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FIBER INTEGRATION IN SMOOTH BUNDLES

J. W. AϋER

The purpose of this paper is to comment on the opera-
tions of fiber integration, or integration over the fiber,
which arise in the study of the cohomology of bundles.

Let ξ = (E, ΠE, B, F, G) be a smooth (C~) bundle, where as usual
E is the total space, B the base, F the (connected) fiber, G the
group, and ΠE:E—>B the projection. Assume Hk(F) to be finite
dimensional for all k. A form ω on the total space is said to have
fiber-compact support if, and only if, for all xeB, there is a neigh-
bourhood Ux of x, a trivialization φ: Ux x F ~ TΓΪ^CT*), and a compact
set KaF such that (support Φ*ω) n (Ux x F) c Ux x K. Denote
these fc-forms by Ak

F(E), and their de Rham cohomology by HF(E).
When F is compact AF(E) = Ak(E), the algebra of all jfc-forms on E;
if B is compact, AF(E) is the algebra AC(E) of forms on E with
compact support. Now integration over fiber has been defined by
various authors as a linear map

Ψ: Hk(E) > Hk~m (B; Hm(F)) , k^m,

where m is the dimension of F. These definitions are essentially
algebraic in nature; for example Ψ has been defined by a spectral
sequence. Using this idea when ξ is orientable, a linear map

Ψ,: Hk(E) > Hk~m(B)

is defined, and called algebraic fiber integration on account of the
origin of the definition.

On the other hand, when ξ is orientable, there is the geometrical-

ly defined linear map \ : Ak

F(E) —> Ak~m(B) given roughly speaking by
JF

where ωeAF(E), xeB, and Fx denotes the fiber of ξ over x. The
induced map Ψ2 of cohomology is called geometric fiber integration:

Ψ2: HF(E)-*Hk~m(B). The main purpose of the paper is to show

THEOREM. Ψ1 = Ψ2.

1* The spectral sequence in AF{E).
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(a) In this section we obtain results analogous to a theorem of
Borel [6], which we use to obtain an expression for Ψlm

The action of G on F induces an action on Hk(F) and on Hk(F),
k — 0,1, 2, , m, where Hk{F) denotes the de Rham cohomology of
forms on F with compact support. Denote by hk the total space of
the bundle over B with fiber Hk(F); because this bundle has a
discrete group, the exterior derivative δB'

q in Ap

B(hq) (the p-forms
on B witn coefficients in hq) is a differential operator. Denote
Ker δS'βm δζ~ι« by Hp(B;hq).

(b) We filter A${E) following Hattori [5] and Borel [6]: when
{%i}> {VJ} are coordinates on neighbourhoods in B and F respectively,
i — 1, 2, , n — m, j = 1,2, , m, where n = dim E, we use the
same symbols to denote coordinates induced on sufficiently small open
sets in E; then according to Hattori and Borel, Ip consists of those
forms which involve at least p base differentials dXi

It will be convenient to define this filtration by a bigradation of
AF(E). For this purpose, it is necessary to assume that a fixed
connection ([7], p. 63) has been prescribed in ξ. Of course, by the
remarks above, the filtration will be independent of the connection.
If J is a C°° vector field on E, then by definition its horizontal and
vertical parts, HX and VX respectively, induced by the connection,
are again C°° vector fields. Whenever {#J, {yό} are coordinates on an
open set Wa E, as described above, we denote by dy7-, j — 1, 2, •••,
m, the 1-forms on W defined by dyv

ά{x) = dyά{VX), where X is a
vector field on W. Then {dXi} U {dy°3) generate A\W) over C

DEFINITION 1. Cp>q = Cp>q{E) = {ω e Aγq{E) \ %(X^ ί{Xv+ι)ω =
i (Yι) i( Yq+1) o) = 0 for all horizontal vector fields X{ and vertical
vector fields Y, on E).

Here, as usual, i(Z) is the substitution operator with respect to
the vector field Z on E:

i(Z)ω(Z1, , Zp+q_d =ω(ZfZl9-.*, Zp+q^)

when Zlf - , Z , + H are vector fields on E, ωeAp+q(E). Thus i(Z):
Ap

F

+q(E) -* Ap

F

+q~ι{E), because AF(E) is clearly stable under i(Z).
Now we let Greek letters a, β, etc., represent sequences of posi-

tive integers of the form (ίl9 •• , ΐ P ), for some positive integer p,
with ix < i2 < < ip. Then dxa will denote dxiL Λ Λ d̂ » , and
so on. We put \a\—p when a — (ily , ip). Then if W is a
coordinate neighbourhood in E, ωeAk(E), we may write ω/W as

(1) ωf W - Σ Σ ω α ^ * Λ dy?
P+q=k \a\=p

\β\=q
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where ω"? eC°°(W), the C"-functions on W. Consequently any
ω eCPiQ(W) may be written

(2) ω = Σ ω*βdxaΛdyβ
\a\ = p

B\

with ω^eC°°(W).

DEFINITION 2.

I*>* = 0 cr>p+q~r , I* = 0 1 ™ .

It is easily seen that

PROPOSITION 1. {/*}£=<> is α decreasing filtration of AF(E). It is
the filtration associated with the gradation {C *}£=<, of AF(E), where
Cp = θ ^ o C ^ , because Ip = ®r*,Cr.

Note in particular that J° = A1,(^), and Ip={0} for p>dimB=:
n — m.

REMARK. If the above definitions are carried out for A{E), one
obtains the filtrations of Hattori [5] and Borel [6]. In particular,
the filtration is independent of the choice of connection in ξ.

(c) Denote by {E?*9} the spectral sequence defined by the filtra-
tion {Ip>q} of AF(E) defined above (see § 2). Then we will next show

PROPOSITION 2.

El* = HP(B; hq) , p, q ^ 0 .

Let JzfB

p be the sheaf of germs of p-forms on B, and <gV° the sheaf of
germs of C "-functions on B.

DEFINITION 3. The sheaf Jrq of fiber-compact g-forms along the
fiber of ξ.

We first define the presheaf Jf~« on B by Jfq{U) = C°'q(Πγ(U))9

when U is open in B. Then ^ q is the sheaf induced by J^q.

LEMMA 1. El>9 ̂  Γ(jχ?/ ®^~q) (Γ(£f) denotes the module of
sections of any sheaf S^, and all tensor products are over the sheaf
i f 5).

Proof. From the definitions we have that
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(3) Etq=Cp>9

DEFINITION 4.

Ω:

Let seΓ(j^B

p 0 ^q); then if UaB is sufficiently small, we may-
write s locally as a sum of terms of the form ω, where

ω = ( Σ ωΐ dχa ) (X) _
V|«|=p / \|j8|=g

with ωreC^ί?/), ωξ eC°°(Πγ(U)). Put

! ώ α Λ ̂  ,
\a\ = p
\β\ = q

and extend linearly to define Ω(s).

LEMMA 2. Ω is well-defined, independent of the choice of coordi-
nates.

Proof. This follows from the fact that if {̂ }, {y^} are coordi-
nates defined on an open set in E overlapping the domain of defini-
tion of the coordinates {xt}, {y^}, then

Σ ^
\μ\=p 0Xμ

dxa= Σ ^
\\ 0X

and

(4) dy}= Σtψ^dyl
\a\ = q dya

where dxa/dxμ represents the p x p sub-matrix with rows a, columns
μ of the (n — m) x (n—m) matrix with entries dxjdxj, and analogously
for dyβ/dya. Note that equation (4) is not the equation of transfor-
mation for the dyβ's; the latter equation also involves linear combi-
nations of the dxa's. Since Ω is easily seen to be an isomorphism,
this completes the proof of Lemma 1.

DEFINITION 5. The homomorphism

We first define the presheaf homomorphism 8%.: ^ q —>,^" i + 1. Let
UczB be open, φej?~9(U) = C°^(Πγ(U)), and Yx~-., Γg+Γbe vertical
vector fields on Π^{U). Then
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( 5 )

q +
( - iy+iΦ([ γt, Yi\,

where the symbol Ϋi indicates that Yi is to be omitted. In terms
of coordinates, if φ = ^m=q ω^ dyv

β9 with ω^ eC^iΠ^iϋ)), then

( 6 ) Λ Λ rftfί

Now Sj. is the sheaf homomorphism induced by δ_q

F, and δpq is the
homomorphism of modules of sections induced by ( — l)p l^v (x) δ | .

Let z/?'g: EΌ2''9 —> So

p>ff+1 be the map induced by the exterior deriva-
tive on E; that is, Δl*q is defined by the diagram below, where pl>q

is the canonical projection:

PΓ Po

> Eo

p>q+1 .

Now in view of E$*q — Cp'q, Ap>q is exactly the differential operator
induced in Cp by the exterior derivative on E:

pp>i+ijj = j j»« : CPΛ >Cp>q+1 ,

where ρp>q+1: Ap

F

+q+1(E)—»Cp'q+1 is the canonical projection induced by
AF(E) = ®P,gC

p>q.

LEMMA 3 The diagram below is commutative:

(x) ^~q) — > Cp'q = Etq

> Cp'q+1 = Eo

p'q+1 .

Proof. Any s
as a sum of terms of the form

is locally expressible on W c E

(g) Σ
\β\=q
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SO t h a t

Q(ω) = Σ « ΠE) ωβ

2 dxa A dy} .
\a\ = p
\β\=q

Now we may write on W

(7) dy) = dy5 + Σ #; *»*

( 8 ) dyt = dyk + Ί^ζίdXi

where 0$, ζ{eC~(W).

Replacing dy} using equation (7) one obtains

Ω(ω) = Σ (<»?#*) ωί d*« Λ dj/' + Σ ( Yμ dxa A dyμ
\a\ = p \cc\>P
\β\ = q μ

(where ("')aμ indicate coefficients of te rms with \a\>p) so t h a t
using the definition of pp>q+1, one obtains on account of d/dyk(ω"ΠE) = 0,

( 9 ) Δt*Ω(ω) - fi»<+1δΩ(ω) - Σ Σ ~ (<o?ΠE)dyl A dxa A dy} .
\β\=g tfk

One sees immediately that this is the same as the expression for
Ωd$q(ω), proving Lemma 3.

As a consequence we have

Etq = Ker Jf'Vim Δlq~ι = Ker hy*flm δpq~ι .

Let /£q be the sheaf of germs of smooth sections of the bundle hq.
Now one can show by an argument identical to the one employed by
Borel ([6], pp. 206, 207) that there is an isomorphism

(10) άq = Ker δS /Im dy1 ,

and hence also Ker δ£VIm δ*E>q-1 = Ap

B{hq). Thus we have

LEMMA 4. E?>q ~ Ap

B{hq).

Proof of Proposition 2. Because HP(B; hq) = Ker δ^VIm δjΓ1'* (see
§ 1 (a) for the definition of δ%q) and Etq = Ker 4*>'/lm ΔfUq it suf-
fices to show that the diagram (11) below is commutative:

Ω1

A l { h " ) E r

(11) Δψ
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Here Ωι is the isomorphism induced by virture of Lemma 4.
Consider the exact sequence of cochain complexes

i . i . i
0 » cp+1'9~ι — + CP'Q 0 CpJrl>q~l —j—+ Cp>q

J I

where 3P'9 is induced by the exterior derivative 3: A(E) —»• A(2£) and
i(d) = (0, d), <Z G C^1^"1, i(c, d) = c, c e C™.

Now it is known ([3], p. 85) that the differential operator Δl* is
the same as the connecting homomorphism dp>q induced by this exact
sequence:

dp>q: Ker Δξ«βm Apq~l —-> Ker Δξ+U

Consequently, if ω

where [o)]Ep^ indicates the class of ω in' E?t9

f and so on; that is,
Δp>q([ω]Ep,<i) i s dp'qω m o d u l o ImΔξ+U9'1.

Now suppose that ωe A%(hq); then for a coordinate neighbourhood
UaB, ω/U may be written as

ω/U(x) = Σ [^aβdyv

β]HpiFχ)dxa
\a\ = p
\β\=g

where x e U c B and (oaβ e C°°(Π
A consideration of the isomorphism Ωι yields

Ω\ωjU) = Σ [o)aβdxa A dyv

β]Ep,Q

= Σ o)aβdxa Λdyβ + Σ ( )aμdxa Λ dyμ pq ,

where we have again replaced dyv

β by means of equation (7).
A short computation now shows, when all quotients have been

taken, and using (8), that
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(12) zirΩι(ω/U) = I Σ Σ ^— dχk Λ dxa A dy)

on the other hand,

Ω'δ&'iω/U) = ΩιδpA Σ [ω"dy}]H<{P)dxa
\a\ = p
\β\=q

= Ωι{ Σ Σ Γ ^ di/?l <te* Λ dx
\\ k L SsC Λ q )

. =p k L dxu AHIIF)
\β\=q lc c

where [θ)aβdyυ

β]H<iΛF} indicates the section of hq over U defined by

.„ xeU

(recall that (hq)x = H?(FX)).
The expression above clearly yields the right hand side of equa-

tion (12), as required.

2* Fiber integration, algebraic definition* As mentioned earlier,
algebraic fiber integration is defined by using the definition of Borel
and Hirzebruch [1] applied to the spectral sequence {Er} arising from
the filtration {Ip} of fiber-compact forms on the total space of ξ.

For convenience we recall some definitions from the theory of
(decreasing) spectral sequences:

Z? q = Apq(E) Π{aelp\δae Ip+S}

Dp

s>
q = Ap

F

+q(E) n ip n §ip~s

Ep>q = Z

where 0 ^ p, q, s ^ oo.
Let 77: Zl~+ HF{E) be the canonical projection; then

(13) Hp>q = H£+q(E) Π Π{ZP) filter HF(E), and E™ = Hp>qIHp+ι>q~ι .

Because dim F = m and dim B = n — m, it follows that J S ^ = 0
for q > m, p ^ O , r ^ O and that / p = 0 for p > n — m.

LEMMA 5. (a) E?>m c J&^T, r ^ 3, p ^ 0.
(b) E'̂ -™''7 = Eί~m>q, r > sup (n - k, k - m), k^m, q^ 0.
(c) j££-™>« =

As a consequence of Lemma 5 we now have an injection

hx: Et~m>m = Er

k~m'm c c Etm'm

where r0 = sup(^—k, k — m) + 1, and a projection h2: HF(E)—+E*~m'm.
Let χ: E2

k~m'm ~ Hk~m(B; hm) be the isomorphism induced by Ω (Pro-
position 2). Then the definition of Borel, Hirzebruch yields χhjι2\
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m(E)-»Hk-™(B;hm). We now define σ: Hk~™(B; hm) — Hk~m(B),
under the assumption that ξ is orientable, in the following sense
(see [4]):

DEFINITION 6. ξ is orientable if, and only if, there exists an m-
form ψ on E such that for all xeB, i* ψ is an orientation on Fx,
the fiber over x; ix: Fx c E. If such a ψ has been chosen, ξ is called
oriented.

Clearly F is orientable when ξ is.

Recall that ^ = Ker <5?/Im δp-1 = Ĵ ~ m/Im δ?-1-
We first define a map of presheaves, J?\ ±^*w—>^°°, where

j g y denotes the presheaf of germs of C°°-functions on B: Let xeU,

U open in B, and ω e ^~m(U); then (w (̂Z7)(ω))(α?) - ί ω(x). To show

this is well defined, let {Uj/j e J} be a covering of B by open sets
such that E is trivial over each Uj9 with φ5: Uj x F ~ ΠΫiUj), j eJ.
Define ψj>x: F-+ Fx by ψJf.(/) = ^(a?, / ) , XG Ui9 feF. Then

(14) (^(J7y) (ω))(x) = deg ^ . .

this shows that ^{U){ω) is C°° in x, because, since ω has fiber-
compact support, the forms ψ*,x(ω(x)) on F have supports contained
in a common compact set for x in sufficiently small open sets in B.

Thus there is a sheaf homomorphism ^\ JF~m —> <gy°; if
ωelmδJ-^Z/), then by Stokes' Theorem, (^(U)(ω))(x) = 0 , for all
xe U. Consequently, ^ induces a sheaf homomorphism, also denoted
by ^ J^\ J ^ / I m δp-1 = έ» -* <t?B°°. Lastly,

σ: Hk-m(B; hm) > Hk~m{B)

is canonically induced by ^ on account of the commutative diagram
below:

(g)

Combining σ with the map χhjι2 we obtain algebraic fiber integration
Ψi = σχhAl Ψi: Hk{E)->Hk-™{B).

3. Fiber integration, geometric definition ([4], chapter 7)* For
arbitrary manifolds B, F, and xeB, yeF, define
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ίx: F > B x F by ix{y) = (#, y), yeF,

iy: B > B x F by ίy(x) = (#, T/), a e ί .

When f G Γ^JS), put ξ = (£y)*f G T^CB x .F) and when ζ e Ty(F), let
ζ - ( i , ) , ζ e Γ M ( B x ί 7 ).

Define λx = O g ( B x F) -> A?(F; Λ PT*(B)) (with the trivial con-
nection in the product bundle B x F) by

(Xxω)(y; ζl9 , ζg)(fi, , ξp) = ω((a;, #); fi, , | p , ζi, , Q )

where a e ΰ , ω e C M ( ΰ x F), ζ{e Ty(F) and ^ e TX(B). For the pro-
duct bundle B x F geometric fiber integration is the linear map

ί : Cp>r(B x F) > A*(B), p ^ 0 ,
JF

defined by (J α)J (a;) - i j F

λ ^ ' ^ G ' r m

 w h e r e ω G c ^ r ( β x F).
[0,rΦ m,

For an arbitrary oriented bundle f, let {U3 , Φj} be a family of
trivializations as before with φά: Uj x F = Π^(Uj). If ω e 4 ( £ ) ,
^*ω is a fiber-compact form on U3 x F, so that a)j defined by co3(x) —

φfω)(x) is a A:—m form on U3. Defined /.

by ( t (ω))(α?) = -̂(a?) when x e Uj.

It is easily shown that this is independent of the choice of U3 ,
r

so that \ is well defined ([4]).
JF

f Γ
Furthermore, \ δ£, = δ5 \ , so that there is an induced map

JF JEΨ2:

k ^ m, called geometric fiber integration.

4. Proof of Theorem. Ψx = Ψ2.
Let [ω]eH%(E) be represented by ωeAk

F{E).
If ]^. = Πγ(Uj) is sufficiently small we may write

= Σ ω α ^ Λ dyβ , ω^ e C

or, upon substitution of equation (8) for dyβ,

(15) ω/TΓ. - Σ ωaedxa A dyv

β + Σ ( )α^ ̂  Λ # ? .
\a\ = k—m \a\>k~m
| j S | = m ^

Since h2: H^(E)^H^(E)/Hk-m+1'm-1 = Ek~m'm is merely the projection,
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\β\=m

Hence,

χhAHω]) = I Σ [ωa^dyv

β
i.\a\ = k~m

and

W&a)]) = σχhA([o)]) = [μ]Hk-m{B) ,

where μ e Ak~m(B) with

(16) μ(x) = Σ (Aegψj}X \ψ*,x( Σ ft>^ώ^))ώα

when x e J7,-.
On the other hand,

and

(17) (ί ( Σ ω«t ψjtXdyβ)dxa
F\\a\=k-m /

\β\=m

as a short computation shows.
A comparison of (16), (17) shows that Ψ1 — Ψ2 as required.
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