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POWER SERIES RINGS OVER PRUFER DOMAINS

Jimmy T. ARNOLD

Let R be a commutative ring with identity. R is said to
have dimension #n, written dim R = n, if there exists a chain
Pyc Pic:---c P, of n + 1 prime ideals of R, where P, c R,
but no such chain of 7 + 2 prime ideals. Seidenberg has
shown that if dim R =7 and X is an indeterminate over
R, then n+1=dmR[X]=<2n+ 1. Moreover, he has
shown that dim R[{X]=n + 1 if R is a Priifer domain. The
author has shown that if V is a rank one nondiscrete valua-
tion ring, then dim V[[X]] = co. The principal result of this
paper is that if D is a Priifer domain with dim D = n, then
either dim D[[X]] =% + 1 or dim D[[X]] = o, and necessary
and sufficient conditions are given.

1. NoTATION. Our notation and terminology are essentially that
of [4]. Throughout, R denotes a commutative ring with identity
and T denotes the total quotient ring of R. By an overring S of R,
we shall mean a ring S such that RS S T. The set of natural
numbers will be denoted by ® and @, is the set of nonnegative
integers. If A is an ideal of R, then we let

A[[X]] = { F(X) = 3, a:X*fa e A for each ie wo}

and we define AR[[X]] to be the ideal of R[[X]] which is generated
by A. The ideal A will be called an SFT-ideal (an ideal of stromg
finite type) provided there exists a finitely generated ideal BS A
and kcw such that a*e B for each ac A. We say that R is an
SFT-ring provided each ideal of R is an SFT-ideal.

2. Some properties of SFT-rings. Arnold has shown in [1] that
if R is not an SFT-ring, then dim R[[X]] = «. In this paper we
are primarily concerned with finite-dimensional Priifer domains which
are also SFT-rings, and our main result shows that for such a do-
main D, if dim D = n, then dim D[[X]] = #n + 1. Before restricting
our attention to Priifer domains, however, we wish to consider some
properties of arbitrary SFT-rings.

LEmMmA 2.1. If A, A, are SFT-ideals of R and if C is an ideal
of R such that A,N 4,2 C 2 A,A,, then C is an SFT-ideal.

Proof. For ¢ =1, 2, there exists a finitely generated ideal
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B, & A; and k; e w such that afie B; for each a;€ A;. Set k=k, +k,.
Then for c¢ceC, we have that ¢* = ch¢2e BB, & A4, = C. Since
B,B; is finitely generated, the lemma follows.

PRrROPOSITION 2.2. R is an SFT-ring if and only if each prime
ideal of R is an SFT-ideal.

Proof. Suppose that R is not an SFT-ring. It follows from a
straight-forward application of Zorn’s Lemma that R contains an
ideal P which is maximal among those ideals of R which are not
SFT-ideals. Thus, if A and B are ideals of R which properly con-
tain P, then A and B are SFT-ideals. It is an immediate consequence
of Lemma 2.1 that P 2 AB, for otherwise, P would be an SFT-ideal.
Therefore, P is a prime ideal of R which is not an SFT-ideal.

PROPOSITION 2.3. If the ring S ts the homomorphic image of an
SEFT-ring R, then S is also an SFT-ring.

The proof of Proposition 2.3 is straightforward and will be
omitted.

Before stating our next result, we recall that an overring R, of
R is called a flat overring of R provided R, is flat as an R-module.
Richman in [8] has studied flat overrings of integral domains and
has dubbed them ¢“generalized quotient rings” due to the fact that
many of the classical properties of quotient rings also hold for flat
overrings. Flat overrings are further considered in [2], where they
are shown to be a special class of “generalized transforms.” Specifical-
ly, if R, is a flat overring of R, then there exists a multiplicatively
closed set .&” of ideals of R such that

R, =R, ={¢eT/tAZ R for some Ac.&}.

Moreover, & may be chosen so that AR, = R, for each Ae $”[2,
Thm. 1.3]. Using this notation and terminology, we now prove the
following result.

PROPOSITION 2.4. Let R be an SFT-ring. If R, is a flat over-
ring of R, then R, is an SFT-ring.

Proof. Let R, = R. as described above, and let @ be a prime
ideal of R. If we set P= QN R, then Q = P, [2, Thm. 1.1]; thus,
for g € @, there exists Aec.%” such that ¢4 < P. But P is an SFT-
ideal, so there is a finitely generated ideal BS P and ke ® such
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that p*e B for each pe P. In particular, ¢*a*ec B for each ac A.
Let &= {ée R,/qg*¢ € BR)}. Then .o is an ideal of R, and a*ec .7
for each ac A. Consequently, we have that V.o = VAR, = R,
from which it is immediate that &= R,. This shows that ¢* ¢ BR,
for each g e @, and hence, that Q is an SFT-ideal in R,.

PrOPOSITION 2.5. If R s an SFT-ring, then R satisfies the
ascending chain condition for radical ideals, i.e., the prime spectrum
of R is Noetherian.

Proof. Clearly, each radical ideal of R is the radical of a finitely
generated ideal. But this is equivalent to the ascending chain condi-
tion for radical ideals [7, p. 633].

If R satisfies the ascending chain condition for radical ideals,
then it is shown in [6, p.59] that each ideal of R has only finitely
many minimal prime divisors. As an immediate consequence we
have

COROLLARY 2.6. FEach ideal of an SFT-ring has only finitely
many minimal prime divisors.

We conclude this section with the following lemma.

LEMMA 2.7. Let D be an integral domain which s an SFT-ring.
If P is a nonzero prime ideal of D, then P = P’

Proof. Let V be a valuation overring of D for which PV %= V.
Since P is an SFT-ideal, there exists a finitely generated ideal B < P
and ke w such that p*e B foreach pe P. If P, = PV and B, = BV,
then we also have &*e B, for each £ec P,. Since V is a valuation
ring, it follows that P & B, = P,. If B, = P, then P, is principal,
so P, == P:. If B,cC P, then P}= P, and again it follows that P, = PZ
Consequently, P # P* as we wished to show.

3. Priifer domains which are SFT-rings. Throughout this
section D will denote a Priifer domain. We begin by giving a
characterization of those Priifer domains which are also SFT-rings.

PROPOSITON 3.1. In order that the Priifer domain D be an SFT-
ring, it s necessary and sufficient that for each nonzero prime ideal
P of D, there exists a finitely generated ideal A such that

PP ASP.
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Proof. In view of Proposition 2.2, it is clear that the given
conditions are sufficient to insure that an arbitrary ring is an SFT-
ring. To show that they are also necessary for the Priifer domain
D, suppose that D is an SFT-ring and let P be a nonzero prime
ideal of D. Since P is an SFT-ideal, P =1 B for some finitely
generated ideal B of D. By Lemma 2.7 there exists pe P — P If
we set A= B+ (p), then A is finitely generated, P =1 A, and
P*2 A. Let M be a maximal ideal of D which contains P. Since
P® is P — primary [4, 19.3], we have P*= P*D, N D. It follows that
P:D, 2 AD,; hence P*D, < AD,. Consequently, P?’< A < P.

COROLLARY 3.2. Suppose that D is an SFT-ring, let P be a
nonzero prime ideal of D and let pe P — P?. For each necw there
exists s, € D — P such that s,P"" & (p").

Proof. Let A= (a, +++,a, be a finitely generated ideal of D
such that PP A< P. Then AD, & PD, = (p)D5, so we may find
s€D — P such that sa;e(p) for 1 <7<m. For each necw, set
s, =s" For n =1 we get s,P*< s,A < (p), and for n > 1 we get
s, P* = (s,P)(8,.P"™") & (0)(8,_.P*") & s,_,P™. The corollary follows
by induction on 7.

Hereafter, we assume that D has finite dimension; 7 = {P,}.c.4
is the set of minimal prime ideals for D, and _# = {M;};., is the
set of maximal ideals of D.

If D is an SFT-ring, then as an immediate consequence of Lemma
2.7, we see that D, is a discrete valuation ring for each prime ideal
Q of D [4,p.177]. In particular, D, is a rank one discrete valua-
tion ring for each P,eIl. Dedekind domains and discrete valuation
rings with finite dimension provide immediate examples of Priifer
domains wich are SFT-rings. In fact, if dim D = 1, then it follows
from [4, 30.2] that D is an SFT-ring if and only if D is a Dedekind
domain. If we set D’ = N, Dp,, then from [4, 22.1], we see that D’
is a Priifer domain. Richman shows in [8] that each overring of a
Priifer domain is a flat overring, so by Proposition 2.4 D’ is an SFT-
ring. It is immediate from Corollary 2.6 that D’ has finite real
character [cf. 4, p. 505], so by [4, 35.8] we have dim D’ = 1. Our
preceding remarks now imply that D’ is a Dedekind domain. By
[4, 36.11], D’[[X]] is a Krull domain, and since D’ is Noetherian we
have that dim D’[[X]]=2 [3, p. 603]. But the maximal ideals of D’ [[X]]
are of the form P -+ (X), where P is a maximal ideal of D', so J' =
(D'[[ X1 p - is a one-dimensional Krull domain—that is, J’ is a Dede-
kind domain [4, 35.16]. Set J = (D[[X]]),—« and let L denote quotient
field of D [[X]].
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LeEmMMA 3.3. If D is an SFT-ring, then J = J’' N L.

Proof. Clearly, JESJ'NL, so let &X)=fFf(X)/9g(X)ed' NL,
where f(X), ¢(X)e D [[X]], f(X) = 3% fiX* and ¢(X) = 3%, 9.X°%
Since &(X) eJ’, there exist e D'— (0) and A(X) e D' [[X]] such that
AM(X) = g(X)h(X). Consequently, if there exists m € w, such that
9; = 0 for 7 < m, then we also have that f; = 0 for 7 < m. Therefore,
in our representation &(X) = f(X)/9(X), we may assume that g, = 0.
If M;e_« is such that g,¢ M, then ¢g(X) is a unit in D,,[[X]].
Thus, &(X) e D,,[[X]]. Let @ be a minimal prime divisor of (g,)D
and let P be the minimal prime ideal of D contained in Q. Clearly,
§(X)e (-DP[[X]])DP——(O) and by [3, p. 602], (D»[[X]])pp0 = (Do [[X]])DQ—(O)‘
Hence, there exists d € D, — (0) such that d&(X) e D,[[X]]. In fact,
we may assume that deD. If M;e_« is such that M, 2 @, then
QDo S Dy, [4, 14.6]. Consequently, for ¢ge @ — (0), we have

qd2(X) e Dy, [IX1] -

By Corollary 2.6, (g,)D only finitely many minimal prime divisors, so
it follows that we may find » € D — (0) such that

ré(X) € ) D, [[X]] = DIIX]] -

Therefore, £(X)eJ as we wished to show.
We wish to show that J is, in fact, a Dedekind domain. In
order to do this, we first need to consider the domain

U=DI[X]INnL.

LemMA 3.4, If A ts an ideal of U such that AD'[[X]] is con-
tained in no minimal prime ideal of D'[[X]], then X" A for some
nE .

Proof. The only possible minimal prime divisors for AD'[[X]]
are of the form P + (X), where P is a maximal ideal of D’. Con-
sequently, XeV AD'[[X]] — that is there exists new such that
X e AD'[[X]]. Let M(X),+++, 0 (X) e D'[[X]] and a,(X),---,a,(X) e A
be such that X"= 3% N(X)a,(X). If M(X) =7, 8 X, set 7(X) =
S, B X and (X)) = (X)) — v(X))/X*'. For 1 <¢ <k we have
that v,(X) e D’'[[X]] N L = U, and hence,

’Z 7:(X) a(X) = i_ M(X)a(X) — X+@k LX) a X))

= X"~ X3 L(X)aX) e A
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But w(X) =1 - XC L, {i(X)a,(X)) e U is a unit in D'[[X]], so it is
also a unit in U. Therefore, X" c A.

Assuming that D is an SFT-ring, we know that D, is a rank
one discrete valuation ring for each P,ell. If v is a valuation as-
sociated with D, , then we may define a “trivial extension” v* of v
to L by setting

v* (i,) ko) = min {v*(k;) | h; # 0}

for 32, b, X e D[[X]]]5, p. 380]. If V* is the valuation overring of
DI[[X]] associated with ¢*, then V* is rank one discrete and is
centered on P,[[X]] in D[[X]]. Since D’'< D, , we may also extend
D,, to a rank one discrete valuation overring V* of D’[[X]]. If
P, = P,Dp, N D', then V* is the essential valuation overring of
D'[[X]] associated with the minimal prime ideal P,[[X]][5, p. 380].
It follows from [4,86.10] that U = D'[[X]]N L is a Krull domain
and each minimal prime ideal of U has the form QN U, where @
is a minimal prime ideal of D’'[[X]]. Moreover, whenever @ is a
minimal prime ideal of D’[[X]] such that QN U = (0), then QN U
is a minimal prime ideal of U and (D’[[X]])eN L is the essential
valuation overring of U associated with @ N U. In particular, V*=
VFN L is the essential valuation overring of U associated with
P! = P,[[X]INn U. We are now in a position to prove the following
key result.

PROPOSITION 3.5. Suppose that D is an SFT-ring and let P, e II.
Then P,[[X]] is @ minimal prime ideal of D[[X]].

Proof. Let @ be a nonzero prime ideal of D[[X]], @ & P.[[X]].
If ()cenD<s P, =P,X]INnD, then N D = P,. Consequently,
Q@ 2 P,D[[X]]. But P,[[X]] =V P.D[[X]] [1, Thm. 1], so it follows
that @ = P,[[X]]. Thus, we may assume that QN D = (0). Let W
be a valuation overring of D[[X]] with prime ideals @, D @, such
that @, is maximal in W, Q,ND[[X]] = P,[[X]] and Q.ND[[X]] = Q.
If peP,— P2, then pe @, — Q,, so we may assume that @, =1V pW.
We wish to show that US W. Thus, let &(X)e U. Since

veJ'NnL=4J,

we may write £(X) = f(X)/d, where f(X)e D|[[X]] and de D — (0).
Suppose that £(X)¢ W. Then

§X)" =d/f(X)eQ,, so wd)>w(f(X) =0,

where w is a valuation associated with W. Now w(d) > 0 implies
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that d e P, and hence, that v»*(d) > 0. Since £&X)eUZ V*, we
have that v*(§(X)) = 0 — that is, v*(f(X)) = v*(d) > 0. If v*(d) =k,
then (d)Dp, = PiDy, = (p*)D5,, so there exists s, t € D— P, such that
sd = tp*. But then v*(f(X)) =k, so f(X)ePi[[X]]. Since Q, =
VpW, there exists mew such that d*/f(X)" = pMX) for some
MX)e W. But f(X)"eP:*[[X]], so by Corollary 3.2, there exists
zeD — P, such that o(f(X))* = p"*fu(X), where fi(X)e D[[X]].
Since nk < v*(zf(X)") = v*(p"* 7 fi(X)) = (rk—1) + v*(fi(X)), it fol-
lows that fi(X) e P,[[X]]. We now have

MX) = d*/p(f(X))" = tsd"[s"pr(F(X))"
= t"p"*[s"p" fi(X) = 7t*/s"fu(X) .

But w(rt"/s"fi(X)) = —w(fi(X)) <0, so it must be the case that
w=2U.

Let P! be the center of V* on U — that is, P/ = P,[[X]]n U,
and let @) be the center of W on U. We claim that @, = P/, for

let &(X) = f(X)/de P!. Then »*(f(X)) > v*(d) = 0; in particular,
FX)eP[X]]€ Q..

If de¢ P,, then w(&(X)) = w(f(X)) > 0 and hence, £(X)eQ,n U = Q..
Thus, assume that de P, — say v*(d) = k. Then arguing as above,
there exist s, te D — P, such that sd = ¢tp*. Moreover,

(X)) zk+1, so f(X)eP:[[X]].

Consequently, there exists e D — P, and fi(X) e P,[[X]] such that
tf(X) = p*fi(X). This yields &(X) = stf(X)/csd = sp*fi(X)/ctp* =
sfi(X)/ct which, as we have just observed, is in Q). Therefore,
P! < @,. But we also have that @.N Uc @}, and Q,N U 2 P/ since
(@.N U)NDI[[X]] = Qc P.[[X]] = P, n D[[X]]. It follows that @
contains at least two distinect minimal prime ideals of U and hence,
(@Q)D'[[X]] cannot be contained in any minimal prime ideal of
D'[[X]]. By Lemma 3.4, there exists ncw such that X"e Q| = @Q,,
contrary to our assumption that @, ND[[X]] = P,[[X]]. We conclude
that P,[[X]] is minimal in D[[X]].

We now digress momentarily in order to strengthen the results
of Proposition 3.5. It follows from [4, 16.10] that if P is a prime
ideal of D, then each prime ideal of D[X] contained in P[X] is the
extension of a prime ideal of D. We show that the following analogue
holds in DI[[X]].

COROLLARY 3.6. If D is an SFT-ring and if P is a prime ideal
of D, then the only prime ideals of D[[X]] contained in P[[X]] have
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the form P.[[X] for some prime ideal P, of D.

Proof. Suppose that D is an SFT-ring, let P be a prime ideal
of D, and let @ be a nonzero prime ideal of D[[X]] such that
QCP[[X]]l. If QnD =P #(0), then @2V P D[X]] = P'[[X]]
[1, Thm. 1], so by considering D[[X]]/P’[[X]] = (D/P’) [[X]], we may
assume that @ N D = (0). In view of Proposition 3.5, we may also
assume that P is not minimal in D; hence, there exists a prime ideal
P, of D such that P,c P and there are no prime ideals properly
contained between P and P, [4,19.3]. We further assume that
P[X]]12Q. Let peP— P*and p,eP, — P2

S = {p*s(X) | ke w, s(X) e D[[X]] — P[[X]]}
is a multiplicative system in D[[X]] and Q N S = ¢. Let
f(X)eQ — PAI[X]]

and set 4 = (f(X), »,) D[[X]]. Suppose that »(X), t(X)e D[[X]] are
such that »(X)f(X) + pt(X) = p*s(X)e S. Since P.D, = N3, P"D»p
[4,14.1], there exist y,zeD,y¢P,ze P, such that yp, = zp"
Therefore, yr(X)f(X) = p*(ys(X)—=z2t(X)) € S, contrary to the fact that
QNS =¢. Thus, ANS = ¢, and there exists a prime ideal @, of
D[[X]] such that A< Q, and @, NS = ¢. Clearly, Q,c P[[X]], and
sinee p,€ @, N D c P[[X]] N D, it follows that @, N D = P,. But then
we have P,[[X]] €@, P[[X]] which yields, on reducing to (D/P)[[X]],
a contradiction to Proposition 3.5. We conclude that no such @
exists.

ProposiTION 3.7. If D is an SFT-ring, then J is a Dedekind
domain.

Proof. Since J =J'NL,J is a Krull domain [4, 36.10]. There-
fore, it suffices to show that dimJ = 1[4, 35.16]. Let QJ be a non-
zero prime ideal of J, where @ is a prime ideal in D[[X]] such that
QN D =(0). We first suppose that QD’[[X]] is contained in some
minimal prime ideal @ of D’[[X]]. We cannot have @ = P,[[X]]
for any prime ideal P, of D', for if we set P, = P, D, then

P[[X]] n DI[XT]] = P.[[X]] -

But P,ell, so by Proposition 3.5, P,[[X]] is minimal in DI[[X]].
Since we must have @ = QD'[[X]] N D[[X]] & @ n D[[X]], it follows
that @ N D’ = (0). Consequently, Q'J’ is a minimal prime ideal of
J’. Since QJ' NJ 2 QJ # (0), QJ is a minimal prime ideal in J.
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We now consider the possibility that QD'[[X]] = (QU)D'[[X]] is
contained in no minimal prime ideal of D’[[X]]. But if this is the
case, then by Lemma 3.4, X"c QU for some nec w. Since

Q = @/ N D[[X]] = (QU)Jn D[[X]],

it follows that X e Q. But Q = (X)D[[X]], for (X)D'[[X]] is a minimal
prime ideal of D'[[X]] and clearly, (X)D'[[X]]2 (X)D[[X]]. There-
fore, Q> (X)D[[X]], from which it is immediate that @ N D = (0).
Since this contradicts our assumption on @, we conclude that Q.J is
minimal in J.

We now state the principal result of this paper.

THEOREM 3.8. Let D be Priifer domain with dim D = n. The
Sollowing statements are equivalent:

1) D is an SFT-ring.

(2) DimD[[X]] =n + 1.

(3) Dim D[[X]] < eo.

Proof. It is clear that (2) implies (3) and it is shown in [1] that
(8) implies (1). We show that (1) implies (2) by induction of x.
But if n = 1, then D is a Dedekind domain, so the theorem holds.
Now suppose that dimD =n>1 andlet 0)CcQ,C+-- CQ,, k>1, be
a chain of prime ideals of D[[X]]. Since @, is not minimal, it follows
from Proposition 8.7 that @,N D = (0). In particular, @, N D2 P,
for some P,ell. But then Q, 2 V'P,D[[X]] = P.[[X]][1, Thm. 1],
and the containment is proper since P,[[X]] is minimal in DI[[X]].
This yields a chain (0) € Q,/P,[[X]] < +-- € Q/P.[[X]] of k— 1 prime
ideals in D[[X]]/P.[[X]] = (D/P,)[[X]]. Since D/P, is a Priifer domain
[4, 18.5] which is, by Proposition 2.3, an SFT-ring, our induction
hypothesis implies that k¥ — 1 < n. Consequently, # <= + 1. But
we already know that dim D[[X]] = n + 1, so equality must hold.

4., EXAMPLE. Suppose that dim R = n. We have seen that

dim R[X]=n+ 1l=dimR[[X]] =n + 1;

for if D is any n-dimensional Priifer domain which is not an SFT-
ring, then dim D[X] = #» + 1 while dim D[[X]] = «. We now give
an example which shows that

dmR[X]] =n + 1=dimR[X] =n + 1.

Thus, let F' be a field and K = F(Y) a simple transcendental exten-
sion of F'. Let V= K+ M be a rank one discrete valuation ring
with maximal ideal M (e.g., take V = K[[Z]]) and set D = F + M.
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Then D is integrally closed and M is the unique nonzero prime ideal
of D [4, App. 2]. In particular, dim D = 1. But D is not a Priifer
domain, so dim D[X] = 3[4, 25.18]. For m e M, we have

mV[[X]] & M[[X]] & DI[X]],
whence it follows that (V[[X]]Dv—w = D[[X]1)p-w. But
dim (V[[X]Dy-w =1,

go if @ is a prime ideal of D[[X]] such that @ N D = (0), then @ is
minimal in D[[X]]. Moreover, it is clear that @ = @ N D[[X]] for
some minimal prime ideal Q" of VI[[X]], @ = M[[X]]. Thus, in
order to see that M [[X]] is minimal in D[[X]], it suffices to see
that Q' N D[[X]] € M [[X]] for each such Q'. Therefore, let

o

§(X) =23 &Xe@Q — M[[X]]

=0

and let » be the smallest integer for which &,¢ M. Since &, is a
unit in V, we assume that &, = 1. If w(X) = 332, &,.:. X% then u(X)
is a unit in V[[X]] and

dXuX) = (S 6X)uX) " + X e n DX .

Hence, @ N D[[X]] £ M [[X]].
Now let (0)cQ.cQ, be a chain of prime ideals of D[[X]]. Then
Q. N D = (0); hence @, 2 M[[X]]. But M[[X]] is minimal, so the

containment is proper. It follows that @, is maximal in D[[X] and
that dim D[[X]] = 2.
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