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IDEMPOTENTS IN THE BOUNDARY OF A LIE GROUP

FRANK KNOWLES

Let S be a locally compact semigroup consisting of a dense
connected Lie group G and its boundary L; and let e be an
idempotent in L. This paper is concerned with the proof of
three principal results: (1) If L = Ge is simply connected, then
S is homeomorphic to GjGr(e) x Gr(e)IGι(e) x Gι(e)~, where Gι(e)~
is a connected locally compact group with zero, (2) For any
connected Lie group G and closed normal subgroup H such
that G/H is simply connected and H is the direct product of
the multiplicative group of positive real numbers and a con-
nected compact group, there is a locally compact semigroup
S which contains a dense subgroup isomorphic to G whose
boundary is a group isomorphic to G/H. (3) If G = V*Gι(e\
for some subspace F c G , then Ge is locally compact if and
only if there is a local cross-section to the global orbits of
G at e.

We first establish notation and state a few basic facts that will
be used later. It is understood that we are discussing topological
groups and semigroups. Hence, unless stated otherwise, homomor-
phisms are continuous functions and isomorphisms are homeomorphisms.
All spaces are Hausdorff. By the boundary of a set A, we mean the
set A~\A, where A" is the usual topological closure of A. Let G be
a group with subsets V, W a G such that at least one is a subgroup.
If V n W = {1}, and the multiplication map of G restricted to V x W
is a homeomorphism onto (?, then we write G = V*W. This gener-
alization of the semidirect product will be extremely useful.

Let G be a transformation group acting on the left in the space
X, and let xeX. The left isotropy subgroup of x, {g e G \ gx = x) is a
closed subgroup of G and is denoted by Gι(e). Gr{e) is similarly defined
if G acts on the right. The G-orbit through x, Gx, is the set {gx\g eG}
if G acts on the left, and a similar definition is made for right actions.
The map h: G/Gι(x) —• Gx, defined by h[gGι(x)] — gx is always a con-
tinuous bisection. If G is connected and locally compact, and Gx is
locally compact, then h is a homeomorphism [3, p. 7]. If, in addition,
G = V*Gt(x), then V is homeomorphic to Gx by the map v—+vx.
(Merely note that V is homeomorphic to G/Gι(x) via the projection.)

Suppose now that G is a dense connected Lie subgroup of a locally
compact semigroup S. Let L be the boundary of G. G is open in
G~~ (since G is locally compact), so L is closed and locally compact.
G acts in S on the left and on the right by the semigroup multiplica-
tion. If x e L, then Gx is homeomorphic to G/Gt(x) if Gx is closed
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in L. If Gx is, in addition, simply connected as well as closed, then
G/Gι(x) is simply connected, and this implies Gt(x) is connected [1, p. 59].
(One should note that if a space is simply connected in the usual
sense, then it is simply connected in the sense of [1], and, for mani-
folds, the two definitions are equivalent [1, p. 44; 3, p. 51].) Recall
that for any semigroup S, M(S) denotes the unique minimal two-sided
ideal of S, if it exists. If L = Ge, where e is an idempotent, then
we invariably write HL, HR, respectively, for Gι(e), and Gr(e).

In [4], Hofmann completely describes the locally compact groups
with zero on his way to describing the locally compact groups with
compact boundary. We will rely heavily on his description of certain
of these objects, so we will summarize the pertinent facts and defini-
tions. If S is any semigroup and e is a point of S such that se = e,
for all s e S, then e is a right zero for £• Left zeros are defined
similarly. If Se = eS — {e}, then e is a zero for S. For any idem-
potent u of S, H(u) denotes the maximal subgroup of S containing
u. If S is a locally compact semigroup consisting of a locally compact
group G and a non-isolated point e ί G , then S is a locally compact
group with zero. It is immediate that G = H(ϊ) and e is a zero for
S [4, p. 22]. If G is connected, then G is isomorphic to P x C, where
P is the multiplicative group of positive real numbers and C is a
connected compact group [4, pp. 40, 49]. Moreover, Sis isomorphic
to the quotient semigroup P~ x C/{0} x C, where P " is the multiplic-
ative semigroup of nonnegative real numbers. We identify P with
its image in the quotient semigroup S, and we denote the zero of S
by e. It follows that the closure of P in S, P U {e}, is isomorphic to
P - [5, p. 51].

1* We begin the proofs with two theorems whose proofs are
given in [6, 66. 310-312] and two small lemmas.

THEOREM 1. Let G be a connected locally compact group of finite
dimension embedded in a semigroup, and let e be an idempotent in
the closure of G such that Ge is locally compact. Then e e Gι(e)~.

THEOREM 2. Let G be a connected locally compact group embedded
in a locally compact semigroup S in such a way that the boundary
of G is a single left G-orbit Ge where e is an idempotent. If G =
V*HL, for some subspace 7 c G , then (i) Hz = HL U {β}, and (ii) the
multiplication map of S restricted to V x Hz is a homeomorphism
onto G~.

LEMMA 3. Let G be a group and let (G, p) be a group covering
of G. Suppose that G = V*H, where H — p~ι{H) and H is a closed
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subgroup of G. Then G = V*H, where p(V) = V.

Proof. Clearly G c VH. We show now that the multiplication
map, m: V x H—+G is one-to-one. Suppose vγhγ — v2h2. Then there
exist vl9 v2 e V and hl9 h2e H such that p(Vi) = vt and pQi^ = /̂ , for
i = 1, 2. Thus 2>(£l)p(/O — p(^2)p(^2) This implies, since p is a
homomorphism, that ί ^ = v2h2h3, where h3 e (kernel of p) c H. Since
G = V*H, vγ = v2 and hx = h2h3. Consequently, p(v1) = p(v2) and p{h^) —

p(h2). Thus we have v1 — v2 and ht = /̂ 2. We have now only to show
that m is open. Let vjii —+xeG, and let {vji^ c iV, an evenly covered
neighborhood of x. Let N be a component of p~\N). We have
vjίi —>x in N, where piv ht) = piv^piht) — vjii This implies that
p(Vi) — Vi and p{h^} = h^ There is a v and h in G such that 3c = vh,
Vi —> v, and ̂  —> A, since G = V*H. Thus, by continuity of p, vζ —>
p(v), hi-^p(h), and x = p(v)p(h). This shows that m is open.

LEMMA 4. If G is a connected Lie group and H is a closed normal
subgroup of G such that G/H is simply connected, then there is a
subspace V of G such that G — V*H.

Proof. Let (G, p) be a simply connected group covering of G,
and let p~\H) — H. Since G/H is simply connected, and G/H is
homeomorphic to G/H, it follows that H is connected [1, p. 59]. Con-
sequently, there is a subspace VaG such that G = V*H[3, p. 135].
By Lemma 3, G = V*H, where V -

THEOREM 5. Let G be a connected Lie group which is dense in
a locally compact semigroup. Suppose that L, the boundary of G, is
a single left G-orbit generated by an idempotent e, and let S = G U L.
Then

( i ) Hz — HL U M is a locally compact group with zero.
(ii) eG = H{e) is a closed topological subgroup of L.
(iii) L = AΓ(S).

(iv) L is a group if and only if HL = HR.
(v) S is simply connected if and only if L is simply connected.
(vi) If L is simply connected, then S is homeomorphic to

G/HR x HR/HL x Hz, and Hz is connected.
(vii) Let L be simply connected. Then S is a manifold with

boundary if and only if HL is isomorphic to the multiplicative group
of positive real numbers; which happens if and only if dim L = dim
G - 1.

Proof, (i) e is in Hz, by Theorem 1. Since e is a right identity
for L and a right zero for Hz it follows that Hz D L = {e}. HL is
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closed in G so Hz = HL (J {e}. Thus iϋt is a locally compact group
with zero.

(ii) That eG is an algebraic subgroup of L follows easily from
the fact that eG c Ge. Now, eS = e(G~) = e(G U Ge) = eG I) eGe = eG.
Similarly, $e = Ge. Thus eS Π Se = eG, and this implies eG = H(e).
Clearly, eS and Se are closed sets, thus eG is closed. Since eG is
locally compact, a theorem due to Ellis [2] implies that eG is a
topological group.

(iii) The argument for (ii) shows that L is an ideal in S. If I
is any ideal of S, then, for x e I Π L, there exist elements g and h
of G such that x = ge and eg — he. Hence Ge$ — Gege = Ghe — Ge =
L c J . Thus L - Af(S).

(iv) Assume ίZ"L = HR. We will show that e is in the center of
S. Fix g eG. Since eG c Ge, (/eg"1 e Ge so geg"1 = he for some he G.
Now e = e ^ " 1 = egeg"1 = ehe = eh. Thus h e HR. This implies e =
Λe = geg"1 and eg = ge. Thus Ge = eG and, by (ii), L is a group.
Conversely, if L = M(S) is a group, then e is in the center of S so
HL = HR.

(v) The map s —-> se is a retraction of S onto L, thus if S is
simply connected, L is simply connected. Assume now that L is
simply connected. By (i) Hz is a locally compact group with zero.
Since L is simply connected, G/HL is simply connected and so HL is
connected. Consequently, HL = P x C, where P is a subgroup of G
isomorphic to the multiplicative group of positive real numbers and
C is a connected compact subgroup of G. Moreover, P~ = PU {e}.
Let [1, e] denote the closed arc of P~ that connects 1 to e. Define
Γ : [ l , e ] x S - > S by Γ(p, s) = sp, for p e [1, e], and seS. Γ is a
deformation retraction of S onto L Thus S is simply connected.

(vi) The argument for (v) shows that HL is connected, thus Hz
is connected. Using the notation of the proof of (v), define Tf\ [1, e] x
S —> S by T'(p, s) = ps. T" is a deformation retraction of S onto eG
which implies eG is simply connected. Now, the map / : G —* eG,
defined by f(g) = eg, is a homeomorphism and HR is the kernel of / .
Thus HR is a closed normal subgroup of G. By Lemma 4, there is
a subspace F of G such that G = F * HR. We will show that the
multiplication map, m: V x HR —> S is a homeomorphism onto S. First
we show that HR Π L = HRe. Clearly HRe c HR n -̂  since the closure
of a subgroup is a semigroup, and L is an ideal. Let x e HR Π L.
Then, for some g eG, x — ge, and e = eα; = ege = eg. Thus g G HR,
and α e i ϊ Λ e. Since G — Fiί^ and L = Ge = FJT^e, it is clear that m
is onto. We show next that m is one-to-one. Since m is one-to-one
on F x ίfβ, we have only to show that if vjιλe — v2h2e, for vu v2e V
and hl9 h2 e HR, then v1 = v2 and ^e = h2e. Let ^ ^ e = v2fe2e. Then
vfa = t;2fe2̂ , where heHLczHL. (Notice that HLaHR since, by (i),
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Hz = HL U {e}.) This implies vx — v2 and hγ = fe2fe, since G = V*HR.
Thus Axe = fe2e. To show that m is open we have only to show the
following two statements:

(a) vjiiβ —> vhe =>Vi~>v and hφ —> Ae, where ^ e F and A4, A e ίZ^;
and

(b) Vihi —-•ΐ fee => Vi—>v and /^ —>/^β, where viy v e Vand hi9 he HR.
Now, (b) follows easily from (a) (postmultiplication by e) so we

will prove only (a). Let v^e—^vhe. Then eVi — ev^e—^ evhe — ev.
Since eG is a group, this implies evT1 -^ev"1. Since G = HR* V~\ this
implies viι —» v~~\ Thus Vi~+v and ^e —> fee. What has been shown
to this point is that G is homeomorphic to G/HB x HR. In the next
paragraph we show that Hi is homeomorphic to HRjHL x Hz.

By restricting the maps T and T" to [1, e] x ίί^", respectively,
one sees that HRe is a deformation retraction of Hz, and ίf̂ " is con-
tractible. Hence, HRe is contractible. Since HRe is closed, this implies
HJHL is contractible. Consequently, there is a subspace PΓcfi^ such
that HR = T F * ^ [7, p. 53]. It is worth noticing that Hz is a locally
compact semigroup with a dense connected Lie group whose boundary
is a single left orbit generated by a left zero. A description of these
semigroups would be a big step toward completely describing the
semigroups we are concerned with in this theorem. We now show
that the multiplication map, m: W x Hz x Hz is a homeomorphism.
To show that m is onto, let k e Hz ΓΊ L. We have seen that Hz ΓΊ L =
JEfββ Hence there exists w e W, he HL such that (w/&)e — we — k.
Since ifβ = W*HL, this shows that m is onto. To show that m is
open, we have only to check that w ^ —• we, where wi9 w e W and
hi G HL =>Wi—*w and hi —>β. If ^fei —> we, then ^ e —> tye. Since W
is homeomorphic to We via the map w~>we, we have Wi—>w and
thus hi —* e.

(vii) We saw above that V x Hz is homeomorphic to S and
TΓ x Hz is homeomorphic to ίZ"̂ "; each by a suitable restriction of the
multiplication map of S. Thus S is homeomorphic to U x i2r by a
restriction of the multiplication map of S, where U — VWcz G. More-
over, G — U* HL, and L = Ϊ7e is homeomorphic to J7. Since £7, P, C
and L are manifolds, we will mean by the dimension of a space its
dimension as a manifold. If Hz = P~, then, clearly, S is a manifold
with boundary. Also, in this case, dim G — dim U + 1. Thus dim L =
dim G — 1. We will show now that iί C -Φ {1}, then S cannot be a
manifold with boundary, and, moreover, dim L g dim G — 2. This
suffices to show the equivalence of the three statements of the theorem.
It might be well to keep in mind that S could be a manifold without
boundary if, say, C were the circle group; for then Hz would be the
multiplicative semigroup of complex numbers.

Let C Φ {!}. Then dim G = dim U + 1 + dim C. Since dim C ^ 1
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(C is connected), we have dim L — dim U rg dim G — 2. We have only
to show now that S cannot be a manifold with boundary. We assume
that S is a manifold with boundary and arrive at a contradiction.
G is an open homogeneous subset of S, hence G g Int S. Consequently,
φΦ bdSczL. Let uγe,u2ezL. Ϊ7 is a homogeneous space so there
is a homeomorphism Λ: U—> U and Λ^) = u2. Let α? e E7, y e Hz* The
following composition of homeomorphisms is a homeomorphism of S
onto S that carries u±e to u2e:xyeS—> (x, y) e U x 2Zi~ —»(λ(«), y) e U x
Hz —> λ(#)2/ e JS». This implies that all of L must be in the boundary
of S and thus L = δdS. Consequently, we have the four statements,
(i) L = δdS, (ii) G = Int S, (iii) dim L ^ dim G - 2 and (iv) S is a
manifold with boundary. This is impossible.

THEOREM 6. Let G be a connected Lie group with a closed normal
subgroup H such that G/H is simply connected. Let H = C x P where
C is a connected compact group and P is the multiplicative group of
positive real numbers. Then G can be embedded in a locally compact
semigroup as a dense subgroup whose boundary is a group isomorphic
to G/H.

Proof. Let H~ denote the locally compact semigroup P~~ x C/{0} x C,
where P~ is the multiplicative semigroup of nonnegative real numbers,
and P = p-\{0}. We identify P with its image in H~~, and we denote
the zero of H~~ by e. The closure of P in H~9 P U {e}, is isomorphic
to P~. By Lemma 4 we have G = V*H. For g e (?, there exist unique
veV, heH such that g = vh. We define [g] to be v. Since H is
normal and multiplication in G is associative, we have [^[^ί/s]] =

Also, [g^s] = [v^] where g1 = vji^ and g2 = v2h2; and #;—•

Consider the function m: (V x £T~) x ( F x ff~) - ^ F x £Γ~ defined
by (i) m restricted to (V x H) x (V x H) is the multiplication of G
(ii) m((vlf e), {v2, h))) = m(((vl9 h), (vi9 e))) = m(((vl9 e), (t;2, e))) = (Kt;,], e).
It is straightforward to show that m is an associative multiplication.
To show that m is a continuous multiplication on V x H~ it suffices
to show the following statements:

(1) (vi9 e) — (v, e) and (vli9 h) -> (v^ h) => ([v^H], e) -> ([wj, e) and

( 2 ) (^, e) -* (v, β) and (v^, h) -> ( x̂, e) => ([^vH], e) ~> ([wj, e) and
([ViiVι],e)-+(&&],€).

(3 ) (vi9 e) — (t;lf β) and « e) -> (i/, e) => ([vM], e) — {[vvf]9 e).
( 4 ) (vli9 h1i)->(Vi, h) and (vai, h2i)--*(v2, e)=*([vuvu], Khlh^dv^e)

where h\ = v2ihxiv2i and vHv2i = [v^vu]hi\
(5) (vli9 h^{vl9 e) and (v2i9 h2i)-»(v29 h2)=>([vHv2i], h"hlh2i)-+([v1v2], e)

where hi = v2>hHv2i and i;Ht;2ί = K ί ^ ί ] ^ ' .
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( 6 ) O H , hH)-~>(vlf e) a n d (v2i, hu)-+{v2, e)=>{[vHv2i], h'i
fh'ih2i)-+([v1v2], e)

w h e r e h[ = v2^hHv2i and vHv2i = [vuVziW/.

(l)-(4) are immediate, and (5)-(6) will follow if we show:
(*) Vi —> v and hi—*e=> VihiVj1 —>e, where Vi e V, hiβ H. We now

show (*).
For each g eG, let Ag be the automorphism of H induced by the

inner automorphism of G, x —> gxg~\ Let k be the projection of H
onto P, and let kAg\P be denoted by kg. Notice that C is the
maximal compact subgroup of H, so C is invariant under Ag for all
g eG. Clearly, for any g eG, kg is an automorphism of P. It follows
from this that the map g —>kg is a continuous homomorphism of G
into the connected component of the identity of the automorphism
group of P. We assume now that P is the group of additive reals.
Thus kg e A(P)0, which we identify with the multiplicative positive
reals. We may assume that Pi—+e in H if and only if #< —• + oo in
the usual orientation of P. Thus, for each g eG, there is a positive
real number a(g) such that kg(p) — a(g) p for all p e P. Consequently,
Pi —> e if and only if kg(Pi) —> e for all g eG. Consider {c^J c H,
where ct e C and p{ e P. Let AgfaPi) — c^clpl, where Agfa) = c41 and
Ag(Pi) = c ; $ . Clearly, Agic^) -> e =̂> p -> e <=> ̂ ( ^ ) -> e <=> ̂  ~> β <=>

:, v e
1 —>e

a(v),

V, a n d /&* —

<=> a(Vi) P i —*

and thus a(v

ciPi "-*• e

e. Since
*) * Pi —> °°

T h e n Vi(c

Vi—+v and

. Thus vj

Now let Vi —>v,

c'i(a(Vi) ί)*), so v^CiP^v

it follows that α(Vi)—
and we are through.

Clearly, F x J ϊ " is locally compact and contains a dense subgroup
isomorphic to G. The map / : G —> V x {β} defined by /(#) = ([#], e)
induces an isomorphism from G/H onto F x {β}, the boundary of VxH
in V x £Γ-.

REMARKS AND EXAMPLES. If G is an abelian Lie group, then it
is not too difficult to see that we may pick V to be a vector group
and that S is the product semigroup V x H~~. In this case, our result
is a corollary of a theorem of Stepp's [8, Theorem 3, p. 404]. The
semigroups on a three-dimensional half-space without radical [5, pp.
45-48] provide a variety of examples of semigroups that satisfy the
hypotheses of Theorem 5. It is worth noticing here that if G is the
noncommutative nilpotent group on Ez and S is the half-space semi-
group G U G/P, where P is the center of G, then P has no comple-
mentary group in G [6]. In [5, pp. 46-47] Home constructs in a
completely different way a half-space semigroup G U G/P, where the
boundary of G is the group G/P for any group G on Ez which has
a normal one-parameter subgroup P. It is clear that the construction
given in the argument of Theorem 6 will provide an ^-dimensional
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half-space semi-group for any group on En which has a normal one-
parameter subgroup.

Our next result is a theorem concerning the action of G at e that
is an improvement of Theorem 2. Following Definition 1.10, page 315
(and the Remark on the page) of Hofmann and Mostert's book, Ele-
ments of Compact Semigroups [Charles E. Merrill Books, Inc. (1966)],
we will define a local cross section to the local orbits and a local cross
section to the global orbits of a transformation group at a point. For
connected locally compact groups G of finite dimension action on com-
pletely regular spaces X, our definition of a local cross section to the
local orbits is equivalent to that given in Hofmann and Mostert's
book.

DEFINITION Let G be a transformation group acting on the right
on a space X. Let xeX, and let H = Gr(x). We call the triple
(C, K, U) a local cross section to the local orbits of G at x if

(1) U is a neighborhood of x;
(2) C is a closed subset of U containing x;
(3) K is a closed subset of G containing 1 that is mapped home-

omorphically, via the projection map, onto a neighborhood of H in
G/H={Hg\geG}',

(4) the action of G, restricted to C x K, is a homeomorphism
onto U.

If G acts on X on the left, then H = Gι(x), and (C, K, U) is a
local cross section to the local orbits of G at x where C, K are as
above except that G/H = {gH\g e G} in (3), and K x C is the domain
of the action in (4). If, in addition to the above, K maps onto G/H
in (3), then (C, K, U) is a local cross section to the global orbits of
G at x. If then U = X, we have a global or complete cross section
to the action of G at x.

THEOREM 7. Let G be a connected, locally compact, dense subgroup
of a locally compact semigroup S. Let e be an idempotent in the
closure of G such that G = W*H, where H is the left isotropy sub-
group of e relative to the natural action of G on S by the multiplica-
tion in S. It follows that Ge is a locally compact subspace of S if
and only if (H~, W, WH~) is a local cross section to the global orbits
of G at e.

Proof. Assume Ge locally compact. Then W is homeomorphic
to We — Ge via the map w —> we. There is a net wjii —•> e, so w{e —> e
and Wi—+1. This implies hi—+e and e e H~. We now show that the
multiplication map, W x iϊ~—• WH~ is a homeomorphism. If wtht =
w2h2, where Wi e W, hi e H~, then wγe — w2e w± ~ w2. Thus hv — h2
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and m is one-to-one. Suppose Wihi—>wh, where wiy w e W and hiy h e H~.
Then wφ—^we, so Wi~+w. Hence hi—*h and m is open onto WH~~.
We have show that m: W x H~ —> £ is a homeomorphism into S.
Since e e H~, GU Gea WH~. Since W x H~ is locally compact, flFTf ~
is a locally compact, dense subset of S. Thus T^ίί" is an open subset
of S.

Assume that {H~, W, WH~~) is a local cross section to the global
orbits of G at e. It is immediate that G c WH and e e H~, so Ge ~
m{ W x {e} is locally compact since W x {β} is locally compact.

We conclude with a corollary that has applications to half-space
semigroups. First, we mention a fact that will be used in the proof
that follows. A reference for the relevant theorems about Lie groups
is H. Samelson's survey article, Topology of Lie groups [Bull. Amer.
Math. Soc, 58 (1952), 2-37]. Let G be a connected Lie group and
let H be a maximal compact subgroup of G. A theorem of Iwasawa
states that G is homeomorphic to the product space H x V, where
V is a euclidean space. Since H is an orientable manifold and con-
sequently not acyclic, it follows that G is a group on euclidean space
if and only if G contains no nontrivial compact subgroup. An im-
mediate consequence of this is that a closed connected subgroup of a
group on euclidean space is a group on euclidean space.

COROLLARY 8. Let G be a Lie group on euclidean n-space and
a dense subgroup of a locally compact semigroup S. Let e be an
idempotent in the boundary of G such that Ge is a locally compact
and simply connected subspace of S. Then G = W*H, for some WaG,
where H is the left isotropy subgroup of e relative to the natural
action of G on S by the multiplication in S. Consequently^ {H~, W,
WH~) is a local cross section to the global orbits of G at e.

Proof. Since Ge is locally compact, Ge is homeomorphic to G/H,
so G/H is simply connected. This implies that H is connected. By
the remarks above, H is a group on euclidean m-space, m ^ n. Since
G is a bundle over G/H with solid fibre H, there is a cross section,
f:G/H-+G [7, p. 55]. Let f(G/H) = W. Clearly p \ W is the inverse
of /, so / is a homeomorphism. If now, wjii —> wh, where wi9 w e W,
h^ he H, then p(Wi) —>p(w) which implies Wi —* w. Thus hi—>h and
we have shown that the multiplication map of G, restricted to WxH
is open onto WH = G. Clearly this map is also injective and con-
tinuous, so G = W*H. Theorem 7 implies now that (H~, W, WH")
is a local cross section to the global orbits of G at β.
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