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FIVE THEOREMS ON MACAULAY RINGS

M. HoCHSTER AND L. J. RATLIFF, JR.

The first three theorems concern localizations of a Noe-
therian ring such that the localization is a Macaulay ring,
and the other two theorems give some necessary and sufficient
conditions for certain Rees rings and form rings of a Noe-
therian ring to be locally Macaulay. Numerous consequences
of the theorems are proved.

1. Introduction. Macaulay rings have been extensively studied,
and numerous properties of such rings are known. It is the purpose
of this paper to add to the knowledge of such rings (and Noetherian
ring theory in general) by proving five theorems in this area, and to
derive some consequences of these theorems.

Most of the results in §2 follow quite readily from the first
theorem, Theorem 2.2. Among the corollaries of this theorem, are
the following, where E is a finite module over a Noetherian ring R
such that E, = (0), for some Q€ Spec R. The Macaulay locus of E
(that is, the Q< Spec R such that E, is Macaulay) is open in the VS
topology (Definition 2.8) on Spec R (2.4.1). If PeSpec R and height
P/(Ann E) > 1, then there exist infinitely many p € Spec R such that
Ann FcCpC P, height P/p =1, and E, is Macaulay (2.5.2). Rad(Ann E) =
N {p € Spec R; E, is Macaulay and p is a G-ideal} (that is, the G-ideals
of the Macaulay locus are Zariski dense in the set of prime ideals
containing Ann F) (2.12). (An important special case is when E = R
is a Hilbert ring (2.17).) If E, is Macaulay and PecSpec R is such
that @ c P and height P/Q = d, then, for : =0,1,---,d —1,Q = N
{peSpec R; Q< pc P, E, is Macaulay, height p = height Q@ + 4, height
P/p =d — i, and 4 = height p/Q} (2.19). Also these last intersectors
can be adjusted to not being contained in a finite set of prime ideals
which don’t contain P (2.21), and to not containing a given element
not in @ (2.23). Then this section is closed by proving a result,
Proposition 2.26, which implies that, in a local ring (R, M), there
exists a system of parameters b, ---, b, such that, if P+ M is a
prime ideal in R such that b, ---, b;e P, for some j < a, then the
images in R, of b, ---, b; are an R,-sequence and, if P is a minimal
prime divisor of (b, +--, b;)R, then, for ¢t =10,1, ---, 7, (b, +--, b,)Rp
is a primary ideal (by (2.26.3) and (2.27.1)).

In §3, two theorems concerning a finitely generated ring A over
a Noetherian ring R are proved. The first, Theorem 8.9, shows in
particular that, if A is an integral domain and R satisfies the condition:
(0) = N {M; M is a maximal ideal in R and R, is Macaulay}: then A
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does. The second, Theorem 3.12, gives a necessary and sufficient con-
dition for A to satisfy this condition, when R is semilocal and altitude
R > 1. The theorem implies that most non-integral extensions of R
do satisfy the condition and, if R is integrally closed, then every
proper extension domain of R satisfies the condition (Corollary 3.13).

The last two theorems are proved in §4. The first of these and
all its corollaries are closely related to (and/or are generalizations of)
the results in [11]. Specifically, it is proved in [11] that the Rees
ring #Z(A, Y) of a locally Macaulay ring A with respect to an ideal
Y generated by an A-sequence is locally Macaulay, and some related
results are obtained. In §4, a number of necessary and sufficient
conditions are given for the Rees ring &# = Z#(R, B) to be locally
Macaulay, where (R; M,, ---, M,) is a semi-local ring such that height
M, = altitude R=a(t =1, ----,¢) and B is an ideal in R such that
Rad B = N M;. Namely, the following conditions are equivalent: (1)
# is locally Macaulay; (2) The form ring & of R with respect to
B is locally Macaulay; (3) Z\s~y.r, (Yesp., F (-, is a Macaulay
ring, where the _#; (resp., #7)(i =1, ---, ¢) are the maximal homo-
geneous ideals in .2 (resp., & ); (4) R is Macaulay and there exists
a system of parameters v, --+-, ¥, in R such that, for each j =1, ..,
a and for all n, (v, --+, ;)R N B" = X\iy;B"%, where y; € B%, ¢ B%*;
(5) R is Macaulay and there exists a positive integer g and a system
of parameters z,, --., 2, contained in B’ such that, for eachj =1, ---,
aand foralln =g, (2, <+, 2;)R) N B" = (z,, -+, 2;) B"" (by (4.4), (4.6),
and (4.11)). Further, if <2 is locally Macaulay, then following hold:
(a) Given any finite number (say,s) of prime ideals P; in R which
have the same height (say, k), there exists an R-sequence ¥, «+-, ¥,
contained in N P; such that, for each j =1, .-+, k and for all =, (y,,
<o,y ) RN B* = >jy,B*% with d; as in (4) (Corollary 4.5); (b) 2 (R,
B™) is locally Macaulay, for all m > 0 (Corollary 4.8.1); and, (c) For
all m > 0, R and R[B™/b] are locally Macaulay for each nonzero-divisor
be B™ (by 4.8.2) and [11, Theorem 3.8]). Also, (a) — (c) hold when B is
a power of an ideal generated by an R-sequence (Corollary 4.9). The last
theorem (4.11) shows that (1) — (8) above are equivalent for an arbitrary
ideal B in a Noetherian ring such that B is contained in the Jacobson
radical of R, and each of (1) — (3) implies (c) for m = 1. Some related
information is given in Propositions 4.10 and 4.12.

2. Macaulay localizations. The terminology in this article is,
in general, the same as that in [8]. However, to keep the article
reasonably self-contained, a number of definitions will be given. In
particular, if R is a ring and E is an R module, then the (ordered
sequence of) elements b, ---, b, in R is an E-sequence in case: (b, <« -,
b, ) E + E; and, for 1 =1, --+n, b; isn’t a zero-divisor on E/(b,, <+, b;_,)E.
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(As usual, the ideal generated by the empty set is defined to be the
zero ideal, and be R is a zerodivisor on an R-module E* in case bx =
0, for some nonzero xc E*.) Ass K = {peSpec R; (0): (x) = p, for
some nonzero x€ K}, Awn E = (0): E = {reR;rE = (0)}, Dim E =
altitude R/(Ann E), and Prof E is the length of a maximal E-sequence.
If R is a local (Noetherian) ring and E is a finite R-module, then F
is a Macaulay R-module in case either £ = (0) or £ ++ (0) and Dim E =
Prof E. (However, in this paper, the statement that E is Macaulay
will always mean E == (0) and E is Macaulay.) A local ring R is a
Macaulay local ring in case R is a Macaulay R-module (that is, there
exists a system of parameters in R which is an R-sequence). A
Noetherian ring R is said to be a locally Macaulay ring in case R,
is a Macaulay local ring, for all prime ideals P in R; and R is said
to be a Macaulay ring in case R is a locally Macaulay ring and height
M = altitude R, for all maximal M in R.

Many basic properties of Macaulay rings and Macaulay modules
will be used implicitly throughout this paper. These properties can
be found in [2, Chapter 0, §16.5], [5, Chapter 3], and [8, §25].

The following lemma is of basic importance in this section. (It
should be noted that, in the lemma, & may be a finite set.)

LEMMA 2.1. Let Q be a prime ideal in a Noetherian ring R, let
B, ++-, B, be ideals in R which are contained in Q, let B; be the set
of prime divisors of B;, and let & be the set of prime ideals p in
R such that Q C p and height p/Q = 1. Then there are at most a
finite number of pe . such that either p contains an ideal Pe UP;
such that P¢ Q or height p > height Q + 1.

Proof. It is known [6] that there are only finitely many pe &
such that height p > height @ + 1. Also, at most a finite number
of pe . can contain a fixed ideal which isn’t contained in @ (since
R/Q is Noetherian). Hence, since |J#P; is a finite set, the lemma
follows.

Most of the results in this section follow quite readily from the
following theorem.

THEOREM 2.2. Let R, Q, and & be as in (2.1), and let E be a
finite R-module. If E, is Macaulay, then there are at most a finite
number of pe . such that E, is not Macaulay.

Proof. Let Dim E, = h, and let b, ---, b, be elements in Q such
that their images in R, are an FE,-sequence and such that height
B;=3j(G=0,1,+-+, h), where B; = (b, -+, b;)R. Then (J? Ass (E/B;E)
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is a finite set of prime ideals in R, so, by (2.1) only finitely many
ideals in .&” can contain an element in this set which isn’t contained
in @ or can have height greater than height @ + 1. Omitting these,
it is readily checked that, for all other p e &?, E, is Macaulay.

DEFINITION 2.3. Let R be a Noetherian ring, and let U & Spec R.
Then U is said to be VS-open in case the following condition holds:
If Qe U, then U contains all but finitely many prime ideals p in R
such that Q © p and height p/Q = 1. It is clear that the VS-open
sets are the open sets of a topology on Spec R called the very strong
topology (VS topology) on Spec R.

A subset of Spec R which is either open or closed in the Zariski
topology on Spec R is VS-open (for Zariski open, see (2.1)). Also,
using (2.1) it is readily seen that the VS topology is Hausdorff and
totally disconnected.

REMARK 2.4. 2.4.1. It follows from (2.2) that if Qe SpecR is
such that E, is Macaulay, then {p € Spec R; Q = p and E, is Macaulay}
is VS-open. Thus, since, for each minimal prime ideal Q<€ Ass E, E,
is Macaulay (since Dim E, = 0), (2.2) asserts that the Macaulay locus
of K (that is, the set of @ in Spec R such that FE, is Macaulay) is
VS-open.

2.4.2. In [3, pp. 162-163], the question of whether the Macaulay
locus of R is always open in the Zariski topology was raised. An
affirmative answer is given there for homomorphic images of locally
Macaulay rings [3, (6.11.8)]. However, in [1, Proposition 3.5], an
example is given to show that, in general, the answer is “no”.

COROLLARY 2.5. Let E be a finite module over a Noetherian ring
R, let P be a prime ideal in R such that Ann E = P, and let height

P/(Ann E) = h > 1.

2.5.1. If Qs a prime ideal in R such that Q@ < P, height P/Q > 1,
and F, 1s Macaulay, then, for all dbut a finite number of prime ideals
p in R such that @ < p C P and height p/Q = 1, K, is Macawlay.

2.5.2. There exist infinitely many prime ideals p in R such that
Ann EC pC P, height Plp =1, and E, is Macaulay.

Proof. On localizing at P, (2.5.1) follows immediately from (2.2),
and (2.5.2) follows from successive applications of (2.5.1) with @ a
minimal prime ideal in Ass E.
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It follows from (2.19) below that in (2.5.2) infinitely many of the
ideals p satisfy height p/(Ann E) = h — 1.

Some further corollaries to (2.2) will be given below. However,
before this, some topological remarks will be given. The following
lemma sets the stage for these remarks. (In the lemma, R, is the ring
Rg, where S = {¢’; 7 = 0}.)

LEMMA 2.6. The following statements are equivalent for a prime
ideal Q in a Noetherian ring R:

2.6.1. The set of P in Spec R containing @ s finite.

2.6.2. Depth Q@ <1 and R/Q is a semi-local ring.

2.6.3. There ewists an element cc R, ¢ Q, such that QR, is a
maximal ideal in R,.

2.6.4. There exists a finitely generated extension ring R' of R
which contains o maximal ideal M such that M N R = Q.

2.6.5. Q 1is isolated in the VS topology on Spec R.

Proof. (2.6.2) = (2.6.4) follows from [8, (14.10)], and the rest of
the proof is straightforward.

DEFINITION 2.7. A prime ideal in a Noetherian ring R which
satisfies the equivalent conditions of (2.6) is a G-ideal.

It is easy to see that every prime ideal in R is an intersec-
tion of G-ideals. Also, the set of G-ideals is the least class of prime
ideals in R which has this property. Concerning G-ideals in an
arbitrary commutative ring with unit element, see [5, pp. 12-21].

DEFINITION 2.8. Let R be a Noetherian ring, and let B < Spec R.
B is saild to be big in case the following condition holds: If Qe B
and @ isn’t a G-ideal, then the set of pe B such that Qc p and
height p/Q = 1 is an infinite set.

REMARK 2.9. It is readily seen that VS-open sets are big. Also,
if U is VS-open and B is big, then U N B is big.

For an example of a big set which may not be VS-open, see (2.18)
and the comment which follows it.

The notion of bigness is worth isolating because of the following
lemma and corollaries.

LeEMMA 2.10. If R is Noetherian and B < Spec R is big, then,
for each Qe B,Q = N{PeB; Q< P and P is a G-ideal}.

Proof. Suppose not, and let Qe B be maximal for which the
lemma doesn’t hold. Then @ isn’t a G-ideal, so, since B is big, & =
{Pe B; Qc P and height P/Q = 1} is an infinite set, hence @ = N {P;
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Pe 77}, By maximality of @, a contradiction obtains, since each Pe &
is the intersection of the G-ideals in B which contain it.

COROLLARY 2.11. Let R be a Noetherian ring, Q@ a prime ideal
wn R, and E a finite R-module. If E, is Macaulay, then @ = N {pe
Spec R; Q < p, E, is Macaulay, and p is a G-ideal}.

Proof. Let &7 = {peSpec R; @ < »p and R, is Macaulay}. Then
& is VS-open (2.4.1), hence big (2.9), and so the corollary follows
from (2.10).

The assertion in (2.11) that Q = Np, says, geometrically, that
the p, are Zariski dense in the locus of (set of prime ideals containing)
@. Thus, this section of the paper is, in two related senses, concerned
with the fact that prime ideals @ such that E, is Macaulay are
plentiful: openness in the VS topology, and density in various closed
sets in the Zariski topology.

If R is a Noetherian ring of altitude one or a Noetherian domain
of altitude two, then R, is Macaulay, for all non-maximal prime ideals
P in R—even if R isn’t Macaulay. On the other hand, if R is a local
ring with a prime ideal @ such that depth @ = 2 and R, isn’t Macaulay,
then there are infinitely many prime ideals » in R such that Qcp
and, for each such p, R, isn’t Macaulay. Even so, the following
corollary shows, with R = E, that, for an arbitrary Noetherian ring
R of altitude greater than one, there are infinitely many prime ideals
P in R such that depth P <1 and R, is Macaulay. (However, as
already noted, the Macaulay locus of R need not be Zariski-open [1,
Proposition 3.5].)

COROLLARY 2.12. If R s a Noetherian ring, and E = (0) is a
finite R-module, them Rad (Ann E) = N {p e Spec R; E, is Macaulay
and p is a G-ideal}. Hence, {p € Spec R; R, is Macaulay and p is a
G-ideal} is Zariski dense in Spec R.

Proof. For each minimal prime ideal ¢ in Ass E, E, is Macaulay.
Hence the corollary follows from (2.11), since Rad (Ann E) = N{g;q¢
Ass E}.

Two special cases of the following corollary will be given in (2.14)
and (2.20).

COROLLARY 2.13. Let I and J be ideals in a Noetherian ring R
such that I & RadJ, and let E be a finite R-module. If Ey/IE, is
Macaulay, for each minimal prime divisor Q of J, then RadJ = N
{p; » is a G-ideal in R, J < p, and E,/IE, is Macaulay}.
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Proof. Reducing to the case I = (0), the result follows from (2.11).

CorROLLARY 2.14. For each ideal J in a Noetherian ring R,
Rad J=1{p; p ts a G-ideal in R, J <= p, and R,/JR, is Macaulay}.

Proof. This follows from (2.13) with I = J and E = R.

REMARK 2.15. 2.15.1. It follows from (2.14) and [5, Theorem
156] that, if ¢ is a nonunit regular element in B, then Rad ¢R = N
{p; » is a G-ideal in R, cep, and R, is Macaulay}. A similar state-
ments holds for R-sequences of length greater than 1.

2.15.2. In the case J = @ is prime and R, is Macaulay, (2.11)
and (2.14) give an interesting comparison of @ expressed as an inter-
section of G-ideals in R. In particular, such a comparison holds for
each minimal prime ideal in R; and also for each height one prime
ideal in R, if R is an integral domain. Also, such a comparison holds
for a radical ideal I in R such that R, is Macaulay, for each prime
divisor p of I.

DEFINITION 2.16. A Hilbert ring is a ring R such that each prime
ideal in R is the intersection of the maximal ideals in B which contain it.

It is clear by the definition that a factor ring of a Hilbert ring
is a Hilbert ring, and it is known [5, Theorem 31] that a finite
extension ring of a Hilbert ring is a Hilbert ring.

COROLLARY 2.17. If R is a Noetherian Hilbert ring and (0) = K
is a finite R-module, then Rad (Ann E) = N {M e Spec R; M is a maximal
ideal and K, ts Macaulay}.

Proof. The only G-ideals in R are the maximal ideals in R, hence
the corollary follows from (2.12).

If P is a prime ideal in R and ¢ is a non-nilpotent element in
PR, then (R;), is a Hilbert ring [4, (10.5.8)]. Using this and (2.17),
an alternate proof of (2.5.2) is readily obtained.

It will be seen in (3.3) that in some rings which are neither
Hilbert, nor Macaulay, Rad R is the intersection of the maximal ideals
M in R such that R, is Macaulay.

To generalize (2.5.1) and to derive some further corollaries to
(2.2), the following lemma is needed.

LEMMA 2.18. Let Q < P be prime ideals in a Noetherian ring R
such that height P/Q > 1, and let & = {pe Spec R; Qcp< P}. Then
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there are infinitely many pe . such that height p = height Q + 1
and height P/p = height P/Q — 1.

Proof. In R,/Qr each nonzero non-unit has depth equal to height
P/Q — 1 and has only a finite number of minimal prime divisors, at
least one of which must have depth equal to height P/Q — 1. Hence,
since at most a finite number of p»e€.Z” have height greater than
height @ + 1 [6], the conclusion follows.

It follows from (2.18) that the set of prime ideals p between two
prime ideals @ C P in a Noetherian ring R such that height p = height
@ -+ height p/Q and height P/p = height P/Q-height »/Q is big in
Spec R, (where Spec R, < Spec R in a natural way). Using [8, Example
2, pp. 203-205] an example can be given in which the set isn’t V' S-open.

Up to now we’ve seen that if E, is Macaulay and @ isn’t a G-
ideal, then @ = N p;, where E, is Macaulay and either height p, =
height Q@ + 1 or where the p, are G-ideals. The intermediate cases
are given in the following corollary.

COROLLARY 2.19. Let R be o Noetherian ring, let @ C P be prime
ideals in R such that height P/Q = d, and let E be a finite R-module.
If E, is Macaulay, then, for each 1 =10,1,---,d—1,Q = N{p;pe
G}, where ;= {peSpec R; Q= pC P, E, is Macaulay, height p =
height Q -+ 1, height P/p = d — 1, and © = height p/Q}.

Proof. This follows from successive applications of (2.5.1) and
(2.18).

(2.19) Holds, with £ = R, for each minimal prime ideal @ in R
(and for all but a finite number of height one prime ideals @ in R)
with P a maximal ideal in R such that @ < P. If, moreover, depth
QR = d < o, then P may be chosen such that height P/Q = d.

(2.20) shows that in (2.19) the case 7 = d can be included when
R is a Hilbert ring.

COROLLARY 2.20. Let E be a finite R-module and let @ be a prime
ideal in a Noetherian Hilbert ring R such that E, is Macaulay. Then
Q= N{M; Mec . &}, where ¥ = {M; M is a maximal ideal in R, Q =
M, and E,; ts Macauwlay}. Moreover, if depth Q@ = d < oo, then Q =
N{M; Me .&” and height M = height Q + d}.

Proof. The first statement follows from (2.13) with I = (0) and
J=@Q. For the second statement, if d=0, then the conclusion is obvious.
If d > 0, then let & = {pe Spec R; Q C p, height » = height @ + 1,
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and depth »p = d — 1}. Then & is an infinite set (if d > 1, by (2.18);
if d = 1, by [6], since R is Hilbert), hence &' = {p € &; E, is Macaulay}
is an infinite set, by (2.2). Therefore, @ = N {p; p€ Z?'}. Since each
pe 7' satisfies depth p = d — 1, the corollary follows by induction
on d.

COROLLARY 2.21. Let R and E be as in (2.20), let Q C P be prime
ideals in R such that height P/Q >1 and E, s Macaulay, and let
N, ---, N, be prime ideals in R such that PZ U N;. Then, for i =
1,---,d—1,Q=nNn{p;pe P}, where F = {pecSpecR;QcpcP,
height p = height @Q + ¢, height P/p = height P/Q — 1,1 = height
2/Q, » £ U N;, and E, is Macaulay}.

Proof. If it can be proved that @ = N {p; p € &2}, then the result
for 7 > 1 readily follows from (2.19), so only the case 7 =1 will be
considered. Let .77’ be the finite set of prime ideals » in R such
that Q c p € P and height »/Q = 1 < height p — height @ [6]. Let
b, ++-, b, e @ such that their images in R, are a maximal E,-sequence
and such that height (b, ---, )R =35(4 = 0,1, --+, k). Let < be the
set of prime ideals in Ass E/(b,, ---, b;)E which don’t contain P, and
let &7#* = (Ut=z;) U & U{N, -+, N,}. Then Z7* is a finite set of
prime ideals in R and P Z U{q; g€ .Z?*}. Therefore, for each positive
integer u, there exist ¢, ---, ¢, in P and not in any prime ideal in
Z* such that no height one prime ideal in R/Q contains more than
one ¢, (k=1, .-+, n), since each (@, ¢,)R has only a finite number of
minimal prime divisors. Hence, if p, is a minimal prime divisor of
(@, ¢,)R which is contained in P and is such that height P/p, = height
P/Q — 1, then E, is Macaulay and p, & U N;. It follows that Q =
N {p; e &F}.

To obtain another corollary to (2.2), the following lemma is needed.

LEMMA 2.22. Let &7 be a set of prime ideals in a Noetherian
ring R, let I = N{p;,pe ), let P be a minimal prime divisor of I,
and let ce R, ¢ P. Then the following statements hold for &' =
{pe .o cep):

2.22.1. P= N{p;pe. 9}, and PR, = N{pR,; pe .7}, where I =
{pe.&'; P < p}.

2.22.2. If ¥ s big, then & is big.

2.22.3. If &7 is VS-open, then &' is VS-open.

Proof. For (2.22.1) let K= N{peS;cep and P< p}. Then
Kn(n9)= P, hence P= N .7, and (2.22.1) follows from this. The
last two stements follow from the definitions and the fact that R/p
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is Noetherian, for each pe .&”.

COROLLARY 2.23. Let R, E, and Q be as in (2.20), so E, is
Macaulay, and let be R, ¢ Q. Then for each maximal ideal M in R
such that Q C M, @ = N {pe .&”; height M/p = 1 and height p = height
Q + height M/Q — 1}, where & = {pcSpecR; Q<= pC M, b¢ p, and
E, is Macaulay}. Moreover, if R is local, then &7 is V.S-open.

Proof. This is clear if height M/Q = 1, and, if height M/Q > 1,
then the first statement follows from (2.19) and (2.22.1), and the last
statement follows from (2.4.1) and (2.22.3).

REMARK 2.24. 2.24.1. In (2.23), if, moreover, R is a Hilbert
ring, then Q@ = N {M; M is a maximal ideal in R, QCM, bg M, and
R, is Macaulay} by (2.20) and (2.22.1).

2.24.2. If R satisfies the first chain condition for prime ideals [8,
p. 123], then it follows from (2.23) that @ = N{peSpec R; Q = p, b¢ p,
depth p = 1, and R, is Macaulay}. Also, depthp = 1 if and only if
height p = altitude R — 1.

2.24.3. It follows immediately from (2.23) that, if P is a prime
ideal in a Noetherian ring R and be P is such that b is not in some
minimal prime ideal g P, then ¢ = N{peSpec R;q &S p P, b¢ p,
height P/p = 1, height p = height P/¢ — 1, and R, is Macaulay}.

One final corollary, (2.25) below, which pertains to rather recent
research in local ring theory will be given. The following background
information on the corollary should be noted: It is known that, if P
is a prime ideal in an unmixed (resp., quasi-unmixed) local ring R,
then R, is unmixed (resp., quasi-unmixed) [7, Proposition 6] (resp.,
[10, Lemma 2.5]). It was recently shown that there exist quasiunmixed
local rings which are not unmixed (by [1, Proposition 3.3] together
with [12, Proposition 3.5]). Thus it seems natural to inquire if there
exist prime ideals P of depth one in a quasi-unmixed local ring R
such that R, is unmixed. It follows from (2.25) below that the
answer is yes.

COROLLARY 2.25. Let R be a local ring such that altitude R =
a>1. Then & = {pe Spec R; R, is unmixed} is VS-open in Spec R
and {pe .&; height p = a — 1} is an infinite set and is Zariski dense
in Spec R.

Proof. Tne first statement follows from (2.4.1) with E = R,
since a Macaulay local ring is unmixed [8, (34.9)]. The second statement
follows from [8, (34.9)] and (2.19) with @ a minimal prime ideal and
P the maximal ideal in R.
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This section will be closed with the following proposition and
remarks. The proposition is closely related to a number of the results
in this section, and it gives, in particular, some interesting supple-
mentary information to (2.5.2) in the case K = R.

PROPOSITION 2.26. Let P, ---, P, be prime ideals in a Noetherian
ring R which have the same height say height P; = a > 0. Then there
exist b, +--, b,_, in (N P; such that, with B; = (b, «+-, b)) R:

2.26.1. Height B; =7 =0,1, «++, a — 1).

2.26.2. If Q2 Pi(i=1,---, ¢) is a prime ideal in R such that
B; = Q, for some j =1, then the tmages of b, -+, b; in R, are an
R-sequence.

2.26.3. If P is a minimal prime divisor of B, for some k (0 <
k< a-—1), then Ry is Macaulay and B;Ry, is a primary ideal (5 =
0,1, ---, k).

2.26.4. If a > 1 and 7 is the infinite set of height a — 1 prime
ideals p C P; such that B,_,C p and R, is Macaulay, then, for each
1=1,--+,¢ at most a finite number of pec . don’t satisfy: B;R,
is primary, for 3 =0,1, «-+, a — 2.

Proof. The proposition is trivial for a = 1, so it may be assumed
that a > 1. Let PB, be the set of prime divisors ¢ of zero in R such
that ¢ 2 Pt = 1, ---, ¢), let &, be the set of minimal prime divisors
of zero in R, and let 2, be the set of height one prime ideals in R
which contain more than one element in PB,. Then, A, U B, is a finite
set of prime ideals, by (2.1). Thus, since a > 1, there exists b,e N P;
such that b, isn’t in any ideal in U, U %B,. Then, with B, = bR, it
is readily checked that, if a = 2, then (2.26.1)—(2.26.3) hold; and
(2.26.4) holds by (2.1).

Assume a > 2 and B,_,, &,_,, 2A,_,, and b,, ---, b, have been defined
AZk<a—1), and let B, be the set of prime divisors ¢ of B, such
that ¢ 2 P{t =1, ---,¢). Assume (2.26.1) holds for j=0,1---, k,
let &, be the set of minimal prime divisors of B,, and let 2, be
the set of height ©# + 1 prime ideals in R which contain an element
in &, and also contain more than % + 1 prime ideals in |J¥¥B;. Assume
further that b, ---, b, have been chosen such that (2.26.2) holds for
j<k and, for 0 <h <k and each pec @, B;R, is a primary ideal
4G=0,1,--+,h). Then U= (UiB;) U, is a finite set of prime ideals,
by (2.1). Therefore, there exists b,., in N P; which is not in any
prime ideal in U. Then it is easily checked that, if P is a minimal
prime divisor of B,,, = (B, b,;)R, then R, is Macaulay and B;R, is
a primary ideal (j =0,1, ...,k + 1), and (2.26.1) and (2.26.2) hold
for j < k + 1. Therefore, it follows that the desired elements b, ---,
b,_, exist such that (2.26.1)—(2.26.3) hold.
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To show that (2.26.4) holds, note that, if p € &7, then there exists
a minimal prime divisor ¢ of B,_, contained in p, and then B;R, is
primary (j =0,1, .-+, a — 2), by (2.26.3). Hence, since B,_, has only
a finite number of minimal prime divisors contained in P, (2.26.4)
holds by (2.1).

REMARK 2.27. Let the notation be as in (2.26).

2.27.1. If the P; are maximal, then (2.26.2) shows that there
exist b, --+, b,_, in N P; such that, for all prime ideals P¢{P, ---,
P} such that B; & P, for some j, the images in R, of b, ---, b; is
an R.-sequence.

2.27.2. It follows from (2.1) and (2.26.3) that, if R is Hilbert
and altitude R = a, then there are infinitely many maximal ideals M
in R such that R, is Macaulay and B;R, is primary (7 =0,1, ---,
a— 1).

2.27.3. If P is a prime ideal in R such that « = height P = 2,
then (2.26.4) shows that there exist an infinite subset .7’ of the set
of prime ideals @ P such that height @ = height P — 1 and R, is
Macaulay such that Qe .27’ if and only if there exists a system of
parameters ¢, «--, ¢,_; in R, such that (¢, ---, ¢;)R, is a primary ideal
G=0,1,---, 0 —1).

2.27.4. Let Q, ---, @, be prime ideals in R such that no P;(7 = 1,
-+-,e) is contained in {JQ;. Then the proof of (2.26) can be readily
adapted to show that the elements b, ---, b,_, can be chosen to satisfy
the further condition that no b, is contained in U Q;.

REMARK 2.28. It is natural to inquire if (2.5.2) holds on replacing
Macaulay by Gorenstein (or, regular). The answer is no. For, let
R = A[X, ---, X,], where (4, q) is a primary ring whose zero ideal
isn’t irreducible, and where the X, are indeterminates. Then, for
each prime ideal P in R, R, isn’t Gorenstein, since R < P and R,
isn’t Gorenstein.

3. Condition (*) and affine rings. In this section two theorems
concerning a finitely generated ring A over a Noetherian ring R will
be proved. The first, Theorem 8.9, shows, in particular, that if A
is an integral domain, then condition (*) (Definition 3.2) is in-
herited by A4, and the second, Theorem 3.12, shows that, if R is
a semi-local domain and altitude R > 1, then “most” finitely generated
integral domains over R which aren’t integrally dependent on R satify
condition (*).

Definition 3.1. For a ring R, let _#Z (R) be the set of maximal
ideals M in R such that R, is Macaulay.

Definition 3.2. A ring R is said to satisfy condition (*) in case
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Rad R = N {M; Me _«(R)}.

It follows from (2.17) that a Noetherian Hilbert ring satisfies
condition (*). The next lemma shows that there exist rings which
satisfy condition (*) and yet are neither locally Macaulay nor Hilbert
rings (since R[X] is Hilbert if and only if R is Hilbert [5, Theorem
31)).

LemMmA 3.3. If R is a Noetherian ring, then, for all n =1, the
polynomial ring R[X,, «-+, X,] satisfies condition (*).

Proof. It may clearly be assumed that n =1. Let Pe ¥ =
{P; P is a G-ideal in R and R, is Macaulay}. (& isn’t empty by
(2.12) with £ = R.) If P is a maximal ideal in R, then let Z2(P) be
the set of maximal ideals in R[X] which contain PR[X]. Then
R[X]y is Macaulay, for each Ne &?(P), and PR[X] = N {N; Ne Z#(P)}.
On the other hand, if P isn’t maximal, then let M, ---, M, be
the maximal ideals in R which contain P. Let be N M; ¢ P,
and, for 7>0, let P,= (P, X — 1)R[X]. Then the P, are dis-
tinet prime ideals, each R[X],, is Macaulay, PR[X] = N {P; i > 0},
and each P;is a maximal ideal in R[X]. Hence, since Rad R= N {P;
Pe &} (2.12), the lemma follows from Rad R[X] = (Rad R)-R[X] =
N{PR[X]; Pe &}.

COROLLARY 3.4. If I is an ideal in a Noetherian ring R and X
s an tndeterminate, then Rad IR[X] = N{M; IR[X]C M and M/IR[X] e
A (R[X]/IR[X])}. In particular, if b is a nonunit regular element
in R, then Rad bR[X] = N{M;be Me _#(R[X])}.

Proof. This follows from R[X]/IR[X] = (R/I)[X] and [5, Theorem
156].

On the other hand, of course, there are height one prime ideals
in R[X] which aren’t even an intersection of maximal ideals; for
example, XR[X] when R is a local domain.

To prove the first theorem in this section, a number of lemmas
will first be proved.

LEMMA 3.5. Let R be a Noetherian ring.

38.5.1. If A is a Noetherian ring such that A is integrally depen-
dent on R and RS A S R,, for some nonzero-divisor c€ R, and if A
satisfies condition (*), then R does.

3.5.2. If R satisfies condition (*), then, for all monzero-divisors
¢ in R and for each ring A such that RS A S R,, A satisfies con-
dition (*).

3.5.3. If R satisfies condition (*), then each free principal integral
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extension ring of R (that is, R[X]/(f), where f 1is momnic) satisfies
condition (*).

Proof. 3.5.1. If A satisfies condition (*), then A, = R, does
and N{MA,; Me _#(A)} = (0), by (2.22.1). Hence, since A is integrally
dependent on R, R satisfies condition (*). For (8.5.2), if R satisfies
condition (*), then N {MR,; Me _#(R)} = (0), by (2.22.1), so N {ME, N
A; Me _#(R)} = (0). Hence, since R/MR, = R/M and Ry = (R.)yz,
(if ce¢ M), A satisfies condition (*).

For (3.5.3), let B = R[X]/(f). Then, for each maximal ideal M
in R, (Rad MB)* & MB, where d is the degree of f (consider R[X]/
(M, f)). Therefore, if ue N{N; Ne _#(B)}, then, for each Me _#(R),
u € Rad MB (by freeness), so u‘e N {MB; Mec _#(R)} = (by freeness)
(N{M; Me _»#(R)})B, and so u® is nilpotent. Thus € Rad B, hence
B satisfies condition (*).

In (3.6), we shall utilize [3, (6.10.6)]. The result is essentially
local, and passing from the language of preschemes to the language
of commutative rings we find that it asserts the following:

Let R be a Noetherian ring, let E be a finite R-module, and
let I be an ideal in R such that ¢ = Rad I is prime and E, # (0).
Then there exists re R, ¢ ¢ such that, for each prime ideal @ in R
such that ¢ £ @ and r¢ @, the following holds:

Dim E, = Dim E, + Dim (R/I), and Prof E, = Prof E, + Prof (R/I)y; -

LEMMA 3.6. Let q be a minimal prime ideal in a Noetherian
ring R. Then there exists an element r€ R, ¢ q such that, for each
prime ideal @ in R which contains q but wmot r, R, is Macaulay if
and only if (R/@)¢;, ts Macaulay.

Proof. If se€ R, ¢q, then it clearly suffices to prove the lemma
for R, instead of R. Hence it may be assumed that ¢ is nilpotent.
Then, with ¢ = I and R = E in Grothendieck’s result quoted above,
Dim E, = Prof E, = 0 (since ¢ is nilpotent). Therefore, for each prime
ideal @ in R such that r¢ @, altitude R, = altitude (R/q)y, and
Prof R, = Prof (R/q)q,,- Clearly, then, for each such prime ideal @
in R, R, is Macaulay if and only if (R/Q),, is Macaulay.

LEmMMA 8.7. A Noetherian ring R satisfies condition (*) if and
only if, for each minimal prime ideal q in R, R/q satisfies condition

(*)-

Proof. Let R satisfy condition (*) and let ¢ be a minimal prime
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ideal in R. Choose r€ R as in (3.6). Since ¢ = N {M;q9 S Me _#Z(R)},
by hypothesis, ¢ = N {M; 9= Me _(R) and r¢ M} (2.22.1). Hence,
by (3.6), R/q satisfies condition (*).

Conversely, let q,, ---, g, be the minimal prime ideals in R, and as-
sume that each R/q, satisfies condition (*). Then, for each 7=1, ---, g
and with 7; as in (3.6), ¢; = N {M; 9 & M, M/q;e #(R/q;), and r;¢ M},
by (2.22.1). Thus, by (3.6), ¢; = N{M; ;= Me _#(R) and ;¢ M} (i =
1, -+, 9), hence R satisfies condition (*).

COROLLARY 3.8. A Noetherian ring R satisfies condition (*) of
and only if R/(Rad R) satisfies condition (*).

Proof. Clear by (3.7).

Since a finitely generated ring over a Noetherian Hilbert ring is
again such a ring, it follows from (2.17) that a finitely generated
ring over a Noetherian Hilbert ring satisfies condition (*). The follow-
ing theorem can be considered a generalization of this result.

THEOREM 3.9. Let A be a finitely generated extemsion ring of a
Nocetherian ring R, and assume R satisfies condition (*). Then A
satisfies condition (*) if, for each minimal prime ideal @ in A, at
least one of the following conditions holds:

3.9.1. QN R is minimal.

3.9.2. R/(QN R) satisfies condition (*).

3.9.3. A/Q is not algebraic over R/(Q N R).

Proof. A/Q satisfies condition (*) if (3.9.3) holds, by (3.3). Also
(8.9.1) implies (3.9.2), by (3.7). Therefore, since A satisfies condition
(*) if each A4/Q does (3.7), it suffices to prove: If A is a finitely
generated integral domain over R and R satisfies condition (*), then
A satisfies condition (*).

For this, there exist algebraically independent elements X, ---,
X, in A over R, and elements a, ---,a, in A integral over R, =
R[X, ---, X,] such that B = R,a, ---, a,] & A & B[1/b], for some
nonzero element be B. Therefore, by (3.5.2), it suffices to prove B
satisfies condition (*). By (3.3), R, satisfies condition (*), so it may
be assumed that B= R|a,, - -+, @;]. Then the coefficients of the minimal
polynomial of a, over the quotient field of R are in a finite integral
extension R, of R contained in the quotient field of R, and R,[a,] is
a free principal integral extension domain of R,. Therefore, by (3.5.2)
and (3.5.3), R,[a,] satisfies condition (*), hence R[a,] does, by (3.5.1).
Therefore, the theorem follows by induction on k.
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COROLLARY 3.10. Let R and A be as in (3.9). If A contains an
indeterminate over R, say t, such that, for each minimal prime ideal
Q in A, QN R[t] = (@ N R)R[t], then A satisfies condition (*).

Proof. This follows from (3.3) and (3.9), since @ N R[] = (@ N
R)R[t] implies trd (4/Q)/(R/(Q N R)) > 0.

Condition (b) in (38.9) suggests a way to construct extensions for
which R satisfies condition (*) and A does not. In fact, let R be a
Noetherian ring which satisfies condition (*) and which has a prime
ideal P such that R/P doesn’t satisfy condition (*). (For example,
let R, be a local domain such that altitude R, =1, let R = R[X],
where X is an indeterminate, and let P = XR.) Let A = (R/P) ® R,
and let f:R— A by f(r) = (r + P,r). Then A is finitely generated
over f(R) by 1+ P, 0), f(R) satisfies condition (*) (since f is a
monomorphism), but A doesn’t satisfy condition (*), by (3.7), since
@ = (0, 1)A is a minimal prime ideal in A such that 4/Q = R/P doesn’t
satisfy condition (*).

The following lemma is needed to shorten the proof of (3.12)
below.

LeMMA 3.11. Let b and ¢ be non-unit regular elements in a
Noetherian ring R, let y = c¢/b, let I = (y, b)R[y], and assume b¢
Rad cR. If I+ Rly], then height I = 2.

Proof. If 1¢I, then height I < 2. Suppose @ is a height one
prime ideal in R[y] such that I = Q. Localizing at @ N R, it may
be assumed that R is a local ring with maximal ideal M and
QN R = M. Since height @ = 1, there exist se R[y], ¢ @, and n >0
such that sb”e yRly]. Therefore, with s = Iry'(r; e R), r,b" € yR[y].
Now 7r,¢ M, since s¢ @, so 7, is a unit in R and b"e yR[y]. But
multiplying by a suitable power of b will clear of fractions on the
right and will show that bec Radc¢R, a contradiction. Thus height
I=2.

Following the proof of the next theorem, an example will be given
to show that the assumption that altitude R >1 is necessary. Before
stating the theorem, it should be noted that there may exist height
one maximal ideals in the integral closure of a Noetherian domain R,
even if R is local and altitude R > 1; for example, see [8, Example
2, pp. 203-205].

THEOREM 3.12. Let A be a finitely generated integral domain



FIVE THEOREMS ON MACAULAY RINGS 163

over a semi-local domain R, and let altitude R > 1. A satisfies
condition (*) if and only if A L R., where R’ is the integral closure
of R in the quotient field of A and ¢ is either a unit in R’ or depth
c¢cR' = 0.

Proof. If trd A/R > 0, then A satisfies condition (*), by (3.9),
and A isn’t contained in any quotient ring of R’, so it may be assumed
that A is algebraic over R. Then, since there is a finite integral
extension ring B of R contained in A such that B and A have the
same quotient field, it may be assumed that B and B have the same
quotient field.

Assume first that A & R., for some such element c¢e R’. Then,
since A is finitely generated over R, there exist ¢, ---, ¢, in R’ such
that B = Rlc, ¢, +--, ¢.] S Alc] S B,. Since B, has only a finite number
of maximal ideals (since its integral closure R, does (every prime
ideal in B which contains ¢ has height one, since depth ¢cR’ = 0)), B,
doesn’t satisfy condition (*). Therefore, since (A[¢]). = B,, it follows
from (3.5.2) that A[c] doesn’t, hence A doesn’t satisfy condition (*),
by (3.9).

Conversely, assume, for each such element ce R’, A £ R.. Then,
there exists x¢ A such that x¢ R}, for some maximal ideal M’ in
R’ such that height M’ > 1. Fix one such M’. By (3.5.1), by adjoining
to R a finite number of elements from R’, it may be assumed that
R and R’ have the same number of maximal ideals, so, in particular,
R, is the integral closure of R,, where M = M'NR. If 1/xe R},
then 1/x € M'R;, N R,[1/x], so Ry[x] = R,[1/x, z] is a Noetherian Hilbert
domain [4, (10.5.8)]. Let .&° = {Pe Spec R; PC M, R/P is local, depth
P =1, and R, is Macaulay}, let « = b/c with b and ¢ in M, and let
& = {Ne _Z(Rylz]); N = P(Ry). N Ry[x], for some Pe &”}. (For each
Pe .7, P(Ry).N Ry[x] is maximal, since each P(R,), is maximal and
R,[x] is Hilbert.) Then N {P; Pc.Z”} = (0) (by 2.21) with @ = (0) and
N,, -++, N, the other maximal ideals in R), so N {N; Ne .&*} = (0), by
(2.22.1). Fix Ne &%, let »p = NN R[z], and let Q be a maximal ideal
in R]x] such that p £ Q. Then Q@ N RS M, since p N Re & There-
fore, since N is maximal, it follows that @ = p (since M’ is lost in
R'[z] implies M is lost in RJx]). Hence, since N {p; » = NN R[x],
for some Ne.&”} = (0), R[x] satisfies condition (*). Therefore, A
satisfies condition (x), by (3.9).

Therefore, assume x and 1/x¢ R),, and let & = b/c with b and
ce M'. Then bR': ¢cR’ and c¢R’: bR’ have no common prime divisors,
gince, for each height one prime ideal p in R’, b/c or ¢/be R,. Let
de bR ¢cR' such that d isn’t in any prime divisor of c¢R’: bR’, and
let eccR’: bR’ such that de = be. Then 2 = dfe, so (d,e)R' = M’
(since M'R'[x] is a depth one prime ideal [17, Corollary, p. 20]), so it
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may be assumed that 6 = d and ¢ = ¢ and, by (3.5.1), that b and ¢
are in BR. Then b¢ RadcR, since, for each prime divisor p of cR":bR’,
p is a prime divisor of ¢R’, hence p N R is a prime divisor of ¢R [8,
(33.11)] and bep N R. Let y = 1/x = ¢/b, and fix j > 0. Then bec is
not in any minimal prime divisor of (y — &) R]y]; for, if @ is a height
one prime ideal in R such that (be, y — b)R[y] S @, then b or ¢ and
y — b are in @, and this implies the contradiction (b, ¥)R[y] S @
(8.11). Thus, for all j = 1, there exists a minimal prime divisor p;
of (¢ — b"™")R contained in M such that bece¢ p;. Fix j, and let . & =
{Pe . Z; bce P and p; & P}, where .Z” is as in the preceding paragraph.
Then it follows from (2.21) and (2.23) (with P= M, Q@ = p;, and N,
.-+, N, the other maximal ideals in R) that p; = N {P; Pe &%}, so
p;R. N Rlz] = N{N; Ne &'}, where .&¢' = {N; N= PR, N R[x], for some
Pe 27} (2.22.1). Now, if Ne.o”” then N is a maximal ideal in R[x]
(since bz — 1€ N and R/P < R[z]/N & R./PR,. = the quotient field of
R/P). Since N {p;R.N Rlz];j = 1} = (0), R[x] satisfies condition (*).
Hence A satisfies condition (*), by (3.9).

A necessary and sufficient condition for A to satisfy condition
(*) was just given in (3.12), assuming a = altitude R > 1. Ifa =1,
then the condition isn’t necessary. For, let R be a discrete valuation
ring whose maximal ideal is generated by ¢, and let A = R,. Then
A is finitely generated over R, A S R, = R/, and depth ¢R’ = 0, but
A satisfies condition (*), since A is a field. On the other hand, the
condition is sufficient when a = 1. For, if A & R/, for all nonzero
ce R, then A isn’t contained in the quotient field of R’ (since a =1
and R’ is quasi-semi-local), so A is transcendental over B. Therefore
A is finitely generated over a Noetherian ring of altitude greater
than one, hence A satisfies condition (*), by (3.12).

COROLLARY 3.13. Let R be a semi-local domain such that altitude
R > 1, let S be the integral closure of R in its quotient field, and let
A be a finitely generated integral domain over R such that A isn’t
integral over R. Then A satisfies condition (*) in each of the following
cases:

3.13.1. R=S.

3.13.2. S s quasi-local.

3.13.3. S has no height one maximal ideals.

3.13.4. R satisfies the second chain condition for prime ideals.

Proof. (3.13.1) follows from (3.12), since the integral closure R’
of R in the quotient field of A has no height one maximal ideals [8,
(10.14)]. Clearly, (3.13.2) implies (3.18.3), and (3.13.4) implies (3.18.3)
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[12, Theorem 3.1 and Proposition 3.5]. Finally, (3.13.3) implies that
R’ has no height one maximal ideals [8, (10.14)], so (3.13.3) follows
from (3.12).

4. Rees rings and R-sequences. Let B= (b, -+, b,)R be an
ideal in a semi-local ring (R; M,, ---, M,) suchthat BS J = N M, let
t be an indeterminate, and let w = 1/¢. The Rees ring # = Z(R, B)
of R with respect to B is defined to be the subring # = R[tb, ---,
tb,, u] of RI[t, u].

The following remark summarizes the basic facts on Rees rings
which will be used in what follows.

REMARK 4.1. The elements in .&Z are finite sums >.”,c;t*, where
¢;€ B® (with the convention that B¢= R, if 1 <0). Thus, &2 is a
graded Noetherian ring, w isn’t a divisor of zero in &2, and w'.<Z N
R = B, for all 1 = 0. For a homogeneous ideal H in &2 and — o <
n < oo, let [H], denote the set of elements »€ R such that »t"e H.
Then, if also K is a homogeneous ideal in .2, then [H + K], = [H], +
[K]., and H < K if and only if [H], < [K]., for all n. Also, B" 2
[H]., 2 [H].+. 2 B[H],, for all n [16, p. 11]. In particular, for an
ideal C in R, let C* = CRJ[t, u]N <2, so C* and (C*, u)<# are homo-
geneous ideals in .22, and [(C*, w).zZ], = (C N B") + B*". It follows
that B* = (bt, ---, b,t)#, and _#Z = (M}w)# = (M;, u, B*).# are
the maximal homogeneous ideals in Z(t =1, ---, ¢). Also, it follows
easily from the definition that, if C = N Q; is a normal decomposition
of C, where Q; is P;-primary, then P} is prime, QF is Pj-primary,
and C* = N Qf is a normal decomposition of C* [15, Theorem 1.5].
Further, height C* = height C, height _#; = height M; + 1, and alti-
tude <Z = altitude R + 1 [13, Remark 3.7].

Most of the results in this section follow from the following basic
lemma.

LEMMA 4.2. Let (R; M, -+-, M,) be a semi-local ring such that
hetght M, = altitude R = a(t =1, -+, e). Let B be an ideal in R such
that Rad B=J = N M;, and let &# = 2 (R, B) be the Rees ring of
R with respect to B. Assume each B (uiw=) s Macaulay, and
let P, ---, P, be homogeneneous prime ideals in FB. Assume height
P,=k(v=1,---,8) and either ue N P, or w¢& U P,. Then there exist
homogeneous elements x,, +++, x; in N P, such that every permutation
of @, <+, a;, u is an F-sequence and j =k (if ug¢ UP,) or j =k —
1 (#f uwenP,).

Proof. Every prime divisor of each homogeneous ideal in .2 is
homogeneous, hence is contained in _# = (M*, u).Z2, for some ¢ = 1,
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--+, ¢, and &% is a Macaulay semi-local ring, where S = Z~ U_+.
Therefore, if x,, ---, x;, ¥ is an ZZ-sequence of homogeneous elements
contained in (J*, u).#, then every permutation of it is an .Z#-sequence.
Thus it suffices to prove the existence of homogeneous elements z,,
«««,x; in NP, N J* such that some permutation of x,, --+, ;, 4 is an
“F-sequence and j =k (if u¢ UP)or j=k—1(Gf we N P,).

Since this is clear if k=0, let £ > 0, and assume the lemma
holds for such finite sets of homogeneous prime ideals in .2 of height
less than k. For v =1, --- s, let Q, be a homogeneous prime ideal
in <% such that @Q,c P,, height Q, = k — 1, and either we NQ, or
¢ UQ, By induction, let x, ---, , be homogeneous elements in
ne,NJ* such that «, ---, x,, v is an .Z#-sequence and m = height
Q, (if u¢ UQ,) or m + 1 = height Q, (if ue N Q,). Let p, ---, n; be
the prime divisors of (x,, -+, ©,, )&, let & = {p, +--, s}, and fix
pe P Then: (u,J)# < p, since ue p and Rad B = J imply PN R =
M;, for some ¢ =1, --- ¢; and, p is homogeneous, so p & _, for some
t=1,---,e. Therefore, since each 2, is Macaulay, height p =
m + 1. If one the P, is in &7, then ue P, (hence ue N P,) and u ¢
Q. (hence u ¢ U @,), and so every P, is in <7, hence the lemma holds.
Thus it may be assumed that no P, is <. Therefore, no _# is in
; for, if one _/Z e &7, then m = a and so & = {_#, -+, 7}, hence,
since k = m + 1, it follows that all P,e .2”; contradiction.

For h=1,-+-, f, let I, = Nja0; N B*N P,y -+ N P,. Then I,
is homogeneous, and I, & p,; for, I, & p, implies B* < p,, hence (u,
J, B*).5? < p,, and so p, = _Z, for some © =1, .-, ¢; contradiction.
Therefore, there exists a homogeneous element z,€ I,, € p,; say z, =
it (d, > 0, since, for n» <0, [I,], S [B*], = B<S J & [p:],). Thus,
with D, = m.d;, 2,.., = >, 2P+ is a homogeneous element in N P, N J*
and not in p, ---, p; hence x,, «-+, z,, %, &, 1S an .FH-sequence.

REMARK 4.3. The homogeneous elements z,(h =1, ---, 7) in (4.2)
must have positive degree, since u, x, is an .ZZ-sequence and every
homogeneous nonunit of nonpositive degree is in some prime divisor
of w.Z (since (Rad uZ) N R = Rad (u.#Z N R) = Rad B = J).

The following two definitions are needed for (4.4) below.

A set of elements y,, ---, ¥, in the Jacobson radical J of a semi-
local ring R is a system of parameters in R in case Rad (y, «++, ¥ )R =
J and a = altitude R [8, p. 77].

If B is an ideal in a ring R, and xz < R, then the degree of x with
respect to B, denoted dj{x), is the largest integer % such that xe B",
if such n exists. If xze B", for all n, then dy(x) = .

THEOREM 4.4. Let (R; M, ---, M), J, B, a, and F# be as in (4.2).
Then # is locally Macaulay if and only if R is Macaulay and there
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exists a system of parameters vy, +--, Y, in R such that, for each j =
1, ---, aand forall n =1, (y, -+, y) RN B" = >} y;B"™%, where d; =
dB(y,)(l = 1: MY a)‘

Proof. If a =0, then altitude <# = 1. Therefore .&Z is locally
Macaulay (since the prime divisors of (0) in <# are the ideal ¢* with
g a prime ideal in R, and so have height 0). Hence the theorem is
trivially true upon defining >? y,B"% to be zero when are no y,.
Therefore, let a > 0.

If &2 is locally Macaulay, then R is Macaulay [11, Theorem 3.8].
Also, by (4.2), there exist homogeneous elements z,, ---, x,€J* such
that «,, ---, &, w is an <“#-sequence. For j =1, -.-, a, let X; = (w,
oee, 2;) B, let x; = yt% with y; € B%, and let Y; = (y,, -, ¥;)B. Then,
since %, ---, x;,  is an <F-sequence (j =1, --+, a), dz(y;) = d,. Also,
Y¥ = Y;R[t, u] N & = X; (hence Rad Y, = J), since R[t, u] = ZZ[1/u]
implies Y} = X;: u*<2, for all large k. Hence Y; N B" =[Y}], = [X;]. =
Niy;B*%, for j =1, --+, a and for all n.

Conversely, assume R is Macaulay and such a system of parameters
Yy, +, Y, exists in R, let Y; =(y, ++-,y)R(G =1, -+, a), and let
x;, = yit%. To prove <Z is locally Macaulay, let N be a maximal
ideal in .

(i) If N= _#; = (M¥, u)s#, for some 7 =1, -+ ¢, then _#; is
a minimal prime divisor of (Y}, w)&#. Also, Y} = (x,, « -, %;), since
[Y ], = [(®, -+, %) R, for all n (for n» =1, by hypothesis; for n <
1, this is clear). Hence, since the prime divisors of the Y7 are the
ideals P* with P a prime divisor of Y;, and since w¢ P*, x,, «--, &,
% is an “Z-sequence, and so %, is Macaulay.

(ii) If N# #(i =1, +--,¢), then either u¢ N, or tbg N, for
some nonzero-divisor be B. (If (u, B*)<# =< N, then, since Rad B =
J, N = _#;, for some ¢; and, since ¢ > 0 and R is Macaulay, B can
be generated by nonzero divisors [9, Lemma 10, p. 229].) If u¢ N,
then &2, is Macaulay, since it is a quotient ring of .ZZ[1/u] = RJ[t, u],
and R[t, u] is locally Macaulay, since R is Macaulay. If ¢tb¢ N, then
let A = R[B/b] denote the R-subalgebra of R[1/b] generated by the
elements ¢/b with ce B. Let & = ZZ[1/tb]. Then & = A[tb, 1/tb],
and PP = N9 N A is a prime ideal in A. Since N is maximal and
isn’t homogeneous, P'.&¥ C N.%” and P = P'.¢” N &2 is a homogeneous
prime ideal (as in [13, Remark 3.11]). Also, height N/P =1, since
N NA=Ps¥NA=P. Since P is homogeneous, (i) and (4.2)
imply there exists an .<#-sequence of s = height P homogeneous ele-
ments in P, say «, ---, %, (possibly one x, is u). Since N isn’t
homogeneous, it follows that N isn’t a prime divisor of (x,, ---, ,) 2.
Also, since R is Macaulay and height N/P =1, height N = height
P+ 1 [8, (34.8) and (25.10)]. Hence &%, is Macaulay.
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The next result is a considerable strengthening of [11, Corollary 3.6].
It also shows the unexpected result that every prime ideal P in R
contains a prime sequence of height P elements which can be extended
to a maximal prime sequence which has the property described in (4.4).

COROLLARY 4.5. (cf. [11, Corollary 3.6].) Let (R; M,, -+, M,),J, B,
a, and B be as in (4.2), assume 2 is locally Macaulay, and let P,
<o, P, be prime ideals in K. If height P, =k(v =1, ---,8), then
there exists an R-sequence ¥y, -++, Y, such that y, --+, y, are in N P,
and, for each 7 =1, «++, a, for each permutation m© of {1, ---, a}, for
all positive integers fi, ++-, fi, and, for all n, (yo, «--, yfj) RN B"=
SVyliB s, where d; = dp(Yss)-

Proof. By (4.2), let @, ---, , be homogeneous elements in N P}
such that each permutation of =z, ---, x,, v is an <Z-sequence. By
the proof of (4.2), there exist homogeneous elements #,,, ---, 2, in
& such that each permutation of =z, ---, 2, v is an <SZ-sequence.
Hence, for each j =1, ---,a, %, ---, /i, w is an Z-sequence. Let
Xp; = Yt with y, e B%(i =1, .-+ @), and, for j =1, ---, a, let ¥; =
(2 -, y)R and X; = (&7, ---,2/) . Then Y;* = X,, since X;:
u# = X;. Hence, since the prime divisors of Y/ are the ideals P*
with P a prime divisor of Y;, it follows that ¥/ ..., »/* is an R-

sequence and, for j =1, «--, a, Y;NB" = [Y;+], = [X;], = ) yliB s,

The following corollary gives another necessary and sufficient
condition for .ZZ to be locally Macaulay.

COROLLARY 4.6. With the notation of (4.2), 2 s locally Macaulay
if and only if there exists a positive integer g and a system of para-
meters z,, «++, 2, contained in B’ such that, for each j =1, --- a,
for each (or, for some) permutation 7 of {1, -+, a}, and for all n =
g, Ray =+, 2)) RN B" = (2, =+, 2:5)B"77

Proof. If <2 is locally Macaulay, then let ¥, ---, ¥, be elements
in J as in (4.5). Say d; = dx(v:), so d; > 0, by 4.3). Let D, = x;_..d;,
let g=d;D;, and let z; = yPi(¢i=1, ---, a). Then the conclusion follows
from (4.5). The converse follows from (4.4).

(4.7) and (4.8.1) below are known when R is Macaulay and B is
generated by an R-sequence [11, Corollary 3.9 and p. 406]. (4.8.2) is
new even for the R-sequence case but follows easily from (4.7) and
(4.8.1); and (4.9) follows from (4.5) — (4.8). The basis of the proof
of (4.7) is that, if b is a nonzero-divisor in a locally Macaulay ring
R, then R/bR is locally Macaulay.
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COROLLARY 4.7. (cf. [11, Corollary 3.9].) With the mnotation of
4.2), if # is locally Macaulay, then, for each nonzero-divisor be B,
R[b,/b, «--, b,/b] is locally Macaulay, where B = (b, -, b,)R.

Proof. The proof is the same as the proof of [11, Corollary 3.9].

COROLLARY 4.8. (cf. [11, p. 406 and Corollary 3.9].) With the
notation of (4.2), 1f A s locally Macaulay, then the following statements
hold, for all positive integers m:

4.8.1. Z(R, B™) ts locally Macaulay.

4.8.2. For each nonzero-divisor be B™, R[B,/b, «--, B./b] is locally
Macaulay, where B™ = (8, +++, B.)R.

Proof. 4.8.1. If &# is locally Macaulay, then R is Macaulay
and there exists an R-sequence ¥, ---, ¥, contained in J such that, for
allj =1, .-+, a and all positive integers m and =, (", --+, y7) RN B" =
SiyrB %™, where dz(y;) = d; (4.4) and (4.5)). Then, with n = mh
(h = 1), it follows from (4.4) that <#Z(R, B™) is locally Macaulay, if
dgn(y?) = d;. But this holds, since z7*, .-+, 2™ u is an SZ-sequence
(as in (i) in the proof of (4.4)), where x; = y;t%. (4.8.2) follows from
(4.8.1) and (4.7).

Applying the last three corollaries to the case when R is Macaulay
and B is a power of the ideal generated by an R-sequence, the follow-
ing corollary is obtained.

COROLLARY 4.9. With the notation of (4.2), if B = Y™, where Y
18 generated by an R-sequence (such that RadY = J) and n > 0, then
(4.5) — (4.8) hold.

Proof. This follows from (4.5) — (4.8), since R is Macaulay (since
Rad Y = J), hence .42 is locally Macaulay [11, p. 406].

The following proposition has the status of folklore—and may
even appear somewhere in the literature. It will be used in (4.11) to
prove a number of necessary and sufficient conditions for & to be
locally Macaulay. Also, the relationship, noted below, between Rees
rings and form rings together with (4.10) shows that much of the
material in this section really isn’t so special.

PROPOSITION 4.10. Let R be a Noetherian ring, and let S be a
finitely generated positively graded R-algebra such that S, = R. Then
S is locally Macaulay if and only if, for each maximal ideal M in
R, Surts,) 18 locally Macaulay, where S, is the ideal in S gemerated
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by the forms of positive degree.

Proof. The condition is clearly necessary. Conversely, let @ be
a prime ideal in S, and let M be a maximal ideal in R such that
QNR< M. Then S, is a localization of R, ® .S, so it may be
assumed that R is a local ring with maximal ideal M. Let R(X) =
B[X]yzz where X is an indeterminate, and let R* be the completion
of R(X). We can replace S by R* XS, so it may be assumed that
R is a complete local ring with an infinite residue field. Then S is
a homomorphic image of a regular ring, so the Macaulay locus of S
is Zariski open [3, (6.11.3)]. Suppose that the non-Macaulay locus of
S isn’t empty, and let I be its defining radical ideal. Then it suffices
to show that I is homogeneous, for then I & M + S, which contradicts
the hypothesis.

If ae R, ¢ M, then there exists an R-automorphism of S which
takes each form F' of degree d to a*F. Therefore, let 3¢ F';e I (where
each F; is a form of degree 7) and choose units a,, --+, @, in R with
distinct residue classes modulo M(R/M is infinite). Then, since clearly
I is invariant under every automorphism on S, >\ ,aiF; isin I(0 <7
=< d). But Det (&) = *+ 7,.;(a; — a;) € R, ¢ M, hence is a unit in R.
Therefore each F;e I, as desired.

If B is an ideal in a Noetherian ring R, then, as in [15, Theorem
2.1], the form ring &% = & (R, B) of R with respect to B is (iso-
morphic to) .ZZ/u.#, and the B-form ideal C’ of an ideal C in R is
(isomorphic to) (C*, u).Z/u.s?. This fact is used in (4.11) below.

If M, ---, M, are special maximal ideals in a Noetherian ring
R such that each R, is Macaulay, then it isn’t true, in general, that
R is locally Macaulay. However, this is true for &2 and &, as is
shown by the following theorem.

THEOREM 4.11. Let B be an ideal in a Noetherian ring R such
that B 1is contained in the Jacobson radical of R, let & = FZ(R, B),
and let 7 = .7 (R, B) be the form ring of R with respect to B. Then
statements (4.11.1)—(4.11.4) below are equivalent and each tmplies
(4.11.5).

4.11.1. .&#Z s locally Macaulay.

4.11.2. &, is Macaulay, for all mazimal homogeneous ideals
A an P

4.11.3. & s locally Macaulay.

4.11.4. ., 1s Macaulay, for all maximal homogeneous tideals
A i F.

4.11.5. R and all rings R[b/b, ---b,/b] are locally Macaulay,
where b is a nmonzero-divisor in B = (b, -+ -, b,)E.



FIVE THEOREMS ON MACAULAY RINGS 171

Proof. Clearly (4.11.1) implies (4.11.2), and (4.11.3) implies
(4.11.4). Also, (4.11.1) implies (4.11.3), and (4.11.2) implies (4.11.4),
since ¥ = Z/u# (as in [15, Theorem 2.1]). Further, (4.11.4)
implies (4.11.3), by (4.10). Now (4.11.3) implies &%, is Macaulay, for
all prime ideals P in &2 such that we P. Thus, if M is a maximal
ideal in R, then .2 = (M*, u)<# is a maximal ideal in .ZZ (since
B < M), so, since &2, is Macaulay, 2. = R[ulyzpn, is Macaulay. It
follows that R is locally Macaulay, and so R[¢, u] is locally Macaulay.
From this it follows that (4.11.3) implies (4.11.1), and so (4.11.1)—
(4.11.4) are equivalent and each implies that R is locally Macaulay.
Finally, since E[b,/b, +- -, b,,/b][tD, 1/tb] = <& [1/tb] and tb is transcendental
over R, (4.11.1) implies (4.11.5).

This paper will be closed with the following result which gives
two equivalences of (4.11.5).

PROPOSITION 4.12. Let B be an ideal wm a Noetherian ring R
such that B 1s contained in the Jacobson radical of R, and let & =
(R, B). Then the following statements are equivalent:

4.12.1. R and all rings R[b/b, ---, b,/b] are locally Macaulay,
where B = (b, +-+, b,)R and b is a nonzero-divisor in B.

4.12.2. For each prime ideal P im # such that (u, B*) £ P, #p
1s Macaulay.

4.12.8. For each homogeneous prime ideal P in FH such that
(u, B¥).® & P, %, ts Macaulay.

Proof. If K is a ring and X an indeterminate, then K is locally
Macaulay if and only if K[X, 1/X] is locally Macaulay. The equivalence
of (4.12.1) and (4.12.2) follows from this and the facts ZZ[1/u] = R[t, u]
and .Z2[1/tb] = A[td, 1/tb], where A = R[b/b, --+, b,/b]. Clearly (4.12.2)
implies (4.12.3). Also, R[t, %]ygrs,u = FPy» (Where M is a maximal ideal
in R), and, if P’ is a prime ideal in A, then P = P'Z[1/tb] N % is
homogeneous (as in [13, Remark 3.11]) and A[td]lp 410 = . There-
fore, (4.12.3) implies (4.12.1).
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