γ denote the gamma function. Then

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{n^{\beta}}=\frac{\omega}{\Gamma(\beta+2)} .
$$

Also, if $\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right|>0$, then as $n \rightarrow \infty$

$$
a_{n} \sim \frac{f^{\prime}\left(r_{n} e^{i \theta_{0}}\right) e^{-i(n-1) \theta_{0}}}{n^{2} \Gamma(\beta+2)}
$$

where $r_{n}=1-1 / n$.
Proof. Suppose first that $\omega>0$, and define

$$
f_{n}^{\prime}(z)=\omega_{n} \sum_{m=0}^{\infty} d^{m} e^{-i m \theta_{0}} z^{m}
$$

as in Lemma 2.2. We note that

$$
\begin{equation*}
d_{m}=\frac{\Gamma(m+\beta+2)}{\Gamma(m+1) \Gamma(\beta+2)}, \tag{2.2}
\end{equation*}
$$

so $d_{m} \sim m^{\beta+1} / \Gamma(\beta+2)$ as $m \rightarrow \infty$. Computation shows that

$$
\begin{equation*}
n a_{n}-\omega_{n} d_{n-1} e^{-i(n-1) \theta_{0}}=\frac{1}{2 \pi r^{n-1}} \int_{-\pi}^{\pi}\left\{f^{\prime}\left(r e^{i \theta}\right)-f_{n}^{\prime}\left(r e^{i \theta}\right)\right\} e^{-i(n-1) \theta} d \theta \tag{2.3}
\end{equation*}
$$

Given $\delta>0$, we choose $C=C(\delta)$ and E as in Lemma 2.1, and we let $r_{n}=1-1 / n$. With n sufficiently large, Lemma 2.1 gives

$$
\int_{E}\left|f^{\prime}\left(r_{n} e^{i \theta}\right)\right| d \theta<\delta n^{\beta+1},
$$

and clearly this inequality is also true for f_{n}^{\prime}. Hence, we see that

$$
\begin{equation*}
\left|\int_{E}\left\{f^{\prime}\left(r_{n} e^{i \theta}\right)-f_{n}^{\prime}\left(r_{n} e^{i \theta}\right)\right\} e^{-i(n-1) \theta} d \theta\right|<2 \delta n^{\beta+1} \tag{2.4}
\end{equation*}
$$

for n sufficiently large. We now choose a Stolz angle S, depending on δ, such that $\left\{r_{n} e^{i \theta}: \theta \in E^{\prime}\right\} \subset S$ for large n, where $E^{\prime}=[-\pi, \pi] \backslash E$. By Lemma 2.2, we have as $n \rightarrow \infty$ and with $\theta \in E^{\prime \prime}$,

$$
\begin{aligned}
f^{\prime}\left(r_{n} e^{i \theta}\right)-f_{n}^{\prime}\left(r_{n} e^{i \theta}\right) & =o(1)\left\{f_{n}^{\prime}\left(r_{n} e^{i \theta}\right)\right\} \\
& =o(1) n^{\beta+2}
\end{aligned}
$$

where $o(1)$ is uniform for $\theta \in E^{\prime}$, and hence as $n \rightarrow \infty$, we have

$$
\begin{align*}
\left|\int_{E^{\prime}}\left\{f^{\prime}\left(r_{n} e^{i \theta}\right)-f_{n}^{\prime}\left(r_{n} e^{i \theta}\right)\right\} e^{-i(n-1) \theta} d \theta\right| & \leqq o(1) 2 C(\delta)\left(1-r_{n}\right) n^{\beta+2} \tag{2.5}\\
& =o(1) n^{\beta+1}
\end{align*}
$$

Note that although $o(1)$ depends on $\delta, o(1) \rightarrow 0$ as $n \rightarrow \infty$ once δ has been fixed.

Combining (2.3), (2.4), and (2.5), we find

$$
\left|n a_{n}-\omega_{n} d_{n-1} e^{-i(n-1) \theta_{0}}\right|<\{2 \delta+o(1)\} n^{\beta+1}
$$

for sufficiently large n. Since $\delta>0$ is arbitrary and since $o(1) \rightarrow 0$ once δ has been fixed, we have

$$
a_{n}=\omega_{n} \frac{d_{n-1}}{n} e^{-i(n-1) \theta_{0}}+o(1) n^{\beta}
$$

From (2.2) and the definition of ω_{n} we see that as $n \rightarrow \infty$,

$$
\begin{aligned}
a_{n} & \sim \omega_{n} e^{-i(n-1) \theta_{0}} n^{\beta} / \Gamma(\beta+2) \\
& \sim \frac{f^{\prime}\left(r_{n} e^{i \theta_{0}}\right) e^{-i(n-1) \theta_{0}}}{n^{2} \Gamma(\beta+2)} .
\end{aligned}
$$

In particular,

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{n^{\beta}}=\frac{\omega}{\Gamma(\beta+2)}
$$

We now suppose $\omega=0$. We shall subsequently prove (Theorem 3.1 with $\lambda=1$) that if $\omega=0$, then

$$
\lim _{r \rightarrow 1}(1-r)^{\beta+1} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta=0
$$

Using a standard inequality relating coefficients and integral means [7, p. 11] we have $\lim _{n \rightarrow \infty}\left|a_{n}\right| / n^{\beta}=0$. This completes the proof of the theorem. Note that if $\omega>0$, then it follows easily from the theorem that $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=e^{-i \theta_{0}}$, and so the radius of maximal growth can be determined from the coefficients.

We now consider the problem of determining

$$
\max \left\{\left|a_{n}\right|: f \in K(\beta)\right\}
$$

It is natural to conjecture that for each $n \geqq 2$ this problem is solved by the function

$$
F_{\beta}(z)=\frac{1}{2(\beta+1)}\left\{\left(\frac{1+z}{1-z}\right)^{\beta+1}-1\right\}=z+\sum_{j=2}^{\infty} A_{j}(\beta) z^{j}
$$

Toward this end we have the following theorem.

Theorem 2.3. Let $f \in K(\beta)$ be given by (1.1) and let F_{β} be as above.
(i) There exists an integer n_{0} depending on f such that $\left|a_{n}\right| \leqq$ $A_{n}(\beta)$ for $n \geqq n_{0}$.
(ii) If $n \leqq \beta+2$, then $\left|a_{n}\right| \leqq A_{n}(\beta)$.
(iii) If β is an integer, then $\left|a_{n}\right| \leqq A_{n}(\beta)$ for all n.

Note that since $V_{k} \subset K(\beta)$ with $\beta=k / 2-1$, we have from (ii) that $\left|a_{n}\right| \leqq A_{n}(\beta)$ for $n \leqq k / 2+1$ and from (iii) that $\left|a_{n}\right| \leqq A_{n}(\beta)$ for all n whenever k is an even integer.

Proof. We have from (1.3), with $|c|=1$,

$$
c f^{\prime}(z)=p(z)^{\beta} \varphi^{\prime}(z),
$$

where p has positive real part and φ is convex. Suppose that $p(z)=$ $\sum_{n=0}^{\infty} p_{n} z^{n},\left|p_{0}\right|=1$, and $p(z)^{\beta}=\sum_{n=0}^{\infty} q_{n} z^{n}$. Then it is easily verified by induction that for $m \geqq 1$,

$$
q_{m}=\frac{1}{m!} \sum_{j=1}^{m} \beta(\beta-1) \cdots(\beta-(j-1)) p_{0}^{\beta-j} D_{j}(p)
$$

where $D_{j}(p)$ is a polynomial, with nonnegative coefficients, in the variables $p_{0}, p_{1}, \cdots, p_{m}$.

Therefore, if β is an integer, $\left|q_{m}\right|$ is maximal for all $m \geqq 1$ when $p_{0}=1$ and $p_{j}=2$ for $j \geqq 1$, which implies $p(z)=(1+z) /(1-z)$. Also, for any $\beta \geqq 0$, we see as above that if $n \leqq \beta+2$, then $\left|q_{m}\right|$ is maximal for $1 \leqq m \leqq n-1$ when $p(z)=(1+z) /(1-z)$. In addition, if $\varphi^{\prime}(z)=1+\sum_{j=2}^{\infty} u_{j} z^{j-1}$, it is well-known that $\left|u_{j}\right| \leqq j$ for all j, with equality for $\varphi^{\prime}(z)=(1-z)^{-2}$. But when $p(z)=(1+z) /(1-z)$ and $\varphi^{\prime}(z)=(1-z)^{-2}$, we have $c f^{\prime}(z)=F^{\prime}(z)$. Hence, since

$$
c n a_{n}=\sum_{j=0}^{n-1} q_{j} u_{n-j}
$$

where we define $u_{1}=1$, we see that (ii) and (iii) are proved.
We now prove (i). We first note that as $n \rightarrow \infty$,

$$
\begin{equation*}
A_{n}(\beta) \sim \frac{2^{\beta} n^{\beta}}{\Gamma(\beta+2)} \tag{2.6}
\end{equation*}
$$

Let $\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2} M\left(r, f^{\prime}\right)$. If $\omega=0$, then Theorem 2.2 shows $a_{n}=o(1) r^{\beta}$, and so it is clear from (2.6) that (i) holds. We now suppose $\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2}\left|f^{\prime}\left(r e^{i 0_{0}}\right)\right|>0$, and we recall that in this case $\omega=\lim _{r \rightarrow 1}\left[(1-r)\left|p\left(r e^{i \theta_{0}}\right)\right|\right]^{\beta}$. Hence, from [6, Theorem 2], it follows easily that $\omega \leqq 2^{\beta}$ with equality only if

$$
p(z)=\frac{1+z e^{-i \theta_{0}}}{1-z e^{-i \theta_{0}}}
$$

But $\omega>0$ implies also that $\varphi^{\prime}(z)=\left(1-z e^{-i \theta_{0}}\right)^{-2}$, and thus we have $\omega \leqq 2^{\beta}$ with equality only if $c f^{\prime}(z)=F_{\beta}^{\prime}\left(e^{-i \theta_{0}} z\right)$, in which case $\left|\alpha_{n}\right|=$ $A_{n}(\beta)$ for all n, since $|c|=1$. Thus we may suppose $\omega<2^{\beta}$, and using Theorem 2.2 and (2.6) we see that (i) holds. This completes the proof of Theorem 2.3.

To conclude this section we examine the asymptotic behavior of the quantity $\left|\left|a_{n+1}\right|-\left|a_{n}\right|\right|$ for $f \in K(\beta)$.

THEOREM 2.4. Let $f \in K(\beta)$ be given by (1.1). If $\omega>0$, then

$$
\lim _{n \rightarrow \infty} \frac{\| a_{n+1}\left|-\left|a_{n}\right|\right|}{n^{\beta-1}}=\frac{\beta \omega}{\Gamma(\beta+2)}
$$

The theorem is in general false when $\omega=0$.
Proof. If $\beta=0$ and $\omega>0$, then from (1.3) it follows that $c f^{\prime}(z)=\left(1-z e^{-i \theta_{0}}\right)^{-2}$, so $\left|a_{n}\right|=1$ for all n, and the theorem is trivially true. Thus, we may assume without loss of generality that $\beta>0$. The proof will be divided into three parts.

We first claim that given $\delta>0$, there exists $C(\delta)>0$ such that

$$
\begin{equation*}
\left|\frac{1}{2 \pi} \int_{E}\left(1-r e^{i\left(\theta-\theta_{0}\right)}\right) f^{\prime}\left(r e^{i \theta}\right) d \theta\right|<\frac{\delta}{(1-r)^{\beta}} \tag{2.7}
\end{equation*}
$$

where θ_{0} is as in Theorem 2.1 and $E=\left\{\theta: C(\delta)(1-r) \leqq\left|\theta-\theta_{0}\right| \leqq \pi\right\}$. To prove (2.7), we note that $\omega>0$ implies that

$$
c f^{\prime}(z)=p(z)^{\beta}(1-z)^{-2}
$$

where we have assumed without loss of generality that $\theta_{0}=0$. Also, for notational ease, we assume $c=1$ and $p(0)=1$, so

$$
(1-z) f^{\prime}(z)=p(z)^{\beta} /(1-z)
$$

Choose $\lambda>1$ such that $\lambda \beta>1$, and let $1 / \lambda+1 / \lambda^{\prime}=1$. If C is an arbitrary positive constant, we have from Hölder's inequality that

$$
\begin{equation*}
\int_{E}\left|(1-z) f^{\prime}(z)\right| d \theta \leqq\left\{\int_{E}|p(z)|^{\lambda_{\beta}} d \theta\right\}^{1 / \lambda}\left\{\int_{E}|1-z|^{-\lambda^{\prime}} d \theta\right\}^{1 / \lambda^{\prime}} \tag{2.8}
\end{equation*}
$$

Since p is subordinate to $(1+z) /(1-z)$, and since $\lambda \beta>1$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}|p(z)|^{\lambda \beta} d \theta\right\}^{1 / \lambda}=O(1) \frac{1}{(1-r)^{\beta-1 / \lambda}} \tag{2.9}
\end{equation*}
$$

Also, as in the proof of Lemma 2.1, we have (since $\lambda^{\prime}>1$)

$$
\begin{equation*}
\int_{E}|1-z|^{-x^{\prime}} d \theta=O(1) \frac{1}{C^{x^{\prime}-1}} \frac{1}{(1-r)^{x^{\prime}-1}} . \tag{2.10}
\end{equation*}
$$

Hence, combining (2.8), (2.9), and (2.10), we find

$$
\left|\int_{E}(1-z) f^{\prime}(z) d \theta\right|=O(1) \frac{1}{C^{1 / \lambda}} \frac{1}{(1-r)^{\beta}},
$$

which gives (2.7) if we choose C sufficiently large.
From this point on we proceed essentially as in the proof of [11, Theorem 2], and thus we merely sketch the proof. We define ω_{n} as in Lemma 2.2, $\lambda_{n}=\arg \omega_{n}$, and

$$
f_{n}^{\prime}(z)=\frac{\omega e^{i \lambda_{n}}}{\left(1-z e^{-i \theta_{0}}\right)^{\beta+2}}=\omega e^{i \lambda_{n}} \sum_{m=0}^{\infty} d_{m} e^{-i m \theta_{0}} z^{m}
$$

Since $\omega_{n}=\left[\left(1-r_{n}\right) p\left(r_{n} e^{i \theta_{0}}\right)\right]^{\beta}, \lim _{n \rightarrow \infty} \lambda_{n}$ exists by [6, Theorem 2]. As in [11, Lemma 3] we find that as $n \rightarrow \infty$,

$$
\begin{equation*}
a_{n}-e^{-i \theta_{0}} a_{n-1}=-\frac{e^{-i \theta_{0}} a_{n-1}}{n}+\frac{\omega e^{i\left(\lambda_{n}-(n-1) \theta_{0}\right)}}{\Gamma(\beta+1)} n^{\beta-1}+o(1) n^{\beta-1} \tag{2.11}
\end{equation*}
$$

and hence as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{a_{n}-e^{-i \theta_{0}} a_{n-1}}{n^{\beta-1}}=\frac{\omega e^{i\left(\lambda_{n}-(n-1) \theta_{0}\right)}}{\Gamma(\beta+1)}\left[1-\frac{1}{\beta+1}(1+o(1)]+o(1)\right. \tag{2.12}
\end{equation*}
$$

where we have used (2.11) and Theorem 2.2. Theorem 2.2 also implies that as $n \rightarrow \infty$,

$$
\arg e^{-i \theta_{0}} \alpha_{n}=\arg \omega e^{i\left(\lambda_{n}-n \theta_{0}\right)}+o(1),
$$

and since $\lim _{n \rightarrow \infty} \lambda_{n}$ exists we have as $n \rightarrow \infty$ that

$$
\begin{equation*}
\arg e^{-i \theta_{0}} a_{n-1}=\arg w e^{i\left(\lambda_{n}-(n-1) \theta_{0}\right)}+o(1) \tag{2.13}
\end{equation*}
$$

Combining (2.12) with (2.13), we find

$$
\frac{\left\|a _ { n } \left|-\left|a_{n-1}\right| \|\right.\right.}{n^{\beta-1}}=\frac{\beta \omega}{\Gamma(\beta+2)}+o(1)
$$

as $n \rightarrow \infty$, which proves the theorem.
We now show that the theorem is false when $\omega=0$. Let $\beta \geqq 0$ be given, and define $f \in K(\beta)$ by

$$
f^{\prime}(z)=\frac{1}{\left(1-z^{2}\right)^{\beta+1}}
$$

Clearly f is an odd function, and it is easily verified that $a_{2 n+1} \sim$ $n^{\beta-1} / 2 \Gamma(\beta+1)$ as $n \rightarrow \infty$, so

$$
\lim _{n \rightarrow \infty} \frac{\left\|a_{2 n+1}|-| a_{2 n}\right\|}{n^{\beta-1}}=\lim _{n \rightarrow \infty} \frac{\left|a_{2 n+1}\right|}{n^{\beta-1}}=\frac{1}{2 \Gamma(\beta+1)} .
$$

However, $\omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2} M\left(r, f^{\prime}\right)=\lim _{r \rightarrow 1}(1-r) /(1+r)^{\beta+1}=0$, so the theorem is false when $\omega=0$. This is in sharp contrast to the corresponding result [11] for V_{k}, where the result is true for all $k>2$ even if $\omega=0$.
3. Behavior of the integral means. In this section we shall investigate the behavior of $I_{\lambda}\left(r, f^{\prime}\right)$ and $I_{\lambda}(r, f)$, where for $\lambda>0$ we define

$$
I_{\lambda}(r, g)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\lambda} d \theta
$$

Our results again include as special cases previous results of the author [10] for the class V_{k} as well as generalizing results of Pommerenke [13] for the classes $K(\alpha), 0 \leqq \alpha \leqq 1$. Although the details of the proofs given here are slightly more involved than those for V_{k}, we refer to [10] whenever possible. We first need two lemmas, the first of which is proved in exactly the same way as [10, Lemma 4.1].

Lemma 3.1. Let $f \in K(\beta), \omega=\lim _{r \rightarrow 1}(1-r)^{\beta+2}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right|>0$. Let $C>0$ and $\lambda>0$ be fixed, and for $0<R<1$ define $E=\{\theta: C(1-R) \leqq$ $\left.\left|\theta-\theta_{0}\right| \leqq \pi\right\}, E^{\prime}=[-\pi, \pi] \backslash E$. Define $\omega(R)=(1-R)^{\beta+2}\left|f^{\prime}\left(R e^{i \theta_{0}}\right)\right|$ and

$$
f_{R}^{\prime}(z)=\frac{\omega(R)}{\left(1-z e^{-i \theta_{0}}\right)^{\beta+2}} .
$$

Then as $R \rightarrow 1$,

$$
\int_{E^{\prime}}\left|f_{R}^{\prime}\left(R e^{i \theta}\right)\right|^{\lambda} d \theta \sim \int_{E^{\prime}}\left|f^{\prime}\left(R e^{i \theta}\right)\right|^{2} d \theta
$$

Lemma 3.2. Let $f \in K(\beta), \omega>0$, and f_{R}^{\prime} be as above. If $\lambda(\beta+$ 2) >1, then as $r \rightarrow 1$,

$$
I_{\lambda}\left(r, f^{\prime}\right)=I_{\lambda}\left(r, f_{r}^{\prime}\right)+o(1)(1-r)^{1-\lambda(\beta+2)} .
$$

Proof. By definition, with $z=r e^{i \theta}$, we have

$$
\begin{aligned}
& 2 \pi\left|I_{\lambda}\left(r, f^{\prime}\right)-I_{\lambda}\left(r, f_{r}^{\prime}\right)\right| \leqq \int_{E}\left|f^{\prime}(z)\right|^{\lambda} d \theta+\int_{E}\left|f_{r}^{\prime}(z)\right|^{2} d \theta \\
& \quad+\int_{E^{\prime}}\left\{\left|f^{\prime}(z)\right|^{2}-\left|f_{r}^{\prime}(r)\right|^{\lambda}\right\} d \theta,
\end{aligned}
$$

where E and E^{\prime} are as in Lemma 3.1. If $\beta=0$, then $\omega>0$ implies
$f^{\prime}(z)=(1-z)^{-2}$, and so the lemma is trivial. With $\beta>0$, let $\gamma=$ $1+2 / \beta$ and $\gamma^{\prime}=1+\beta / 2$, so $1 / \gamma+1 / \gamma^{\prime}=1$. Recalling that in (1.3) we have $\varphi^{\prime}(z)=(1-z)^{-2}$ since $\omega>0$, we have from Hölder's inequality that

$$
\int_{E}\left|f^{\prime}(z)\right|^{\lambda} d \theta \leqq\left\{\int_{E}|p(z)|^{\mid(\beta+2)} d \theta\right\}^{\beta /(\beta+2)}\left\{\int_{E}|1-z|^{-\lambda(\beta+2)} d \theta\right\}^{2 /(\beta+2)}
$$

As in the proof of (2.9) and (2.10) it follows that

$$
\int_{E}|p(z)|^{2(\beta+2)} d \theta=O(1)(1-r)^{1-\lambda(\beta+2)}
$$

Also, with $\delta>0$, it follows that

$$
\int_{E}|1-z|^{-\lambda(\beta+2)} d \theta<\frac{\delta}{(1-r)^{\lambda(\beta+2)-1}}
$$

for $C(\delta)$ depending on δ and for $\lambda(\beta+2)>1$, and therefore

$$
\int_{E}\left|f^{\prime}(z)\right|^{2} d \theta<\frac{\delta}{(1-r)^{2(\beta+2)-1}}
$$

for r sufficiently close to 1 . Clearly this inequality also holds for f_{r}^{\prime}, and so using Lemma 3.1 we have for r sufficiently close to 1 that

$$
\begin{aligned}
& 2 \pi\left|I_{\lambda}\left(r, f^{\prime}\right)-I_{\lambda}\left(r, f_{r}^{\prime}\right)\right|<\frac{2 \delta}{(1-r)^{2(\beta+2)-1}}+o(1) \int_{E^{\prime}}\left|f_{r}^{\prime}(z)\right|^{2} d \theta \\
& \quad<\frac{2 \delta}{(1-r)^{2(\beta+2)-1}}+\frac{o(1) \omega(r)^{\lambda}}{(1-r)^{2(\beta+2)}} \int_{0}^{(1-r) C(\delta)} d \theta \\
& \quad<\frac{2 \delta}{(1-r)^{2(\beta+2)-1}}+\frac{o(1) \omega(r)^{\lambda} C(\delta)}{(1-r)^{2(\beta+2)-1}}
\end{aligned}
$$

Since $\delta>0$ was arbitrary and since $o(1)$ approaches zero once δ has been fixed, the lemma follows.

We can now determine the asymptotic behavior of $I_{\lambda}\left(r, f^{\prime}\right)$ when $\lambda(\beta+2)>1$. For notational convenience, define

$$
G(\lambda, \beta)=\frac{\Gamma(\lambda(\beta+2)-1)}{2^{\lambda(\beta+2)-1} \Gamma^{2}\{(\lambda(\beta+2)) / 2\}} .
$$

Theorem 3.1. Let $f \in K(\beta)$ and $\lambda(\beta+2)>1$. Then

$$
\lim _{r \rightarrow 1}(1-r)^{\lambda(\beta+2)-1} I_{\lambda}\left(r, f^{\prime}\right)=\omega^{\lambda} G(\lambda, \beta) .
$$

Proof. If $\omega>0$, then the theorem is an immediate consequence of Lemma 3.2 and Pommerenke's result [13] that as $r \rightarrow 1$,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+r e^{i \theta}\right|^{-m} d \theta \sim \frac{\Gamma(m-1)}{2^{m-1} \Gamma^{2}(m / 2)}(1-r)^{1-m} \tag{3.1}
\end{equation*}
$$

whenever $m>1$. Hence, we now assume $\omega=0$, and we divide the proof into two cases. We first assume that in (1.3) φ^{\prime} is not of the form $\left(1-z e^{-i \theta}\right)^{-2}$. Then, as is well known, $M\left(r, \varphi^{\prime}\right)=O(1)(1-r)^{-r}$ for some $0<\gamma<2$. Without loss of generality we assume $\gamma \lambda(\beta+2) / 2$ >1. As in the proof of Lemma 3.2, we find

$$
\int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{2} d \theta \leqq\left\{\int_{0}^{2 \pi}|p(z)|^{2(\beta+2)} d \theta\right\}^{\beta /(\beta+2)}\left\{\int_{0}^{2 \pi}\left|\phi^{\prime}(z)\right|^{(2(\beta+2) / / 2} d \theta\right\}^{2 /(\beta+2)}
$$

and

$$
\left\{\int_{0}^{2 \pi}|p(z)|^{2(\beta+2)} d \theta\right\}^{\beta /(\beta+2)}=O(1)(1-r)^{\beta /(\beta+2)-\lambda_{\beta}} .
$$

Also, since φ is convex, $z \varphi^{\prime}$ is starlike and schlicht, so from [7, Theorem 3.2] we have

$$
\left\{\int_{0}^{2 \pi}\left|\varphi^{\prime}(z)\right|^{(\lambda(\beta+2) / 2} d \theta\right\}^{2 /(\beta+2)}=O(1)(1-r)^{2 /(\beta+2)-\gamma \lambda}
$$

Hence

$$
\int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{2} d \theta=O(1)(1-r)^{1-2(\beta+\gamma)}
$$

and since $\gamma<2$ we have as $r \rightarrow 1$

$$
(1-r)^{\lambda(\beta+2)-1} I_{\lambda}\left(r, f^{\prime}\right) \longrightarrow 0 .
$$

It remains only to consider the case $\omega=0$ and $\varphi^{\prime}(z)=\left(1-z e^{-i \theta_{0}}\right)^{-2}$ for some θ_{0}. Assuming without loss of generality that $\theta_{0}=0$, we find from (1.3) and our hypothesis $\omega=0$ that

$$
0=\lim _{r \rightarrow 1}(1-r) p(r)
$$

As in Lemma 2.2, it now follows that for z in a Stolz angle with vertex at 1 , we have $\lim _{|z| \rightarrow 1}(1-z) p(z)=0$ where the limit is approached uniformly as $|z| \rightarrow 1$. Hence, since $(1-r)|p(z)| \leqq|1-z||p(z)|$,

$$
|p(z)| \leqq \frac{h(r)}{1-r}
$$

for z in the Stolz angle, where $h(r) \rightarrow 0$ as $r \rightarrow 1$. Thus, given $C>0$,

$$
\begin{align*}
& \int_{0}^{\sigma(1-r)}\left|f^{\prime}(z)\right|^{2} d \theta=\int_{0}^{\sigma(1-r)}|p(z)|^{2 \beta}|1-z|^{-2 \lambda} d \theta \\
& \quad \leqq\left\{\int_{0}^{C(1-r)}|p(z)|^{2(\beta+2)} d \theta\right\}^{\beta /(\beta+2)}\left\{\int_{0}^{C(1-r)}|1-z|^{-\lambda(\beta+2)} d \theta\right\}^{2 / \beta+2)} \tag{3.2}
\end{align*}
$$

$$
\begin{aligned}
& \leqq \frac{(C h(r))^{\beta \lambda}}{(1-r)^{\beta \lambda-\beta /(\beta+2)}} \cdot \frac{O(1)}{(1-r)^{2 \lambda-2 /(\beta+2)}} \\
& =\frac{o(1)}{(1-r)^{\lambda(\beta+2)-1}}
\end{aligned}
$$

where we have used (3.1). Exactly as in the proof of Lemma 3.2 we also have, given $\delta>0$,

$$
\begin{equation*}
\int_{C(1-r)}^{\pi}\left|f^{\prime}(z)\right|^{\lambda} d \theta<\frac{\delta}{(1-r)^{\lambda(\beta+2)-1}} \tag{3.3}
\end{equation*}
$$

for an appropriate choice of $C=C(\delta)$, and hence from (3.2) and (3.3)

$$
\lim _{r \rightarrow 1}(1-r)^{\lambda(\beta+2)-1} I_{\lambda}\left(r, f^{\prime}\right)=0
$$

which completes the proof of Theorem 3.1.
To complete this section, we examine $I_{\lambda}(r, f)$.
Theorem 3.2. Let $f \in K(\beta)$ and let $G(\lambda, \beta)$ be as in Theorem 3.1.
(i) If $\lambda \geqq 1$, then

$$
\liminf _{r \rightarrow 1}(1-r)^{\lambda(\beta+1)-1} I_{\lambda}(r, f) \geqq \frac{\omega^{2} G(\lambda, \beta)}{2^{\lambda(\beta+2)-1}} .
$$

(ii) If $\lambda \geqq 1$ and $\lambda(\beta+1)>1$, then

$$
\limsup _{r \rightarrow 1}(1-r)^{\lambda(\beta+1)-1} I_{\lambda}(r, f) \leqq \frac{\omega^{\lambda} G(\lambda, \beta)}{(\beta+1-(1 / \lambda))^{\lambda}}
$$

Note that when $\omega=0, \lim _{r \rightarrow 1}(1-r)^{\lambda(\beta+1)-1} I_{\lambda}(r, f)=0$, and when $\omega>0$ the growth of $I_{\lambda}(r, f)$ is regular in the sense that $\lim \sup _{r \rightarrow 1}$ and $\liminf _{r \rightarrow 1}$ are either both positive or both zero.

Proof. The proof of (i) is very similar to that of [10, Theorem 4.4], and so we omit the details. To prove (ii), we first note that

$$
f\left(r e^{i \theta}\right)=\int_{0}^{r} f^{\prime}\left(t e^{i \theta}\right) d t
$$

Since $\lambda \geqq 1$, a generalization of Minkowski's inequality [15, p. 260] gives

$$
I_{\lambda}(r, f)^{1 / \lambda} \leqq \int_{0}^{r} I_{\lambda}\left(t, f^{\prime}\right)^{1 / \lambda} d t
$$

Since Theorem 3.1 gives us the asymptotic behavior of $I_{\lambda}\left(t, f^{\prime}\right)$ as $t \rightarrow 1$, a straightforward argument shows that whenever $\lambda(\beta+1)>1$,

$$
\limsup _{r \rightarrow 1}(1-r)^{2(\beta+1)-1} I_{\lambda}(r, f) \leqq \frac{\omega^{\lambda} G(\lambda, \beta)}{(\beta+1-1 / \lambda)^{\lambda}}
$$

In conclusion, it should be noted that the basic result underlying the theorems of $\S \S 2$ and 3 is the existence of $\omega=\lim _{r \rightarrow 1}$ $(1-r)^{\alpha+1} M\left(r, f^{\prime}\right)$, where $\alpha=\beta+1$. Since this limit exists whenever f belongs to a linear-invariant family of order α, it is interesting to speculate as to whether the results of the previous sections remain true if we assume only that f belong to such a linear-invariant family. Nothing seems to be known concerning this question. The similarity between the results of the previous sections and results of Hayman [5] on mean p-valent functions should also be noted. In this direction, W. E. Kirwan has recently shown (unpublished) that given $f \in V_{k}$ with $2 \leqq k \leqq 4$, there exists a constant $d(f)$ such that $f-d(f)$ is circumferentially mean $-k / 4$ valent.
4. Bazilevic functions and $K(\beta)$. For any $\alpha>0$, define $B(\alpha)$ to be the class of functions g which are regular in U and which are given by

$$
\begin{equation*}
g(z)=\left\{\alpha \int_{0}^{z} \xi^{\alpha-1} p(\xi)\left(\frac{h(\xi)}{\xi}\right)^{\alpha} d \xi\right\}^{1 / \alpha} \tag{4.1}
\end{equation*}
$$

where $p \in \mathscr{P}$, the class of functions P regular in U satisfying $\operatorname{Re} P(z)>0$ and $P(0)=1$, and where $h \in \mathscr{S}^{*}$, the class of normalized starlike functions. The powers appearing in (4.1) are meant as principal values. It is known [1] that $B(\alpha)$ contains only schlicht functions, and it is easy to verify that for various special choices of α, p, and h, the class $B(\alpha)$ reduces to the classes of convex, starlike, and close-to-convex functions. However, in general very little seems to be known about the geometry of $B(\alpha)$. In this section we shall relate $B(\alpha)$ to $K(1 / \alpha)$. This relationship will allow us to give a simple geometric interpretation of $B(\alpha)$ as well as a simple geometric proof that $B(\alpha)$ contains only schlicht functions.

We first need a technical lemma.
Lemma 4.1. Let g be given by (4.1). Then g is locally schlicht and vanishes only at the origin.

Proof. If $\alpha=1$, then it is easily seen that g is close-to-convex, and hence the lemma is trivial. Thus we assume $\alpha \neq 1$. Let $z_{0} \neq 0$ be given. We claim that $g\left(z_{0}\right)=0$ iff $g^{\prime}\left(z_{0}\right)=0$. If $g\left(z_{0}\right) \neq 0$, then $(g(z) / z)^{\alpha}$ is regular in a neighborhood of z_{0}, and from (4.1)

$$
\begin{equation*}
(g(z) / z)^{\alpha-1} g^{\prime}(z)=p(z)(h(z) / z)^{\alpha} \tag{4.2}
\end{equation*}
$$

Since neither p nor h vanish at z_{0}, it then follows that $g^{\prime}\left(z_{0}\right) \neq 0$.
Suppose now that $g^{\prime}\left(z_{0}\right) \neq 0$. We must show $g(z) \neq 0$. Since the zeros of g and g^{\prime} are isolated, it is clear that we may choose (even if $g\left(z_{0}\right)=0$) an arc γ ending at z_{0} such that (4.2) holds for $z \in \gamma, z \neq z_{0}$, and such that $g^{\prime}(z) \neq 0$ for $z \in \gamma$. Therefore, for $z \in \gamma$,

$$
\lim _{z \rightarrow z_{0}}|g(z) / z|^{\alpha-1}=\left|\frac{p\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\left(\frac{h\left(z_{0}\right)}{z_{0}}\right)^{\alpha}\right|
$$

and hence (since $\alpha \neq 1$) $g\left(z_{0}\right) \neq 0$, which establishes our claim.
To prove the lemma, it is now sufficient to show that g vanishes only at the origin. Suppose not; that is, suppose $g(z)=\left(z-z_{0}\right)^{m} q(z)$ where $m \geqq 1, q\left(z_{0}\right) \neq 0$ and $z_{0} \neq 0$. We choose an arc γ ending at z_{0} such that for $z \in \gamma\left(z \neq z_{0}\right)$ we have $g(z) \neq 0, g^{\prime}(z) \neq 0$, and such that (4.2) holds. Then with $z \in \gamma$,

$$
\left(z-z_{0}\right)^{m \alpha-1}\left(\frac{q(z)}{z}\right)^{\alpha-1}\left[\left(z-z_{0}\right) q^{\prime}(z)+m q(z)\right]=p(z)\left(\frac{h(z)}{z}\right)^{\alpha}
$$

We now allow $z \rightarrow z_{0}$, and we find that $m \alpha=1$. We now define G for $z \in U$ by $G(z)^{m}=g\left(z^{m}\right)$. From (4.1) it follows that G is close-toconvex with respect to H, given by $H(z)^{m}=h\left(z^{m}\right)$ where h is as in (4.1). But $G\left(z_{0}^{1 / m}\right)^{m}=g\left(z_{0}\right)=0$ and $z_{0}^{1 / m} \neq 0$, which contradicts the fact that G is schlicht. This proves the lemma.

We now define $K_{0}(\beta)$ to be that subclass of $K(\beta)$ such that in (1.3) we have $c=1$ and $p(0)=1$. Therefore, $f \in K_{0}(\beta)$ iff

$$
\begin{equation*}
f^{\prime}(z)=p(z)^{\beta} \frac{h(z)}{z} \tag{4.3}
\end{equation*}
$$

where $p \in \mathscr{P}$ and $h \in \mathscr{S}^{*}$. We also assume $\beta>0$.
Theorem 4.1. If $f \in K_{0}(\beta)$, then $g \in B(1 / \beta)$ where

$$
g(z)=\left\{\frac{1}{\beta} \int_{0}^{z}\left(\xi f^{\prime}(\xi)\right)^{1 / \beta} \xi^{-1} d \xi\right\}^{\beta}
$$

Conversely, if $g \in B(\alpha)$, then $f \in K_{0}(1 / \alpha)$ where

$$
f(z)=\int_{0}^{z}\left(\frac{g(\xi)}{\xi}\right)^{1-1 / \alpha}\left(g^{\prime}(\xi)\right)^{1 / \alpha} d \xi
$$

Proof. Suppose first that $f \in K_{0}(\beta)$ and is given by (4.3). Then

$$
f^{\prime}(z)^{1 / \beta}=p(z)\left(\frac{h(z)}{z}\right)^{1 / \beta}
$$

and from the definition of $B(1 / \beta)$ it follows that g defined as in the
theorem belongs to $B(1 / \beta)$.
Now we suppose $g \in B(\alpha)$, and we define f as in theorem. By Lemma $4.1 f$ is regular in U, and since $g \in B(\alpha)$ we have from the definition of f that

$$
f^{\prime}(z)^{\alpha}=p(z)\left(\frac{h(z)}{z}\right)^{\alpha}
$$

where $p \in \mathscr{P}$ and $h \in \mathscr{S}^{*}$. Hence $f \in K_{0}(1 / \alpha)$.
Note that although for $\beta>1 f$ may be of arbitrarily high valence, it is always true that the corresponding g is schlicht. Also note that since $V_{k} \subset K(k / 2-1)$, we have a relation between V_{k} and $B(2 /(k-2))$.

We now investigate the geometry of $B(\alpha)$. We shall assume that g is regular and locally schlicht in U, is normalized as in (1.1), and vanishes only at the origin. Also, for $0<r<1$, we define the curve $C(r)=\left\{g\left(r e^{i \theta}\right)^{\alpha}: 0 \leqq \theta<2 \pi\right\}$.

THEOREM 4.2. With the above notation and hypothesis on g, we have that $g \in B(\alpha)$ iff for all $0<r<1$ the tangent to $C(r)$ never turns back on itself as much as π radians.

Proof. If $g \in B(\alpha)$, then we see from Theorem 4.1 that $f \in K_{0}(1 / \alpha)$ where

$$
\left.f^{\prime}(z)=\left(\frac{g(z)}{z}\right)^{1-1 / \alpha}\left(g^{\prime}(z)\right)\right)^{1 / \alpha}
$$

Denote by $T\left(f, r e^{i \theta}\right)$ the tangent to the curve $f(|z|=r)$ at $f\left(r e^{i \theta}\right)$. Then with $z=r e^{i \theta}$,

$$
\arg T\left(f, r e^{i \theta}\right)=(1-1 / \alpha) \arg g(z)+(1 / \alpha) \arg z g^{\prime}(z)+\pi / 2
$$

from which it follows by a standard argument that

$$
\frac{\partial}{\partial \theta} \arg T\left(f, r e^{i \theta}\right)=(1-1 / \alpha) \operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}+\frac{1}{\alpha} \operatorname{Re}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\}
$$

Since $f \in K_{0}(1 / \alpha)$,

$$
\int_{O_{1}}^{\theta_{2}} \frac{\partial}{\partial \theta} \arg T\left(f, r e^{i \theta}\right) d \theta>-\pi / \alpha
$$

for any $\theta_{1}<\theta_{2}<\theta_{1}+2 \pi$, and so

$$
\begin{equation*}
(\alpha-1) \int_{O_{1}}^{\theta_{2}} \operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} d \theta+\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right) d \theta>-\pi \tag{4.4}
\end{equation*}
$$

Noting that locally we have $\left(g^{\alpha}(z)\right)^{\prime}=\alpha g(z)^{\alpha-1} g^{\prime}(z)$, we see by a standard
argument that (4.4) is equivalent to the fact that the tangent to $C(r)$ never turns back on itself by as much as π radians.

To prove the converse, we have from Lemma 4.1 that for $z \neq 0$, $(g(z))^{\alpha}$ is locally regular, so we may assume that (4.4) holds. If f is defined by

$$
f(z)=\int_{0}^{z}\left(\frac{g(\xi)}{\xi}\right)^{1-1 / \alpha}\left(g^{\prime}(\xi)\right)^{1 / \alpha} d \xi,
$$

then f is regular in U and from (4.4) we have

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \frac{\partial}{\partial \theta} \arg T\left(f, r e^{i \theta}\right) d \theta>-\pi / \alpha \tag{4.5}
\end{equation*}
$$

for any $\theta_{1}<\theta_{2}<\theta_{1}+2 \pi$. Since f^{\prime} never vanishes, an argument due to Kaplan [9] shows that (4.5) implies $f \in K_{0}(1 / \alpha)$, and thus

$$
f^{\prime}(z)=p(z)^{1 / \alpha} \frac{h(z)}{z}
$$

where $p \in \mathscr{P}$ and $h \in \mathscr{S}^{*}$. We now see from the definition of f that

$$
g(z)=\left\{\alpha \int_{0}^{z} \xi^{\alpha-1} p(\xi)\left(\frac{h(\xi)}{\xi}\right)^{\alpha} d \xi\right\}^{1 / \alpha}
$$

and so $g \in B(\alpha)$. This proves Theorem 4.2.
In conclusion, we prove geometrically that $B(\alpha)$ contains only schlicht functions.

Corollary 4.3. $B(\alpha)$ contains only schlicht functions.
Proof. Suppose $g \in B(\alpha)$ and g is not schlicht. For each $0<r<1$, let $C(r)=\left\{g\left(r e^{i \theta}\right): 0 \leqq \theta \leqq 2 \pi\right\}$, and let $R=\inf \{r: C(r)$ is not a simple curve\}. Since $g^{\prime}(0)=1$, it is clear that $R>0$. Also, $R<1$, since it follows from the argument principle that there exists $r<1$ such that g is not schlicht on $|z|=r$.

Consider now the curve $C(R)$. Clearly $C(R)$ is nonsimple, and g is schlicht in $\{z:|z|<R\}$. Hence we may choose $w, z_{1}=R e^{i \theta_{1}}$, and $z_{2}=R e^{i \theta_{2}}$ (with $\theta_{1}<\theta_{2}$) such that $g\left(z_{1}\right)=g\left(z_{2}\right)=w$, and such that the curve $C(R)$ is simple for $\theta \in\left(\theta_{1}, \theta_{2}\right)$.

By Lemma $4.1 g$ is locally schlicht and vanishes only at the origin, so from Theorem 4.2, with $z=R e^{i \theta}$,

$$
(\alpha-1) \int_{\theta_{1}}^{\theta_{2}} d \arg g+\int_{\theta_{1}}^{\theta_{2}} d \arg z g^{\prime}(z)>-\pi
$$

However, by the choice of θ_{1} and θ_{2} we have $\int_{\theta_{1}}^{\theta_{2}} d \arg g=0$, and so

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} d \arg z g^{\prime}>-\pi \tag{4.6}
\end{equation*}
$$

But it is clear geometrically that between θ_{1} and θ_{2} the argument of the tangent vector to $C(R)$ turns back on itself by π radians, which contradicts (4.6). Therefore g must be schlicht.

Acknowledgement. After completing this paper, the author became aware of the paper [4] by Professor A. W. Goodman. I wish to thank Professor Goodman for providing me with a copy of his manuscript. Aside from the geometrical interpretation of the class $K(\beta)$, the only results appearing both here and in [4] are parts (ii) and (iii) of Theorem 2.3. (See Theorems 8 and 9 of [4].).

References

1. I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sborn., 37 (1955), 471-476. (Russian)
2. D. A. Brannan, On functions of bounded boundary rotation I, Proc. Edinburgh Mat. Soc., 16 (1968-69), 339-347.
3. A. W. Goodman, A note on the Noshiro-Warschawski theorem, (to appear).
4. -, On close-to-convex functions of higher order, (to apper).
5. W. K. Hayman, The asymptotic behavior of p-valent functions, Proc. London Math. Soc., 5 (1955), 257-284.
6. -, On functions with positive real part, J. London Math. Soc., 36 (1961), 35-48.
7. —, Multivalent Functions, (Cambridge, 1958).
8. E. Hille, Analytic Function Theory, Vol. II, (Blaisdell, 1962).
9. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185.
10. J. W. Noonan, Asymptotic behavior of functions with bounded boundary rotation, Trans. Amer. Math. Soc., 164 (1972), 397-410.
11. -, and D. K. Thomas, On succesive coefficients of functions of bounded boundary rotation, J. London Math. Soc., 5 (1972), 656-662.
12. Ch. Pommerenke, Linear-invariante Familien analytischer Funktionen I, Math. Annalen, 155 (1964), 108-154.
13. On the coefficients of close-to-convex functions, Michigan Math. J., 9 (1962), 259-269.
14. On clos2-to-convex analytic functions, Trans. Amer. Math. Soc., 114 (1964), 176-186.
15. A. Zygmund, Trigonometric Series Vol. I, II, 2nd edition (Cambridge, 1968).

Received June 30, 1971. NRC-NRL Post-doctoral Research Associate.
E. O. Hulburt Center for Space Research
U. S. Naval Research Laboratory

Washington, D. C. 20390
Current address: College of the Holy Cross Worcester, Massachusetts 01610

