FIBER INTEGRATION IN SMOOTH BUNDLES

J. W. Auer

Abstract

The purpose of this paper is to comment on the operations of flber integration, or integration over the fiber, which arise in the study of the cohomology of bundles.

Let $\xi=\left(E, I_{E}, B, F, G\right)$ be a smooth $\left(C^{\infty}\right)$ bundle, where as usual E is the total space, B the base, F the (connected) fiber, G the group, and $\Pi_{E}: E \rightarrow B$ the projection. Assume $H^{k}(F)$ to be finite dimensional for all k. A form ω on the total space is said to have fiber-compact support if, and only if, for all $x \in B$, there is a neighbourhood U_{x} of x, a trivialization $\phi: U_{x} \times F \cong \pi_{E}^{-1}\left(U_{x}\right)$, and a compact set $K \subset F$ such that (support $\left.\phi^{*} \omega\right) \cap\left(U_{x} \times F\right) \subset U_{x} \times K$. Denote these k-forms by $A_{F}^{k}(E)$, and their de Rham cohomology by $H_{F}^{k}(E)$. When F is compact $A_{F}^{k}(E)=A^{k}(E)$, the algebra of all k-forms on E; if B is compact, $A_{F}(E)$ is the algebra $A_{c}(E)$ of forms on E with compact support. Now integration over fiber has been defined by various authors as a linear map

$$
\Psi: H^{k}(E) \longrightarrow H^{k-m}\left(B ; H^{m}(F)\right), k \geqq m,
$$

where m is the dimension of F. These definitions are essentially algebraic in nature; for example Ψ has been defined by a spectral sequence. Using this idea when ξ is orientable, a linear map

$$
\Psi_{1}: H_{F}^{k}(E) \longrightarrow H^{k-m}(B)
$$

is defined, and called algebraic fiber integration on account of the origin of the definition.

On the other hand, when ξ is orientable, there is the geometrically defined linear map $f_{F}: A_{F}^{k}(E) \rightarrow A^{k-m}(B)$ given roughly speaking by

$$
\left(f_{F} \omega\right)(x)=\int_{F_{x}} \omega / F_{x},
$$

where $\omega \in A_{F}^{k}(E), x \in B$, and F_{x} denotes the fiber of ξ over x. The induced map Ψ_{2} of cohomology is called geometric fiber integration:
$\Psi_{2}: H_{F}^{k}(E) \rightarrow H^{k-m}(B)$. The main purpose of the paper is to show
Theorem. $\Psi_{1}=\Psi_{2}$.

1. The spectral sequence in $A_{F}(E)$.
(a) In this section we obtain results analogous to a theorem of Borel [6], which we use to obtain an expression for Ψ_{1}.

The action of G on F induces an action on $H^{k}(F)$ and on $H_{c}^{k}(F)$, $k=0,1,2, \cdots, m$, where $H_{c}^{k}(F)$ denotes the de Rham cohomology of forms on F with compact support. Denote by h^{k} the total space of the bundle over B with fiber $H_{c}^{k}(F)$; because this bundle has a discrete group, the exterior derivative $\delta_{B}^{p, q}$ in $A_{B}^{p}\left(h^{q}\right)$ (the p-forms on B witn coefficients in h^{q}) is a differential operator. Denote $\operatorname{Ker} \delta_{B}^{p, q} / \operatorname{Im} \delta_{B}^{p-1, q}$ by $H^{p}\left(B ; h^{q}\right)$.
(b) We filter $A_{F}^{k}(E)$ following Hattori [5] and Borel [6]: when $\left\{x_{i}\right\},\left\{y_{j}\right\}$ are coordinates on neighbourhoods in B and F respectively, $i=1,2, \cdots, n-m, j=1,2, \cdots, m$, where $n=\operatorname{dim} E$, we use the same symbols to denote coordinates induced on sufficiently small open sets in E; then according to Hattori and Borel, I^{p} consists of those forms which involve at least p base differentials $d x_{i}$.

It will be convenient to define this filtration by a bigradation of $A_{F}(E)$. For this purpose, it is necessary to assume that a fixed connection ([7], p. 63) has been prescribed in ξ. Of course, by the remarks above, the filtration will be independent of the connection. If X is a C^{∞} vector field on E, then by definition its horizontal and vertical parts, $H X$ and $V X$ respectively, induced by the connection, are again C^{∞} vector fields. Whenever $\left\{x_{i}\right\},\left\{y_{j}\right\}$ are coordinates on an open set $W \subset E$, as described above, we denote by $d y_{j}^{v}, j=1,2, \cdots$, m, the 1 -forms on W defined by $d y_{j}^{v}(x)=d y_{j}(V X)$, where X is a vector field on W. Then $\left\{d x_{i}\right\} \cup\left\{d y_{j}^{v}\right\}$ generate $A^{1}(W)$ over $C^{\infty}(W)$.

Definition 1. $C^{p, q} \equiv C^{p, q}(E)=\left\{\omega \in A_{F}^{p+q}(E) \mid i\left(X_{1}\right) \cdots i\left(X_{p+1}\right) \omega=\right.$ $i\left(Y_{1}\right) \cdots i\left(Y_{q+1}\right) \omega=0$ for all horizontal vector fields X_{i} and vertical vector fields Y_{j} on E \}.

Here, as usual, $i(Z)$ is the substitution operator with respect to the vector field Z on E :

$$
i(Z) \omega\left(Z_{1}, \cdots, Z_{p+q-1}\right)=\omega\left(Z, Z_{1}, \cdots, Z_{p+q-1}\right)
$$

when Z_{1}, \cdots, Z_{p+q-1} are vector fields on $E, \omega \in A^{p+q}(E)$. Thus $i(Z)$: $A_{F}^{p+q}(E) \rightarrow A_{F}^{p+q-1}(E)$, because $A_{F}(E)$ is clearly stable under $i(Z)$.

Now we let Greek letters α, β, etc., represent sequences of positive integers of the form $\left(i_{1}, \cdots, i_{p}\right)$, for some positive integer p, with $i_{1}<i_{2}<\cdots<i_{p}$. Then $d x_{\alpha}$ will denote $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}$, and so on. We put $|\alpha|=p$ when $\alpha=\left(i_{1}, \cdots, i_{p}\right)$. Then if W is a coordinate neighbourhood in $E, \omega \in A^{k}(E)$, we may write ω / W as

$$
\begin{equation*}
\omega / W=\sum_{p+q=k} \sum_{\substack{|\alpha=p\\| \beta \mid=q}} \omega^{\alpha \beta} d x_{\alpha} \wedge d y_{\beta}^{v} \tag{1}
\end{equation*}
$$

where $\omega^{\alpha \beta} \in C^{\infty}(W)$, the C^{∞}-functions on W. Consequently any $\omega \in C^{p, q}(W)$ may be written

$$
\begin{equation*}
\omega=\sum_{\substack{|\alpha \times=p\\| \beta \mid=q}} \omega^{\alpha \beta} d x_{\alpha} \wedge d y_{\beta} \tag{2}
\end{equation*}
$$

with $\omega^{\alpha \beta} \in C^{\infty}(W)$.

Definition 2.

$$
I^{p, q}=\bigoplus_{r \geqq p} C^{r, p+q-r}, \quad I^{p}=\bigoplus_{q \geqq 0} I^{p, q} .
$$

It is easily seen that

Proposition 1. $\left\{I^{p}\right\}_{p=0}^{\infty}$ is a decreasing filtration of $A_{F}(E)$. It is the filtration associated with the gradation $\left\{C^{p}\right\}_{p=0}^{\infty}$ of $A_{F}(E)$, where $C^{p}=\bigoplus_{q \geqq 0} C^{p, q}$, because $I^{p}=\bigoplus_{r \geqq p} C^{r}$.

Note in particular that $I^{0}=A_{F}(E)$, and $I^{p}=\{0\}$ for $p>\operatorname{dim} B=$ $n-m$.

Remark. If the above definitions are carried out for $A(E)$, one obtains the filtrations of Hattori [5] and Borel [6]. In particular, the filtration is independent of the choice of connection in ξ.
(c) Denote by $\left\{E_{r}^{p, q}\right\}$ the spectral sequence defined by the filtration $\left\{I^{p, q}\right\}$ of $A_{F}(E)$ defined above (see §2). Then we will next show

Proposition 2.

$$
E_{2}^{p, q} \cong H^{p}\left(B ; h^{q}\right), \quad p, q \geqq 0
$$

Let \mathscr{A}_{B}^{P} be the sheaf of germs of p-forms on B, and \mathscr{C}_{B}^{∞} the sheaf of germs of C^{∞}-functions on B.

Definition 3. The sheaf \mathscr{F}^{q} of fiber-compact q-forms along the fiber of ξ.

We first define the presheaf \mathscr{F}^{q} on B by $\mathscr{F}^{q}(U)=C^{0, q}\left(\Pi_{E}^{-1}(U)\right)$, when U is open in B. Then $\mathscr{F}^{\bar{q}}$ is the sheaf induced by \mathscr{F}^{q}.

Lemma 1. $E_{0}^{p, q} \cong \Gamma\left(\mathscr{A}_{B}^{P} \otimes \mathscr{F}^{q}\right)(\Gamma(\mathscr{S})$ denotes the module of sections of any sheaf \mathscr{S}, and all tensor products are over the sheaf $\left.\mathscr{C}_{B}^{\infty}\right)$.

Proof. From the definitions we have that

$$
\begin{equation*}
E_{0}^{p, q}=C^{p, q} \tag{3}
\end{equation*}
$$

Definition 4.

$$
\Omega: \Gamma\left(\mathscr{A}_{B}^{p} \otimes \mathscr{F}^{q}\right) \longrightarrow C^{p, q} .
$$

Let $s \in \Gamma\left(\mathscr{A}_{B}^{P} \otimes \mathscr{F}^{q}\right)$; then if $U \subset B$ is sufficiently small, we may write s locally as a sum of terms of the form ω, where

$$
\omega=\left(\sum_{|\alpha|=p} \omega_{1}^{\alpha} d x_{\alpha}\right) \otimes\left(\sum_{|\beta|=q} \omega_{2}^{\beta} d y_{\beta}^{v}\right)
$$

with $\omega_{1}^{\alpha} \in C^{\infty}(U), \omega_{2}^{\beta} \in C^{\infty}\left(\Pi_{E}^{-1}(U)\right)$. Put

$$
\Omega(\omega)=\sum_{\substack{|\alpha|=p \\|\beta|=q}}\left(\omega_{1}^{a} \Pi_{E}\right) \omega_{2}^{\beta} d x_{\alpha} \wedge d y_{\beta}^{v},
$$

and extend linearly to define $\Omega(s)$.
Lemma 2. Ω is well-defined, independent of the choice of coordinates.

Proof. This follows from the fact that if $\left\{\bar{x}_{i}\right\},\left\{\bar{y}_{j}\right\}$ are coordinates defined on an open set in E overlapping the domain of definition of the coordinates $\left\{x_{i}\right\},\left\{y_{j}\right\}$, then

$$
d \bar{x}_{\alpha}=\sum_{|\mu|=p} \frac{\partial \bar{x}_{\alpha}}{\partial x_{\mu}} d x_{\mu}
$$

and

$$
\begin{equation*}
d \bar{y}_{\beta}^{v}=\sum_{|\alpha|=q} \frac{\partial \bar{y}_{\beta}}{\partial y_{\alpha}} d y_{\alpha}^{v} \tag{4}
\end{equation*}
$$

where $\partial \bar{x}_{\alpha} / \partial x_{\mu}$ represents the $p \times p$ sub-matrix with rows α, columns μ of the $(n-m) \times(n-m)$ matrix with entries $\partial \bar{x}_{i} / \partial x_{j}$, and analogously for $\partial \bar{y}_{\beta} / \partial y_{\alpha}$. Note that equation (4) is not the equation of transformation for the $d y_{\beta}$'s; the latter equation also involves linear combinations of the $d x_{\alpha}$'s. Since Ω is easily seen to be an isomorphism, this completes the proof of Lemma 1.

Definition 5. The homomorphism

$$
\delta_{F}^{p, q}: \Gamma\left(\mathscr{A}_{B}^{P} \otimes \mathscr{F}^{q}\right) \longrightarrow \Gamma\left(\mathscr{A}_{B}^{P} \otimes \mathscr{F}^{q+1}\right) .
$$

We first define the presheaf homomorphism $\underline{\delta}_{F}^{q}: \mathscr{F}^{q} \rightarrow \mathscr{F}^{q+1}$. Let $U \subset B$ be open, $\phi \in \mathscr{F}^{q}(U)=C^{0, q}\left(\Pi_{E}^{-1}(U)\right)$, and Y_{1}, \cdots, Y_{q+1} be vertical vector fields on $\Pi_{E}^{-1}(U)$. Then

$$
\begin{align*}
& \delta_{F}^{q}(U)(\phi)\left(Y_{1}, \cdots, Y_{q+1}\right) \\
= & \frac{1}{q+1} \sum_{i=1}^{q+1}(-1)^{i-1} Y_{i}\left(\phi\left(Y_{1}, \cdots, \hat{Y}_{i}, \cdots, Y_{q+1}\right)\right. \tag{5}\\
& +\frac{1}{q+1} \sum_{i<j}(-1)^{i+j} \phi\left(\left[Y_{i}, Y_{j}\right], Y_{1}, \cdots, \hat{Y}_{i}, \cdots \hat{Y}_{j}, \cdots, Y_{q+1}\right)
\end{align*}
$$

where the symbol \hat{Y}_{i} indicates that Y_{i} is to be omitted. In terms of coordinates, if $\phi=\sum_{|\beta|=q} \omega^{\beta} d y_{\beta}^{v}$, with $\omega^{\beta} \in C^{\infty}\left(\Pi_{E}^{-1}(U)\right)$, then

$$
\begin{equation*}
\underline{\delta}_{F}^{q}(U)(\phi)=\sum_{|\beta|=q} \sum_{k} \frac{\partial \omega^{\beta}}{\partial y_{k}} d y_{k}^{v} \wedge d y_{\beta}^{v} \tag{6}
\end{equation*}
$$

Now δ_{F}^{q} is the sheaf homomorphism induced by δ_{F}^{q}, and $\delta_{F}^{p, q}$ is the homomorphism of modules of sections induced by $(-1)^{p} 1_{\mathscr{\Omega}_{B}^{p}} \otimes \delta_{F}^{q}$.

Let $\Delta_{0}^{p, q}: E_{0}^{p, q} \rightarrow E_{0}^{p, q+1}$ be the map induced by the exterior derivative on E; that is, $\Delta_{0}^{p, q}$ is defined by the diagram below, where $\rho_{0}^{p, q}$ is the canonical projection:

Now in view of $E_{0}^{p, q}=C^{p, q}, \Delta_{0}^{p, q}$ is exactly the differential operator induced in C^{p} by the exterior derivative on E :

$$
\rho^{p, q+1} \delta=\Delta_{0}^{p, q}: C^{p, q} \longrightarrow C^{p, q+1},
$$

where $\rho^{p, q+1}: A_{F}^{p+q+1}(E) \rightarrow C^{p, q+1}$ is the canonical projection induced by $A_{F}(E)=\bigoplus_{p, q} C^{p, q}$.

Lemma 3. The diagram below is commutative:

Proof. Any $s \in \Gamma\left(\mathscr{A}_{B}{ }^{P} \otimes \mathscr{F}^{q}\right)$ is locally expressible on $W \subset E$ as a sum of terms of the form

$$
\omega=\left(\sum_{|\alpha|=p} \omega_{1}^{\alpha} d x_{\alpha}\right) \otimes\left(\sum_{|\beta|=q} \omega_{1}^{\beta} d y_{\beta}^{v}\right)
$$

so that

$$
\Omega(\omega)=\sum_{\substack{|\alpha=p\\| \beta \mid=q}}\left(\omega_{1}^{\alpha} \Pi_{E}\right) \omega_{2}^{\beta} d x_{\alpha} \wedge d y_{\beta}^{v} .
$$

Now we may write on W

$$
\begin{align*}
& d y_{j}^{v}=d y_{j}+\sum_{i} \theta_{j}^{i} d x_{i} \tag{7}\\
& d y_{k}=d y_{k}^{v}+\sum_{j} \zeta_{k}^{j} d x_{j} \tag{8}
\end{align*}
$$

where $\theta_{j}^{i}, \zeta_{k}^{j} \in C^{\infty}(W)$.
Replacing $d y_{\beta}^{v}$ using equation (7) one obtains

$$
\Omega(\omega)=\sum_{\substack{\alpha=p \\|\beta|=q}}\left(\omega_{1}^{\alpha} \Pi_{E}\right) \omega_{2}^{\beta} d x_{\alpha} \wedge d y^{\beta}+\sum_{\substack{|\alpha|>p \\ \mu}}(\cdots)^{\alpha \mu} d x_{\alpha} \wedge d y_{\mu}
$$

(where $(\cdots)^{\alpha \mu}$ indicate coefficients of terms with $|\alpha|>p$) so that using the definition of $\rho^{p, q+1}$, one obtains on account of $\partial / \partial y_{k}\left(\omega_{1}^{\alpha} \Pi_{E}\right)=0$,

$$
\begin{equation*}
\Delta_{0}^{p, q} \Omega(\omega)=\rho^{p, q+1} \delta \Omega(\omega)=\sum_{\substack{|\alpha|=p \\|\beta|=q}} \sum_{k} \frac{\partial \omega_{2}^{\beta}}{\partial y_{k}}\left(\omega_{1}^{\alpha} \Pi_{E}\right) d y_{k}^{v} \wedge d x_{\alpha} \wedge d y_{\beta}^{v} . \tag{9}
\end{equation*}
$$

One sees immediately that this is the same as the expression for $\Omega \delta_{F}^{p, q}(\omega)$, proving Lemma 3 .

As a consequence we have

$$
E_{1}^{p, q}=\operatorname{Ker} \Delta_{0}^{p, q} / \operatorname{Im} \Delta_{0}^{p, q-1}=\operatorname{Ker} \delta_{F}^{p, q} / \operatorname{Im} \delta_{F}^{p, q-1}
$$

Let h^{q} be the sheaf of germs of smooth sections of the bundle h^{q}. Now one can show by an argument identical to the one employed by Borel ([6], pp. 206, 207) that there is an isomorphism

$$
\begin{equation*}
\hbar^{q}=\operatorname{Ker} \delta_{F}^{q} / \operatorname{Im} \delta_{F}^{q-1}, \tag{10}
\end{equation*}
$$

and hence also $\operatorname{Ker} \delta_{F}^{p, q} \operatorname{Im} \delta_{E}^{p, q-1} \cong A_{B}^{p}\left(h^{q}\right)$. Thus we have
Lemma 4. $\quad E_{1}^{p, q} \cong A_{B}^{p}\left(h^{q}\right)$.
Proof of Proposition 2. Because $H^{p}\left(B ; h^{q}\right)=\operatorname{Ker} \delta_{B}^{p, q} / \operatorname{Im} \delta_{B}^{p-1, q}$ (see $\S 1$ (a) for the definition of $\delta_{B}^{p, q}$) and $E_{2}^{p, q} \cong \operatorname{Ker} \Delta_{1}^{p, q} / \operatorname{Im} \Delta_{1}^{p-1, q}$ it suffices to show that the diagram (11) below is commutative:

Here Ω^{1} is the isomorphism induced by virture of Lemma 4.
Consider the exact sequence of cochain complexes

where $\partial^{p, q}$ is induced by the exterior derivative $\delta: A(E) \rightarrow A(E)$ and $i(d)=(0, d), d \in C^{p+1, q-1}, j(c, d)=c, c \in C^{p, q}$.

Now it is known ([3], p. 85) that the differential operator $\Delta_{1}^{p, q}$ is the same as the connecting homomorphism $d^{p, q}$ induced by this exact sequence:

$$
d^{p, q}: \operatorname{Ker} \Delta_{0}^{p, q} / \operatorname{Im} \Delta_{0}^{p, q-1} \longrightarrow \operatorname{Ker} \Delta_{0}^{p+1, q} / \operatorname{Im} \Delta_{0}^{p+1, p-1} .
$$

Consequently, if $\omega \in \operatorname{Ker} \Delta_{0}^{p, q}$

$$
\Delta_{1}^{p, q}\left([\omega]_{E_{1}^{p, q}}\right)=\left[i^{-1} \partial^{p, q} j^{-1} \omega\right]_{E_{1}^{p+1}, q},
$$

where $[\omega]_{E_{1}^{p, q}}$ indicates the class of ω in $E_{1}^{p, q}$, and so on; that is, $\Delta_{1}^{p, q}\left([\omega]_{E_{1}^{p, q}}\right)$ is $\partial^{p, q} \omega$ modulo $\operatorname{Im} \Delta_{0}^{p+1, q-1}$.

Now suppose that $\omega \in A_{B}^{p}\left(h^{q}\right)$; then for a coordinate neighbourhood $U \subset B, \omega / U$ may be written as

$$
\omega / U(x)=\sum_{\substack{\alpha,=p \\|\beta|=q}}\left[\omega^{\alpha \beta} d y_{\beta}^{\nu}\right]_{H_{c}^{p}\left(F_{x}\right)} d x_{\alpha}
$$

where $x \in U \subset B$ and $\omega^{\alpha \beta} \in C^{\infty}\left(\Pi_{E}^{-1}(U)\right)$.
A consideration of the isomorphism Ω^{1} yields

$$
\begin{aligned}
\Omega^{1}(\omega / U) & =\sum_{\substack{\alpha|\alpha|=p \\
|\beta|=q}}\left[\omega^{\alpha \beta} d x_{\alpha} \wedge d y_{\beta}^{v}\right]_{E_{1}^{p, q}} \\
& =\left[\sum_{\substack{|\alpha|=p \\
|\beta|=q}} \omega^{\alpha \beta} d x_{\alpha} \wedge d y_{\beta}+\sum_{\substack{|\alpha|>p \\
\mu}}(\cdots)^{\alpha \mu} d x_{\alpha} \wedge d y_{\mu}\right]_{E_{1}^{p, q}},
\end{aligned}
$$

where we have again replaced $d y_{\beta}^{v}$ by means of equation (7).
A short computation now shows, when all quotients have been taken, and using (8), that

$$
\begin{equation*}
\Delta_{1}^{p, q} \Omega^{1}(\omega / U)=\left[\sum_{\substack{|\alpha|=p \\|\beta|=q}} \sum_{k} \frac{\partial \omega^{\alpha \beta}}{\partial x_{k}} d x_{k} \wedge d x_{\alpha} \wedge d y_{\beta}^{v}\right]_{E_{1}^{p+1, q}} \tag{12}
\end{equation*}
$$

on the other hand,

$$
\begin{aligned}
\Omega^{1} \delta_{B}^{p, q}(\omega / U) & =\Omega^{1} \delta_{B}^{p, q}\left(\sum_{\substack{|\alpha=p\\
| \alpha \mid=q}}\left[\omega^{\alpha \beta} d y_{\beta}^{v}\right]_{H_{c}^{q}(F)} d x_{\alpha}\right) \\
& =\Omega^{1}\left(\sum_{\substack{|\alpha|=p \\
|\beta|=q}} \sum_{k}\left[\frac{\partial \omega^{\alpha \beta}}{\partial x_{k}} d y_{\beta}^{v}\right]_{H_{c}^{q}(F)} d x_{k} \wedge d x_{\alpha}\right)
\end{aligned}
$$

where $\left[\omega^{\alpha \beta} d y_{\beta}^{v}\right]_{I_{c}^{q}(F)}$ indicates the section of h^{q} over U defined by

$$
\left[\omega^{\alpha \beta} d y_{\beta}^{v}\right]_{H_{c}^{q}(F)}(x)=\left[\omega^{\alpha \beta} d y_{\beta}^{v}\right]_{H_{c}^{q}\left(F_{x}\right)}, x \in U
$$

(recall that $\left.\left(h^{q}\right)_{x}=H_{c}^{q}\left(F_{x}\right)\right)$.
The expression above clearly yields the right hand side of equation (12), as required.
2. Fiber integration, algebraic definition. As mentioned earlier, algebraic fiber integration is defined by using the definition of Borel and Hirzebruch [1] applied to the spectral sequence $\left\{E_{r}\right\}$ arising from the filtration $\left\{I^{p}\right\}$ of fiber-compact forms on the total space of $\hat{\xi}$.

For convenience we recall some definitions from the theory of (decreasing) spectral sequences:

$$
\begin{aligned}
& Z_{s}^{p, q}=A_{F}^{p, q}(E) \cap\left\{a \in I^{p} \mid \delta \alpha \in I^{p+s}\right\} \\
& D_{s}^{p, q}=A_{F}^{p+q}(E) \cap I^{p} \cap \delta I^{p-s} \\
& E_{s}^{p, q}=Z_{s}^{p, q} /\left(Z_{s-1}^{p+1, q-1} \bigoplus D_{s-1}^{p, q}\right)
\end{aligned}
$$

where $0 \leqq p, q, s \leqq \infty$.
Let $I: Z_{\infty}^{0} \rightarrow H_{F}(E)$ be the canonical projection; then
(13) $\quad H^{p, q}=H_{F}^{p+q}(E) \cap \Pi\left(Z_{\infty}^{p}\right)$ filter $H_{F}(E)$, and $E_{\infty}^{p, q}=H_{\infty}^{p, q} / H_{\infty}^{p+1, q-1}$.

Because $\operatorname{dim} F=m$ and $\operatorname{dim} B=n-m$, it follows that $E_{r}^{p, q}=0$ for $q>m, p \geqq 0, r \geqq 0$ and that $I^{p}=0$ for $p>n-m$.

Lemma 5. (a) $E_{r}^{p, m} \subset E_{r-1}^{p, m}, r \geqq 3, p \geqq 0$.
(b) $E_{r}^{k-m, q}=E_{\infty}^{k-m, q}, r>\sup (n-k, k-m), k \geqq m, q \geqq 0$.
(c) $\quad E_{\infty}^{k-m, m}=H_{F}^{k}(E) / H_{\infty}^{k-m+1, m-1}, k \geqq m$.

As a consequence of Lemma 5 we now have an injection

$$
h_{1}: E_{\infty}^{k-m, m}=E_{r_{0}}^{k-m, m} \subset \cdots \subset E_{2}^{k-m, m}
$$

where $r_{0}=\sup (n-k, k-m)+1$, and a projection $h_{2}: H_{F}^{k}(E) \rightarrow E_{\infty}^{k-m, m}$. Let $\chi: E_{2}^{k-m, m} \cong H^{k-m}\left(B ; h^{m}\right)$ be the isomorphism induced by Ω (Proposition 2). Then the definition of Borel, Hirzebruch yields $\chi h_{1} h_{2}$:
$H_{F}^{k}(E) \rightarrow H^{k-m}\left(B ; h^{m}\right)$. We now define $\sigma: H^{k-m}\left(B ; h^{m}\right) \rightarrow H^{k-m}(B)$, under the assumption that ξ is orientable, in the following sense (see [4]):

Definition 6. ξ is orientable if, and only if, there exists an m form ψ on E such that for all $x \in B, i_{x}^{*} \psi$ is an orientation on F_{x}, the fiber over $x ; i_{x}: F_{x} \subset E$. If such a ψ has been chosen, ξ is called oriented.

Clearly F is orientable when ξ is.
Recall that $\iota^{m}=\operatorname{Ker} \delta_{F}^{m} / \operatorname{Im} \delta_{F}^{m-1}=\mathscr{F}^{m} / \operatorname{Im} \delta_{F}^{m-1}$.
We first define a map of presheaves, $\mathscr{I}: \mathscr{F}^{m} \rightarrow \mathscr{C}_{B}^{\infty}$, where \mathscr{C}_{B}^{∞} denotes the presheaf of germs of C^{∞}-functions on B Let $x \in U$, \bar{U} open in B, and $\omega \in \mathscr{\mathscr { F }}^{m}(U)$; then $(\mathscr{J}(U)(\omega))(x)=\int_{F_{x}} \omega(x)$. To show this is well defined, let $\left\{U_{j} / j \in J\right\}$ be a covering of B by open sets such that E is trivial over each U_{j}, with $\phi_{j}: U_{j} \times F \cong \Pi_{E}^{-1}\left(U_{j}\right), j \in J$. Define $\psi_{j, x}: F \rightarrow F_{x}$ by $\psi_{j, x}(f)=\phi_{j}(x, f), x \in U_{j}, f \in F$. Then

$$
\begin{equation*}
\left(\mathscr{J}\left(U_{j}\right)(\omega)\right)(x)=\operatorname{deg} \psi_{j, x} \int_{F} \psi_{j, x}^{*}(\omega(x)) ; \tag{14}
\end{equation*}
$$

this shows that $\mathscr{F}(U)(\omega)$ is C^{∞} in x, because, since ω has fibercompact support, the forms $\psi_{j, x}^{*}(\omega(x))$ on F have supports contained in a common compact set for x in sufficiently small open sets in B.

Thus there is a sheaf homomorphism $\mathscr{F}: \mathscr{F}^{m} \rightarrow \mathscr{C}_{B}^{\infty}$; if $\omega \in \operatorname{Im} \underline{\delta}_{F}^{m-1}(U)$, then by Stokes' Theorem, $(\mathscr{J}(U)(\omega))(x)=0$, for all $x \in U$. Consequently, \mathscr{J} induces a sheaf homomorphism, also denoted by $\mathscr{J}, \mathscr{J}: \mathscr{F}^{m} / \operatorname{Im} \delta_{F}^{m-1}=\hbar^{m} \rightarrow \mathscr{C}_{B}^{\infty}$. Lastly,

$$
\sigma: H^{k-m}\left(B ; h^{m}\right) \longrightarrow H^{k-m}(B)
$$

is canonically induced by \mathscr{F} on account of the commutative diagram below:

Combining σ with the map $\chi h_{1} h_{2}$ we obtain algebraic fiber integration $\Psi_{1}=\sigma \chi h_{1} h_{2} ; \Psi_{1}: H_{F}^{k}(E) \rightarrow H^{k-m}(B)$.
3. Fiber integration, geometric definition ([4], chapter 7). For arbitrary manifolds B, F, and $x \in B, y \in F$, define

$$
\begin{aligned}
& i_{x}: F \longrightarrow B \times F \text { by } i_{x}(y)=(x, y), y \in F, \\
& i_{y}: B \longrightarrow B \times F \text { by } i_{y}(x)=(x, y), x \in B
\end{aligned}
$$

When $\xi \in T_{x}(B)$, put $\hat{\xi}=\left(i_{y}\right)_{*} \hat{\xi} \in T_{(x, y)}(B \times F)$ and when $\zeta \in T_{y}(F)$, let $\hat{\zeta}=\left(i_{x}\right)_{*} \zeta \in T_{(x, y)}(B \times F)$.

Define $\lambda_{x}=C^{p, q}(B \times F) \rightarrow A_{c}^{q}\left(F ; \wedge^{p} T_{x}^{*}(B)\right.$) (with the trivial connection in the product bundle $B \times F$) by

$$
\left.\left(\lambda_{x} \omega\right)\left(y ; \zeta_{1}, \cdots, \zeta_{q}\right)\left(\xi_{1}, \cdots, \xi_{p}\right)=\omega\left((x, y) ; \hat{\xi}_{1}, \cdots, \hat{\xi}_{p}, \hat{\zeta}_{1}, \cdots, \hat{\zeta}_{q}\right)\right)
$$

where $x \in B, \omega \in C^{p, q}(B \times F), \zeta_{i} \in T_{y}(F)$ and $\xi_{j} \in T_{x}(B)$. For the product bundle $B \times F$ geometric fiber integration is the linear map

$$
f_{F}: C^{p, r}(B \times F) \longrightarrow A^{p}(B), p \geqq 0
$$

defined by $\left(f_{F} \omega\right)(x)=\left\{\begin{array}{l}\int_{F} \lambda_{x} \omega, x \in B, r=m \\ 0, r \neq m,\end{array} \quad\right.$ where $\omega \in C^{p, r}(B \times F)$.
For an arbitrary oriented bundle ξ, let $\left\{U_{j}, \phi_{j}\right\}$ be a family of trivializations as before with $\dot{\phi}_{j}: U_{j} \times F \cong \Pi_{E}^{-1}\left(U_{j}\right)$. If $\omega \in A_{F}^{k}(E)$, $\phi_{j}^{*} \omega$ is a fiber-compact form on $U_{j} \times F$, so that ω_{j} defined by $\omega_{j}(x)=$ $\operatorname{deg} \psi_{j, x}\left(f_{F} \phi_{j}^{*} \omega\right)(x)$ is a $k-m$ form on U_{j}. Define $f_{F} A_{F}^{k}(E) \rightarrow A^{k-m}(B)$ by $\left(f_{F}(\omega)\right)(x)=\omega_{j}(x)$ when $x \in U_{j}$.

It is easily shown that this is independent of the choice of U_{j}, so that f_{F} is well defined ([4]).

Furthermore, $f_{F} \delta_{E}=\delta_{B} f_{E}$, so that there is an induced map

$$
\Psi_{2}: H_{F}^{k}(E) \longrightarrow H^{k-m}(B),
$$

$k \geqq m$, called geometric fiber integration.
4. Proof of Theorem. $\Psi_{1}=\Psi_{2}$.

Let $[\omega] \in H_{F}^{k}(E)$ be represented by $\omega \in A_{F}^{k}(E)$.
If $W_{j}=\Pi_{E}^{-1}\left(U_{j}\right)$ is sufficiently small we may write

$$
\omega / W_{j}=\sum_{|\alpha|+|| |=k} \omega^{\alpha \beta} d x_{\alpha} \wedge d y_{\beta}, \quad \omega^{\alpha \beta} \in C^{\infty}\left(W_{j}\right)
$$

or, upon substitution of equation (8) for $d y_{\beta}$,

$$
\begin{equation*}
\omega / W_{j}=\sum_{\substack{|\alpha=k-m\\| \beta \mid=m}} \omega^{\alpha \beta} d x_{\alpha} \wedge d y_{\beta}^{v}+\sum_{\substack{\mid \alpha \\ \beta} \mid>k-m}(\cdots)^{\alpha \beta} d x_{\alpha} \wedge d y_{\beta}^{v} . \tag{15}
\end{equation*}
$$

Since $h_{2}: H_{F}^{k}(E) \rightarrow H_{F}^{k}(E) / H_{\infty}^{k-m+1, m-1}=E_{\infty}^{k-m, m}$ is merely the projection,

$$
h_{2}([\omega])=\left[\sum_{\substack{|\alpha|=k-m \\|\beta|=m}} \omega^{\alpha \beta} d x_{\alpha} \wedge d y_{\beta}^{v}\right]_{E_{\infty}^{k-m, m}}
$$

Hence,

$$
\chi h_{1} h_{2}([\omega])=\left[\sum_{\substack{|\alpha|=k-m \\|\beta|=m}}\left[\omega^{\alpha \beta} d y_{\beta}^{v}\right]_{h^{m}} d x_{\alpha}\right]_{H^{k-m}\left(B: h^{m}\right)}
$$

and

$$
\Psi_{1}([\omega])=\sigma \chi h_{1} h_{2}([\omega])=[\mu]_{H^{k-m}(B)},
$$

where $\mu \in A^{k-m}(B)$ with

$$
\begin{equation*}
\mu(x)=\sum_{|\alpha|=k-m}\left(\operatorname{deg} \psi_{j, x} \int \psi_{j, x}^{*}\left(\sum_{|\beta|=m} \omega^{\alpha \beta} d y_{\beta}^{v}\right)\right) d x^{\alpha} \tag{16}
\end{equation*}
$$

when $x \in U_{j}$.
On the other hand,

$$
\Psi_{2}([\omega])=\left[f_{F} \omega\right]_{H^{k-m}(B)}
$$

and

$$
\begin{equation*}
\left(f_{F} \omega\right)(x)=\operatorname{deg} \psi_{j, x} \int_{F} \lambda_{x}\left(\phi_{j}^{*} \omega\right)=\operatorname{deg} \psi_{j, x} \int_{F}\left(\sum_{\substack{|\alpha|=k-m \\|\beta|=m}} \omega^{\alpha \beta} \psi_{j, x} d y_{\beta}\right) d x_{\alpha} \tag{17}
\end{equation*}
$$

as a short computation shows.
A comparison of (16), (17) shows that $\Psi_{1}=\Psi_{2}$ as required.

References

1. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
2. S. S. Chern, On the characteristic classes of complex sphere bundles and algebraic varieties, Amer. J. Math., 75 (1953), 565-597.
3. R. Godement, Topologie Algébrique et Théorie des Faisceaux, Hermann (1964).
4. W. H. Grueb, S. Halperin, and R. Vanstone, Cohomology of Smooth Bundles I, II, III, Academic Press (to appear).
5. A. Hattori, A Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I (1960), 289-331.
6. F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer Verlag (1966) appendix II.
7. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, volume I, Interscience (1963).

Received September 30, 1971.
Brock University

