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A GENERALIZATION OF A THEOREM OF JACOBSON II

SusaAN MONTGOMERY

According to a well-known theorem of Jacobson, a ring
R in which "% =z (n(x) an integer > 1) for each x in R
must be commutative. This paper completes the description
of rings with involution in which the above condition is im-
posed only on the symmetric elements. It is shown that in
any such ring, the Jacobson radical J(R) is nilpotent of index
3, and R/J(R) is a subdirect sum of fields and 2 X 2 matrix
rings. This had been shown previously under the assumption
that R was an algebra over a field of characteristic not 2.
In addition, it is shown that such a ring of characteristic 2
must actually be commutative. These results are best possible,
since if R is 2 torsion free, B need not be commutative unless
R is a division ring. Finally, using these methods, a conjec-
ture of Jacobson on restricted Lie algebras is confirmed in a
special case.

Denote the involution on R by *, and let S = {# € R|x* = %} denote
the symmetric elements. We also define

(1) V={z+ «*|xc R}, the “traces” in R and

(2) N = {zz* |z e R}, the “norms” in R.

Whereas in the characteristic not 2 situation the proofs depended
on the Jordan structure of R, in the characteristic 2 case we use the
Lie structure of R. Thus, consider R as a Lie ring with the product
[z, y] =y — yx. A Lie subring of R is an additive subgroup of R
closed under [, |.

The center of R will be denoted by Z.

We first examine the situation in characteristic 2. Since the
condition on elements of S may not be preserved in a homomorphic
image, it will be necessary to work with Lie subrings of S.

LEMMA 1. Let R be a ring in which 2¢ = 0, all xe R, and let
T be an additive subgroup of R such that se T ivmplies s"e T, all n.
Assume that s* = s for all se T. Then n(s) can be chosen to be a
power of 2.

Proof. Let se T, and let » be the smallest integer > 1 such
that s =s. We claim that % is even. If not, » =1 + 2], some I.
Then s'** =g, so $**" = ¢*, But then (s**' + s)® = 0, which implies
st = s, since '™ + se T and no nonzero element of T can be nilpotent.
By the choice of #,l+ 1 =% =1+ 2, a contradiction. Thus = is
even. But then there exists ¢ so 2° =1 (modn — 1). It is easy to
check that s* = s.
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LEMMA 2. Let R be a ring with * in which 202 = 0, all xe R.
Let T be a Lie subring of R such that S2 T2V and that s = s,
for every se T. Then

(1) Every symmetric idempotent is in Z

(2) A power of every element of T 1s in Z.
TIf also R is a prime ring, then

(3) Every nonzero element of T 1is invertible.

Proof. Let e = ¢* be a symmetric idempotent. We show first
that e commutes with S. If not, choose se S with [s, ¢] = » = 0.
Now # =se+ (se)*c VS T, so r** =¢, for some k. But [r, e] =
[[s, el,e] =1s, €] = and so [+ e] = [r, [r, e]] = [r, ] = 0; that is, e
commutes with 7%, But since " = #, [r, ¢] = 0, a contradiction since
[, e] =r = 0.

Now let « be any element of R. Since z + z*e S, (x + z*)e =
e(@ + a*). Thus ze + ex = ex* + x*ee S, so 0 = [we + ez, €] = xe® +
ex = [z, e]. Thus ec Z.

If teT, ¢t =t for some . Then ¢ = ¢"*' is a symmetric idem-
potent, so (2) foilows from (1).

Now if R is prime, then Z consists of nonzero-divisors. Since by
part (2) a power (necessarily nonzero) of every element of T is in Z,
no nonzero element of T is a zero-divisor. Since t*'* = ¢, for each
te T, this implies that every nonzero element of T is invertible.

LEMMA 3. Let R be a prime ring with * of characteristic 2, and
assume that s* =s, all seS. Then R is a field algebraic over GF(2).

Proof. From Lemma 1, s = s for all se S and so by Lemma
2, every nonzero element of S is invertible. This implies that R is
a division ring. For if not, say € R and 2 is not right invertible.
Then since zSx* = S but xsx* cannot be right invertible, we have
xSx* = 0. If yis any element of R, then z(y + y*)a* =0, so zyz* =
xy*x* and ayx* e S. Again since z is not right invertible, xyx* =
Since R is prime, zRz* = 0 implies # = 0. Thus any nonzero element
of R is invertible.

We can now apply [1, Theorem 1] to see that R is a field algebraic
over GF'(2).

The next lemma is cruecial in all that follows.

LEMMA 4. Let B be a prime ring with * of characteristic 2 in
which v*""' = v, all ve V. Then either

(1) R is a commutative domain

(2) R is a division ring

(8) R =F, the 2 X 2, matrices over a field.
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Proof. Assume that R is neither a commutative domain nor a
division ring. Now if V =0,z = 2* for all x€ R, and so KB would
be commutative. But then since R is prime, R would be a domain,
a contradiction. Thus we may also assume that V = 0. Since R is
not a division ring, by the argument in Lemma 3 there exists s€ S,
s # 0 such that s is not invertible. However, it follows from Lemma
2 that every nonzero element of V is invertible. Since sVsZ V, sVs=0
since every nonzero element of V is invertible. Thus R has zero-
divisors since V = 0.

We claim that R is simple. If not, let 7 = 0 be a proper ideal
and let J=INI* J =0 since R is prime, so choose weJ, x # 0.
Then z*eJ, so ¢ + x*eJ. This implies © + x* = 0, for otherwise J
would contain an invertible element. Thus x = 2* all x€J, and so
J is commutative. But this implies R is commutative, and so R is
an integral domain, a contradiction.

Next we show [V, s] = 0. If not, there exists ve Vso vs + sv = 0.
Since vs + sve V, (vs + sv)** = vs + sv, some k, and thus (vs + sv)" =
1 where » is odd. Expanding, since sVs = 0, we see that

(vs + sv)™ = vsavs + svysv =1

where x and y are monomials in s and ». But then s =s:-1.5=
s(vsazvs + svysv)s = 0.  Also [v, s]s = vs®* + svs = 0. Since [v,s] =
vs + sv is invertible, s = 0, a contraction. Thus [v, s] = 0.

Now if dim, R > 4, then V generatates R as a ring [7, Theorem
1] and so seZ. This is impossible since s* = 0. Thus dim, R =4
and R = F), since R is not a division ring.

We point out that the conclusions of Lemma 4 still hold if we
only assume that the nonzero elements of V are invertible. It then
follows that [5, Theorem 9, p. 3.32] can be generalized to assuming
only that the traces are invertible. However, the proof is more com-
plicated and the more general result is not needed here.

LEMMA 5. Let R be a prime ring with * of characteristic 2.
Let T be a Lie subring of R such that SR2 T2 NUV and " =t
Jor all te T. Then either

(1) R=F, a field algebraic over GF(2) or

(2) R =F, the 2 X 2 matrices over such a field, with the sym-
plectic involution. In the second case, every element in T is a scalar
matrix.

Proof. By Lemma 2, every nonzero element of T is invertible.
Choose s€S. Then s* =ss*e N= T, and so (s = s* for some n. If
s*# 0, then s is invertible and so s*** =s. Thus if s* = 0 for all
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nonzero s€ S, then R is a field by Lemma 3. We may therefore as-
sume that there exists s,e S, s, = 0, with s = 0. Thus R is not a
domain. We could now conclude by a theorem on alternative rings
[5, Theorem 9, p. 3.32] that R must be F, with the symplectic in-
volution. Instead, however, we show this directly by a simple com-
putation.

Since R is not a domain, R = F, by Lemma 4. Note that * fixes
every element of F'. For, say a¢€ Fand a = a*. Then as, + (as)* =
(a + a*)s,e V= T. Since every nonzero element of T is invertible,
(¢ + a*}s, # 0 is invertible, a contradiction since s = 0.

Now let ¢ = 0,1 be an idempotent in F,. Since e¢ F = Z, ¢* # ¢
by Lemma 2, and thus e + e* = 0. Since e¢e* and e*e are in T but
not invertible, ee*=0=e*e. Thus (¢ + ¢*)* = e + ¢*, and so ¢ + ¢*=1,
by Lemma 2. That is, ¢* =1 + ¢ for every idempotent ¢ = 0, 1 in
F,. In particular, consider the matrix units e¢;, ¢ =1,2. We have
ef =1+ e, =e, and also e¢j =e¢,. Letting e =1¢, + e, ¢e* =1+
€+ = €, + €, =6 + e, Also e* = e + e¢,; combining these
statements, we have ¢} = ¢,. Similarly e} = e,. Thus * is the usual
symplectic involution; that is

oo =0 )

b
sz{(“ )[a,b,ceF}gT.
c a

This means that

Now for any se€ S, s® is a scalar matrix, so any s which is not a scalar
matrix cannot satisfy s** = s, for any n. Since by hypothesis se¢ T
implies s*"'” = s, every element of T is a scalar matrix.

As the first application of Lemma 5, we are now able to com-
pletely describe the situation in characteristic 2.

THEOREM 1. Let R be a ring with involution in which 2z = 0,
all ze R. Assume that s"” =s, all s€S. Ther R is commutative.
In fact, R is a subdirect sum of fields algebraic over GF(2).

Proof. First note that R is semi-simple. For, let J(R) be the
Jacobson radical of R. Then J(R)N S =0, since a power of every
symmetric element is an idempotent. But if z ¢ J{(R), then x* ¢ J(R),
and so x + 2*e€J(R) NS =0. Thus © + 2* =0, or x = x*. But then
xeJ(R) NS =0 and so J(R) =0.

Since R is semi-simple, R is semi-prime and so R is a subdirect
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sum of its prime images. We will show that any prime image of R
is a field. Let P be a prime ideal of R.

First consider the case when P*Z P. Then I = P+ P*/P is a non-
zero ideal in R = R/P. If xc¢ P+ P*, & = a + b, where ac P, be P*,
Then d*e P. Now b+ b* =2 + (b*—a) = 2 (mod P); that is, every
element Zel is the image of a symmetric element of R. Thus
7@ =% all $eI, and so I is commutative by Jacobson’s theorem
[4, p. 217]. Since R is a prime ring containing a commutative ideal,
R itself is commutative, and so an integral domain. But then every
nonzero element of I is invertible. Thus I = R and R is a field.

Next consider the case when P* < P. In this situation R/P has
an induced involution given by (x + P)* = x* + P, for every element
F =+ P of R/IP. Let T denote the image in R of the symmetric
elements of R. By Lemma 1, s = s for all seS, and so 55" =35
for all seT. It is trivial that T satisfies the other hypotheses for
Lemma 5. Thus T is in the center of R.

Combining this with the case P*<Z P above, it must be that
S=Z. Choose z,ye R. Then z +x*e€S<SZ, so [x+ ¥, y] =0, or
[, y] = [¢*, y] all ¢, ye R since 2¢ = 0 in R. Thus [z, y] = [z*, ¥*] =
[#, y]*, all 2, ye R and so [, y] € SS Z; that is, every commutator is
in the center. This property must be preserved in any homomorphic
image of R. In particular, F, cannot be a homomorphic image of R
(for, let Z =e,, ¥ = e,; then [Z, y] =y ¢ Z). Thus by Lemma 5, R/P
must also be a field when P*< P.

We are now able to improve the main results of [6] by eliminat-
ing the assumption that R is an algebra over a field of characteristic
not 2.

THEOREM 2. If R is any ring with * such that s*® = s for all
se S, then any primitive image of R is either a field or the 2 x 2
matrices over a field.

Proof. Let P be a primitive ideal of R. If P*Z P, then just
as in Theorem 1, R/P is a field. We therefore assume that P* Z P,
and so R/P has an induced involution.

First consider the case when the characteristic of R/P is not 2.
Let T be a symmetric element of R/P. Then 2t =2 + &= + o* %0,
and so (2%)" = 2%, some n > 1, since 2% is the image of a symmetric
element of R. Thus 2@2"'z" — %) =0, and so 2"7'Z* = Z. Since
¥ = 2y, where j = y*, we must have Z™ = 7 as above. Since every
symmetric element Z of R/P satisfies z*® = Z, R/P is a field or the
2 % 2 matrices over a field by [6, Theorem 1].

We may thus assume that B/P has characteristic 2. Let 7 denote
the image of the symmetric elements of R in R/P. By Lemma 1,
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3 = 5 forall §e 7. It is trivial that T satisfies the other hypotheses
of Lemma 5. Thus R/P is a field or 2 x 2 matrices over a field.

THEOREM 3. Let R be a ring with in which s™ =s, all seS.
Denote the Jacobson radical of R by J(R). Then

(1) wed(R) implies &> =0, and J(R)® =0

(2) R/J(R) is a subdirect sum of fields and 2 x 2 matriz rings
over fields

(8) R satisfies S,(x,, %, @, )5 where S, denoctes the standard
identity of degree 4.

Proof. (2) follows immediately from Theorem 3, since R/J(R) is
a subdirect sum of primitive images of E.

For part (1), first observe that SN J(R) = (0), since a power of
every symmetric element is an idempotent. But then if xeJ(R),
x+ ¥ eJ(R)N S=(0), and so 2* = — 2. We claim that 2z = 0 implies
x =0, all zeJ(R). Forif 2x = 0, then x = — x and 50 &* = x. Then
xeJ(R)NS =(0). (1) now follows from the characteristic not 2 case
[6, Theorem 2].

Since any 2 X 2 matrix ring over a field satisfies S,, B/J(R) satisfies
S,. But then S/(z, :--, ) eJ(R), all z, ---, x,€ R, and so Sz, ---,
x)? = 0 by (2).

Before proceeding, we need the following theorem due to Herstein
(unpublished). It is a strengthening of [i, Theorem 1] in charac-
teristic 2.

THEOREM (Herstein). Let D be a divisicn ring with * of charac-
teristic 2 such that v™™ = v, all ve V. Then D 1is a field.

Proof. Choose ve V and let C,(v) denote the centralizer of v in
D. We claim that C,(v) is commutative. Now C,(v) is a division
ring closed under *. Let seC,(v) N S. Then svse V and so (svs)® =
svs, some k. Also v' = v, some [, so if welet n =Gk — 1)1 —1) + 1,
we have both v" = v and (svs)” = svs. Since sv = wvs, s*v" = s*v, and
g0 st = g; that is, s is periodic. By [1, Theorem 1], C,(v) is a field
algebraic over GF'(2).

Now if ZN V +# 0, we would be done, forif veZ N V, v+ 0 then
Cp(w) =D is a field by the above. We may thus assume that Z N
V =0. Now choose ve V,v¢ Z. Since v* = v, some k, there exists
a€D so ava™ = v' # v by [2, Lemma 3.1.1]. Since conjugation by a
induces an automorphism of the finite field GF(2) (v), there is some
% 80 a"va~" = v. This gives a"eC,(v), and so a is algebraic over
GF(2). But now the subdivision ring generated by a and v over GF(2)
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is finite, and so must be commutative by Wedderburn’s theorem.
This contradicts ava™ == v. Thus it must happen that V = 0. This
implies D<= S, and so D is commutative.

Note that the above proof works equally well if the division ring
has characteristic not 2 and V is replaced by the set of skew elements,
and so gives a simpler proof of [1, Theorem 3J.

Using the theorem of Herstein, we can improve Lemma 4 to the
following:

LEMMA 6. Let R be a prime ring with * of characteristic 2 in
which v**™ =, all ve V. Then R is a commutative domain or the
2 X 2 matrices over o field.

We now apply our results to a problem in Lie algebras. Jacobson
has made the following conjecture [3, p. 196]:

“If < is a restricted Lie algebra of characteristic » such that
a*™ =a, n(a) > 0 for all a € &, then & is abelian”.

The following theorem confirms Jacobson’s conjecture in a special
case.

THEOREM 4. Let ¥ be a restricted Lie algebra of characteristic
2 such that a**'” = a, n(a) > 0 for all aec . Assume that & has a
faithful (restricted) representation ® into R,, where R is an associa-
tive algebra with involution, such that P(F)=2V, the traces of R.
Then & is abelian.

Proof. To simplify notation, assume that & is actually contained
in R;. Let J(R) be the Jacobson radical of R. Then J(R) N &~ = (0),
since a power of every element of &° is an idempotent in R. Thus in
R = R/J(R), ¥ =, where ¥ = & + J(R). We may therefore
assume that R is semi-simple. Then R is a subdirect sum of its
prime images, so let P be any prime ideal of B. We will show that
<2, the image of &~ in R/P, is abelian.

Now if P* &£ P, then R/P is a field by exactly the same argument
as in Theorem 1. Thus, assume that P*Z P. Let S, denote the
symmetric elements of R/P, and let T="NS,. Now T2V, and’
so by Lemma 6 either R/P is a field (and we are done) or R/P = F,,
2 X 2 matrices. To finish the Theorem, it will be enough to show
that any Lie subring 4 of F), such that ¢*"'” = a, all ac A4, is abelian.

Choose a, be A. Then [a, b]*c Z (This is true for any commutator
in F) and so [a, b] € Z since [a, b]** = [a, b], some k. Thus [[a, b], a] =
0 = [b, o’]; that is, b commutes with a>. But ¢** = a, some %, and
thus [b, ] = 0. We have shown that A is abelian.
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It should be pointed out that R in Theorem 4 is not necessarily
commutative, as it may happen that (%) does not contain all of S.
As an example consider F),, where F' is algebraic over GF(2). With
the symplectic involution, V = {all scalar matrices}. If & = {al +
Ble, + ey |a, Be F}, then & satisfies the hypotheses of Theorem 4
but SZ < and &< 28S.

Note also that the converse of Theorem 4 is trivially true. For
if &~ is abelian, let R be the u-algebra for <& [3, p. 192]. Then
the identity map is an involution on R (since R is commutative), and
V={x+at={&+2=0 80 2.

Added in Proof. 1. N. Herstein has now shown that Theorem 4
is true for any characteristic, if V is replaced by the skew elements
of R.
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