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PROXIMITY APPROACH TO SEMI-METRIC
AND DEVELOPABLE SPACES

M. GAGRAT AND S. A. NAIMPALLY

In this paper we study semi-metric and developable
spaces via generalized proximities and uniformities. We find
sufficient conditions for a compatible semi-metric d on a
space X to induce a Lodato proximity and also study the
effects on a space X when d satisfies various weaker forms of
continuity. We present two new characterizations of develop-
able spaces, one of which reads: A TΊ-space is developable
if and only if it has a compatible upper semi-continuous semi-
metric.

We give improved versions of two known metrization
theorems. Finally, we generalize the concepts: Ti-map, uni-
form map, completely uniform map, pseudo-open map, etc.,
to apply to proximity spaces and improve some of the known
results; for example, an open uniform image of a developable
space is developable.

Our motivation for this study was a result mentioned by
Arkhangel'skii [4]: A semimetric space (X, d) is metrizable if the
induced nearness relation δ(d) is an EF-proximity (where A δ(d) B iff
d(A, B) — Inf {d(ay b): a e A, b e B) = 0). One naturally wonders as to what
properties are satisfied by X if δ(d) satisfies weaker proximity axioms
such as those of an S-, a LO- or an JS-proximity. We soon found that
δ(d) is always an S-proximity and that, if d is the natural semi-metric
associated with a developable space, then 3(d) is a LO-proximity.
Further impetus was provided by a result due to Pareek [15]: A
TΊ-space is semi-metrizable iff there exists a countable family
{Wn: neN} of symmetric subsets of X x X satisfying (a) Π?=i Wn =
Δ and (b) for each xeX, {Wn[x\: neN} forms a neighbourhood base
at x. This result is analogous to the well-known Alexandroff-Urysohn
theorem: A TΊ-space is metrizable iff it has a compatible uniformity
with a countable base. This provided us with a motivation to find
one of our new characterizations of developable spaces.

The basic definitions and results are given in this section. In
the next section, we study semi-metrizable spaces having compatible
semi-metric which satisfy various weaker forms of continuity,
e.g., those which are lower semi-continuous or are separately con-
tinuous. We also find sufficient conditions for δ(d) to be a LO-
proximity.

In the third section, we obtain two new characterizations of
developable spaces and also find a sufficient condition for a space to
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be a totally bounded developable space. In §4, we prove two new
metrization theorems. Finally, in the fifth section, we study the
images of some specific proximity spaces under some special mappings.

We now give some basic definitions and results which are needed
in this paper. Let X be a nonempty set and let δ be a binary relation
on the power set of X. Consider the following axioms:
1.1. ( i ) AδB implies BδA,

( ii ) Aδ(B U C) iff AδB or AδC,
(iii) AδB implies A Φ φ, B Φ φ,
(iv ) Af]Bφφ implies AδB,
( v ) aδB and bδC for every bεB implies aδC,
( vi) AδB and bδC for every bεB implies AδC,
(ίvii) a$B implies the existence of an E c X such that a$E

and (X - E)$B,
(viii) A$B implies the existence of an E a X such that A$E

an (X - E)$B.

DEFINITION 1.2. The relation δ is called
(a) an S-proximity if it satisfies 1.1 (i)-(iv) and (v) (see [13]),
(b) a LO-proximity if it satisfies 1.1 (i)-(iv) and (vi) (see [13]),
(c) an R-proximity if it satisfies 1.1 (i)-(iv) and (vii) (see [11]),
(d) an EF-proximity if it satisfies 1.1 (i)-(iv) and (viii) (see [13]).

By a "proximity δ", we mean any one of the four proximities
defined above and in this case we call the pair (X, δ) a proximity space.
A binary relation δ that satisfies 1.1 (i)—(iv) induces an operator
A—» A = {xe X: xδA} on the power set of X, and this will be a
Kuratowski closure operator if and only if δ is an 5-proximity. Since
(viii) implies (vii), (viii) implies (vi), and (vii) or (vi) implies (v), then
every proximity is an S-proximity. The topology induced by the
closure operator of a proximity δ will be written τ(δ).

We assume that all proximities δ considered in this paper are
separated, i.e., xδy implies x — y. Obviously in this case τ(δ) is 2\.

If (X, τ) is a topological space and δ is a proximity on X such
that τ = τ(δ), then we say that τ and δ are compatible. It is known
that: (i) every Trspace has a compatible LO- (and ipso facto S-)
proximity [13]; (ii) A topological space is T3 iff it has a compatible
iZ-proximity [11]; (iii) A topological space is Tychonoff iff it has a
compatible i&F-proximity.

DEFINITION 1.3. A semi-metric space (X, d) is a 2\-space X to-
gether with a real-valued function i o n l x l such that
(a) d(x, y) = d{y, x) ^ 0,
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(b) d(x, y) = 0 iff x = y,
(c) xeM" iff d(x, M) = 0, where d(A, B)

= Inf {d(a, b):aeA,beB}, if A Φ φ Φ B
-co if A — φ or B = φ.

If (X, d) is a semi-metric space, we define δ = δ(d) by

Aδΰ iff d(A, B) - 0 .

It is easily verified that δ{d) is an S-proximity on X. For ε > 0, we
set

Vε = {(a?, 7/) G X x X: d(», » ) < e} .

Clearly F£[#] = S(x, ε), the sphere with centre x and radius ε. We
set^d = {U=U~1(zXx X: V1/n c [7 for some n e N). Also for ^ c

x X) (the power set of X x X), we define δ = δ(%f) by

iff (A x B) Π ?7 ̂  Φ for each C7e

Clearly, if d is a semi-metric on X, then δ(d) =

DEFINITION 1.4. A refining family l o n a toplogical space (X, τ)
is a family {at: iel} of open covers of X such that for each xe Ue
τ, there exists an iel such that St(α?, α<) c C7. In the special case
when I = N, Σ is called a development on X and the pair (X, JS) is
called a developable space. In this case, it is well known that Σ may
be replaced by another development Σ' = {&•: i e N} such that if i < j
then /3y c βύ we will assume that Σ already satisfies this condition.
We will also assume that the developable spaces are 2\.

LEMMA 1.5. Every refining family Σ on a Trspaee (X, τ) induces
a compatible LO-proximity δ = δ(Σ) on X, where δ is defined by

AδB iff St (A, at) Γ) B Φ φ for each i e l .

Proof. That δ satisfies 1.1 (i)—(iv), is separated, and is compatible
with τ is obvious. We now show that δ satisfies 1.1 (vi). Suppose
AδB and bδC for each beB. Then AδB implies that for each iel,
there is a b e B such that b e St (A, at). Since St (A, a{) is open, there
is a j e I such that b e St (δ, as) c St (A, O Since bδC, C Π St (6, α,-) ^
^ and this, in turn, implies C Π St (A, at) Φ φ, i.e., AδC.

For a developable space (X, Σ), Σ = {Xn: n e N}, we define d = d(Σ)
by

d(x, y) = Inf {—±—: yeSt (x, Xn)\ .
in + 1 J

It is easily seen that d is a compatible semi-metric on X and that
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δ(d) = δ(Σ). For each neN, we set

Bn= Ό{Gx G:Gexn} .

LEMMA 1.6. Bn = VUn.

Proof, (x, y) e V1Jn iff d(x, y) ̂  l/(n + 1)< 1/n iftyeSt (x, K) iff
(a?, y) e Bn.

DEFINITION 1.7. An M-uniformity base έ@ on X is a family of
subsets of X x X such that,

( i ) Π{?7:27e^} = J,
(ϋ) U= U~ι for each Ue^,
(iii) for each A c X and U, V in ^ , there exists a We ^ such

that W[A] c 17[A] Π F[A],
(iv) for each Ue <&, U c V = V~ι c X x X implies F e ^ ,
(v) for A,B in P(X) and t / e ^ , if F[A] ΓΊ 5 ^ 9 for each

Ve^; then there exists an ^ e 5 and a I f e ^ such that TF[α;] c
Z7[A]. ^ c P(X x X) is said to be an M-uniformity on X iff there
exists a family ^ a^/ satisfying conditions (i)—(v) above and for
each Z7e ̂  there is a J5G ^ such that B a U.

REMARK 1.8. Mozzochi [12] has shown that an M-uniformity ^
need not have an open base and that if it does have one, then every
convergent filter on X is ^-Cauchy.

DEFINITION 1.9. An S-uniformity Ήf on X is a family of subsets
of X x X which has a base & satisfying 1.7 (i)—(iv) and for each
peX, Bcz X and Ue <^, if V[p] Π B Φ φ for each Ve &, then there
exists an xeB and a I f e ^ such that W[x] c U[p].

If ^ is an M- or an S-uniformity, then τ ( ^ ) is defined as
usual; viz. G G Γ ( ^ ) iff for each xeG, there exists a Ue^ such
that Z7[̂ ] c G. If r = r ( ^ ) , we say that τ and ^ are compatible.

THEOREM 1.10. (See [7], [12].) 1/ ^ consists of symmetric sub-
sets of X x X, ί&ew ^ is αu M-uniformity base (resp. S-unformity
base) if and only if δi^f) is a LO-proximity (resp. S-proximity).

Let (X, d) be a semi-metric space and set V1Jn — {(x, y):d(x, y) <
1/n}. Then {Vιjn:neN} is a countable base for a compatible S-uni-
formity.

2. Semi-metric spaces* In this section we suppose that (X, d) is
a semi-metric space and consider the effects of various forms of con-
tinuity properties of d on the topology of X and on the proximity δ(d).
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LEMMA 2.1. In the following (i) and (ii) are equivalent and each
implies (iii):

( i ) d is separately upper semi-continuous.
(ii) For each ε > 0 and x e X, S(x, ε) is open.
(iii) δ(d) is a LO-proximity on X.

Proof. (i)=>(ii) Let y e S(x, ε), i.e., d(x, y) < ε. Since d is upper
semi-continuous in y, for every η > 0 there is a nbhd. Ny of y such
that d(x, z) < d(x, y) + r) for each 2 e Ny. Choose η < ε — d(α?, #). Then
clearly JV, c S(x, ε), showing thereby that S(x, e) is open.

(ii) => (i). Suppose (Z(a?, y) = r and ε > 0. Clearly 2/ e S(α?, r + ε),
which is open, and hence there exists a nbhd. Ny of y such that
-Nj, c S(x, r 4- ε). But this means that for each z e Ny,,d{x,z)<d(x, y) + ε,
i.e., d is separately upper semi-continuous.

(i) => (iii). Let δ = δ(d) and suppose AδJS and bδC for each 6 e B.
Then for each ε > 0, there exists an α e i and a δ e 5 such that
d(a, b) < ε. Since d is upper semi-continuous at b, there exists a nbhd.
Nb of 6 such that d(a, x) < ε for each α? e JV6. Also bδC implies the
existence of a point c e C Π Nb and hence, d(a, c) < ε, i.e., AδC.

COROLLARY 2 2 If a semi-metric d is separately upper semi-con-
tinuous, then ^ d is an M-uniformity (obviously with a countable base).

LEMMA 2.3. // d is separately lower semi-continuous, then X is
regular.

Proof. Let A be closed in X and peX - A. Then d(p} A) =
r > 0 and hence for each α e i , d(p, a) ̂  r . Since d is lower semi-
continuous at α, there exists a nbhd. Na of α such that for each
x e Nay d(p, x) > r/2. Set NA = U {iVa: a e A } . Then iV^ is a nbhd. of
A and NA Π S(p, r/2) = φ, thereby showing that X. is regular.

The following result is an improvement of a similar one stated
by Cook [6] whereas Cook require the semi-metric d to be continuous
we want d to be only separately continuous.

THEOREM1 2.4. // d is separately continuous, then X is Tychonoff.

Proof. Suppose A is a closed subset of X and xeX — A. We
may assume that d(x, A) — 1. As in the proof of Urysohn's lemma,
we now show how to construct, for each positive rational re [0,1], an
open set Vr such that x e Vr for each such r, V~ c Vs whenever r < s
and each Vrcz X — A. We set Vr = {y e X: d(x, y) < r) which is open

1 This result was jointly obtained by Dr. C. M. Pareek and the second author.
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by 2.1 (ii). Also the separate lower semi-continuity of d is equivalent
to the set {yeX: d(x, y) ̂  r}, being closed for each r.

The following theorem is an analogue of the result: A Γrspace
is uniformizable with a countable base iff it is metrizable (and hence
has a metric d such that δ(d) is an JS^-proximity.)

THEOREM 2.5. A Tγ-space is M-uniformizable with a countable
base if and only if it has a compatible semi-metric d such that δ(d)
is a LO-proximity.

Proof. Sufficiency is evident from 1.10 and necessity follows from
1.10 and Theorem 4.1.7 of Pareek [15], making use of the remarks
just preceding 1.4.

The followilng analogue of the above result is proved similarly.

THEOREM 2.6. A T^space is S-uniformizable with a countable
base if and only if it has a compatible semi-metric d (and obviously
δ(d) is an S-proximity).

3* Developable spaces* In this section we suppose that {X, Σ)
is a developable space with Σ — {Xn: n e N} where each Xn is an open
cover of X and λn+1 c λΛ. Let d — d{Σ) be the induced semi-metric
on X. Then δ(d) = δ(Σ) is a LO-proximity on X.

LEMMA 3.1. d is upper semi-continuous.

Proof. If p, qe X, we have to consider two cases: (i) d(p, q) — 0
and (ii) d(p, q) = l/(m + 1) for some meN. Let ε > 0 be arbitrary.
In case (i), δ(d) is a LO-proximity by 2.1 and p — q. Now choose
neN such that 1/n < ε; then p, qeG for some GeXn. For all (x, y) e
G x G, d(x, y) ̂  II{n + 1) < ε. In case (ii), p, qeG for some Geλm.
Then for all (x, y)eG x G, d(x, y) <L l/(m + 1)< l/(m + 1) + ε. Thus
the result is proved.

The above result (in conjunction with 2.1) provides an alternate
proof of the fact that δ(Σ) is a compatible LO-proximity and also
shows that c%fd is a compatible M-uniformity with a countable open
base {Bn: n e N}. This provides a motivation for our next result.

THEOREM 3.2. A Tγ-space is developable if and only if it is M-
uniformizable with a countable open base.

Proof. Necessity follows from the remarks preceding 3.2 and
sufficiency follows from Brown's result ([5], p. 65) that a space is
developable iff it has a compatible semi-metric d for which every con-
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vergent sequence is Cauchy, using 1 8.
In [6] Cook states that if a compatible semi-metric d on X is

continuous, then X is developable. The following characterization of
developable spaces is an improvement of this result.

THEOREM 3.3. A Tx-space X is developable if and only if it has
a compatible upper semi-continuous semi-metric.

Proof. Since the necessity has been proved in (3.1), we need
prove only sufficiency. Assuming d to be an upper semi-continuous
semi-metric, we prove that V1Jn is open for each neN and then the
result will follow from (3.2). If (p, q) e VιJn, then d{p, q) < 1/n.
Choose ε > 0 such that $ < 1/n — d(p, q). Then from the upper semi-
continuity of d, there exist nbhds. Np9 NQ of p, q respectively, such
that d(x, y) < d(p, q) + ε < 1/n for each (x, y)eNp x Nq. This shows
that (Np x Nq) c V1/n, showing thereby that VιJn is open.

DEFINITION 3.4. A proximity base & for a proximity space
(X, δ) is a family of subsets of X such that if A$B, then there exist
C,De^ such that AaC, BczD and C$D.

In a LO-space, we may assume that the members of £% are
closed. The following is an improvement of 2.23 of [12].

LEMMA 3.5. // & is a proximity base for LO-space {X, δ), then
{UAtB: A,Be^> and A$B}> where UAfB = X x X- [(A x B) U (B x A)],
is a base for an M-uniformity ^ on X.

A developable space (X9 Σ) is said to be totally bounded iff for
each neN, there exists a finite set F c X such that St {F, Xn) — X.
It is known that an .EF-space (X, δ) has a countable base iff X has
a compatible totally bounded metric (Theorem (8.19) of [13]). The
following is a partial generalization.

THEOREM 3.6. // a LO-space (X, δ) has a countable closed base
&, then X is a totally bounded developable space.

Proof. {UA,B: A,Bz^, A$B} is a countable open base for a com-
patible M-unifomity, which is also totally bounded. The result then
follows from (3.2).

4* Metrizable spaces* ArkhangeFskii [4] proved that a semi-
metric space (X, d) is metrizable if δ(d) is an j&F-proximity. A glance
at his proof shows that the following* improved version is true.
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THEOREM 4.1. A Trspace is uniformizable with a countable base
if and only if it has a compatible semi-metric d such that δ(d) is an
E-proximity if and only if it is metrizable.

Nedev [14] proved that a semi-metric space (X, d) is metrizable
if d(A, x) is a continuous function of x for each A c X. The following
is an improvement.

THEOREM 4.2 A semi-metric space (X, d) is metrizable if for all
closed subsets A of X, d(A, x) is lower semi-continuous.

Proof. Suppose A is closed, B is compact and A Γ) B = φ. Since
the function d(A, x) is lower semi-continuous and B is compact, it
follows that d{A, B) = d(A, x) for some xe B. This implies that X
is metrizable (see [4]).

We now give a table which shows the relationship of our results
with the classical Alexandroff-Urysohn uniform metrization theorem.
Suppose {Wn: n e N) is a countable family of symmetric subsets of Xx X
satisfying (a) Π~=i Wn = A and (b) for each x e X, {TΓΛ[a?]: neN} forms
a nbhd. base at x. Let d be the semi-metric by {Wn}, namely

d(x, y) = Inf Wn[*]}

(We assume without any loss of generality that Wn+1 c Wn.)
set ^ = {Ud X x X: Wn c U for some n e N}.

Finally

^ is an
iS-uniformity

δ(d) is an
S-proximity

X is
semi-metrizable

^/ is an
M-uniformity

δ(d) is a
LO-proximity

X is
semi-metrizable

^ is an M-uni-
formity. Each
Wn is open

d is USC
δ(d) is a LO-pro-
ximity

X is developable

^ is a
uniformity

δ(d) is an
i?F-proximity

X is
metrizable

5* Metric spaces, developable spaces, semi-metric spaces and
mappings connected with them* In this section /: X—> Y will denote
a function from a proximity space (X, δ) onto a Γrspace Y. When
X is developable, semi-metrizable or metrizable, δ will denote the
corresponding naturally induced proximity relation as defined in §1.
Several kinds of functions, which have been defined for the case in which
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X is metrizable, can be redefined more generally when X is a proximity
space; this is done by replacing the condition d(A, B) > 0 by A$B.
These mappings have been systematically discussed in the metric case
by ArkhangePskii [4]. Although we consider their generalizations,
for the sake of simplicity we will keep the same terminology and
attach δ-before each term2.

Our strategy consists in defining a binary relation δι on the power
set of Y as follows.

(5.1) E$ιF iff f-\E)$f~\F).

It is easily verified that δ1 satisfies 1.1 (i)—(iv) and so δι is almost
a quotient proximity. In order that δ1 be a proximity, naturally we
will have to put some additional conditions on /; also it is clear that
if δ1 is to satisfy stronger proximity conditions, so must δ.

Our first task is to find conditions on / which will make δ1 an
S-proximity compatible with the topology of Y.

DEFINITION 5.2. The function / is called δ-pseudo-open iff for
each ye Γ and 4 c l , if f~\y)${X - A) then yelntf(A).

It is easily verified that if / is open or closed, then it is also
δ-pseudo-open.

LEMMA 5.3. If δ is an S-proximity on X and f is δ-pseudo-open,
then y$ιE implies y & E~.

Proof. y$xE implies f~\y)$f~ι{E), and since / is δ-pseudo-open,
it follows that y e Inf f[X - f~ι(E)]. But E f] f[X - f~\E)] = Φ and
hence y ί E~.

COROLLARY 5.4. If δ is an S-proximity and f is either open or
closed, then y$ιE implies y & Έ~.

DEFINITION 5.5. The function / is called δ-uniform iff for each
y e Y and each nhbd. Ny of Y, f~ι(y)$(X - f~ι{Ny)).

LEMMA 5.6. If δ is an S-proximity, then f is δ-uniform if and
only if ygE~ implies y$ιE.

Proof. If / is δ-uniform and y $ E~, then f~ι{y)$f-\E) and by
5.1, y$Έ. Conversely, if Ny is a nbhd. of y, then y£(Y-Ny)-
implies y$\Y - Ny) and this is equivalent to f~1(y)$(X - f~\Ny)).
Thus / is δ-uniform.

2 This terminology was suggested by Dr. C. M. Pareek.
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LEMMA 5.7. If δ is an R-proximity and f is continuous and
compact, then y£E~~ implies y$ίE.

Proof. If y £ E~ then f~\y) Π f~\E~) = φ. Since / is compact,
f~\y) is compact and since / is continuous, f~ι{E~) is closed. Finally,
δ being an i?-proximity on X, f~~ι(y)$f~ι(E), which in turn implies
y$ιE.

The following result is now obvious.

THEOREM 5.8. The relation δ1 is a compatible S-proximity on Y
in the following cases:
(a) δ is an S-proximity, f is δ-pseudo-open and δ-uniform;
(b) δ is an R-proximity, f is δ-pseudθrθpen, continuous, and compact*

Next we find out when δι is a LO-proximity.

THEOREM 5.9. If δ is a LO-proximity on X and f is δ-uniform
and open, then δ1 is a compatible LO-proximity on Y.

Proof. By 5.8 (b), δ1 is a compatible S-proximity and since / is
δ-uniform, it follows that / is continuous. This together with the
openness of / implies that for each B a Y, f~1(B~) = f~~ι(B)~. Now
AδιB iff f-ι(A)δf~ι(B) iff f~ι{A)δf-\B~) iff f-\A")Sf\B") iff A~διB~y

thereby showing that δι is a LO-proximity.
To investigate as to when δι is an i2-proximity we introduce a

stronger type of map.

DEFINITION 5.10. The function / is called δ-completely uniform
iff for each nbhd. Ny of y in Y, there exists a nbhd. N'y of y such
that r\N'y)${X - f-^N,)).

Since the identity map on X is not δ-completely uniform unless
δ is an jR-proximity, it is clear that in order to have a meaningful
discussion, we must have δ an i?-proximity.

THEOREM 5.11. If δ is an R-proximity on X and f is open and
δ-uniform, then f is δ-completely uniform if and only if δ1 is a com-
patible R-proximity.

Proof. To prove the necessity, we first note that Theorem 5.9
shows that δ1 is a compatible LO-proximity on Y. To see that δ1 is
an Λ-proximity, we note that y$ιE implies yeY—E~~ which is open.
Since / is δ-completely uniform, there is a nbhd. Ny of y such that
f~1(Ny)$f-1(E) i.e. Ny$Έ. Since trivially y$(Y- Ny), it follows that
δ1 is an iϋ-proximity.
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Conversely, suppose / is open δ-uniform and δι is an i?-proximity.
If Ny is a nbhd. of ye Y, y$(Y — Ny) and, since δ1 is an J?-proximity,
there exist a set A c Y such that y$1(Y — A) and A$\Y — Ny), i.e.,
yelnt(A) and f~1(A)$f-\ Y - Nw) = X - f^(Ny). This proves that
/ is δ-completely uniform.

In view of Theorem 4.1, it is not necessary to investigate as to
when δ1 is an ϋ/F-proximity and we now turn our attention to the
case when (X, d) is a semi-metric space. In this case we suppose
that δ = δ(d).

DEFINITION 5.12. The function / is called a jΓrmap iff for every

pair of distinct points yu y2 of F, f~ι{yι)$f~~ι{y^)\ equivalently,

0.

LEMMA 5.13. If (X, d) is a semi-metric space and f is a Trmap,
then

is a semi-metric on Y (not necessarily compatible with the topology of

Y).

COROLLARY 5.14. / / either d is a metric and f is compact or if
d is a semi-metric and f is δ-uniform, then p is a semi-metric on
Y.

LEMMA 5.15. Under the conditions of Lemma 5.13, for subsets
A, B of Y,

Proof. ρ(A, B) - Inf ^(/"'(α), /"'(ft)): α 6 A, b e B}. Now

d{f-\A), f-\B)) <: dif-^a), f-\b))

for each αe A, beB and this implies that {f~\A), f~\B)) ^ p(A, B).
Conversely, for every e > 0, there exist x e f~\A), y e f~\B) such that
d(x, y) < dtf-\A), f-\B)) + ε, and hence

p(A, B) <: dtp, y) < d{f~\A), f-\B)) + ε ,

i.e., p(A, B) ^ d{f-\A), f~ι(B)), thus proving the result.

COROLLARY 5.16. Under the conditions of Lemma 5.15, A δ(p)B
iff f-\A)Sf-\B).

LEMMA 5.17. If d is (resp. separately) upper semi-continuous and
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/ is open δ-uniform, then p is (resp. separately) upper semi-continuous.

Proof. Let p(y19 y2) = r and let ε > 0. Then there are x{ e f~ι(yι), i =
1, 2 such that d(xly x2) < r + ε/2. Since d is upper semi-continuous,
there exist nbhds. Nx. of xi9 i = 1, 2 such that for all ^ e Nx., i =
1, 2, dfe, z2) < r + ε. But this shows that p(pu p2) < r + ε for p{ e
f(Nx.), i = 1, 2 and the result follows since / is open. The case of
separate upper semi-continuity is similarly handled.

It is well known that if X is metrizable and / is open δ-uniform,
then 7 is a developable space. We get an improvement and a more
"symmetric" result from (3.3) and (5.17); viz.,

THEOREM 5.18. // X is developable and f is open δ-uniform
with respect to the proximity d induced by the development on X, then
Y is also developable.

THEOREM 5.19. If d is a metric on X and if f is continuous,
open and compact, then Y is developable.

Proof. By setting δ = δ(d), δι — δ(p), the result follows from the
continuity of d, (5.8), (5.17) and (3.3).

Finally, we conclude with a known result but which follows easily
from our analysis.

THEOREM 5.20. // d is a metric on X and if f is open and δ-
completely uniform, then Y is metrizable.

Proof. Set δ = δ(d) and δ1 = δ(p). It follows from (5.11) that δι

is a compatible ϋ?-proximity on Y. Also from (5.14), p is a semi-
metric on Y and the compatibility of δι implies the compatibility of
p. Hence by (4.1), Y is metrizable.
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