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POWER SERIES RINGS OVER PRUFER DOMAINS

JIMMY T. ARNOLD

Let R be a commutative ring with identity. R is said to
have dimension n, written dim R = n, if there exists a chain
Po c Pi c c Pw of n + 1 prime ideals of i?, where P n c R,
but no such chain of n + 2 prime ideals. Seidenberg has
shown that if dim R = n and X is an indeterminate over
R, then n + 1 ^ dim ϋJ [X] ^ 2w + 1. Moreover, he has
shown that dim R [X] = n + 1 if R is a Prϋfer domain. The
author has shown that if V is a rank one nondiscrete valua-
tion ring, then dim F[[X]] = oo. The principal result of this
paper is that if D is a Priifer domain with dim D = n, then
either dim 2>[[X]] = n + 1 or άimD[[X]] = oo, and necessary
and sufficient conditions are given.

1* NOTATION. Our notation and terminology are essentially that
of [4]. Throughout, R denotes a commutative ring with identity
and T denotes the total quotient ring of R. By an overring S of R,
we shall mean a ring S such that R g S £ T. The set of natural
numbers will be denoted by ω and ω0 is the set of nonnegative
integers. If A is an ideal of R, then we let

A[[X]] = \f(X) = Σ a.X'/a, e A for each i e ωλ

and we define Ai2[[Z]] to be the ideal of iϋ[[X]] which is generated
by A. The ideal A will be called an SFT-ideal (an ideal of strong
finite type) provided there exists a finitely generated ideal B g A
and keω such that akeB for each aeA. We say that R is an
SFT-ring provided each ideal of R is an SFT-ideal.

2 Some properties of SFT-rings* Arnold has shown in [1] that
if R is not an SFT-ring, then dimi2[[X]] = oo. In this paper we
are primarily concerned with finite-dimensional Prϋfer domains which
are also SFT-rings, and our main result shows that for such a do-
main D, if dimD = n, then dimi)[[X]] = n + 1. Before restricting
our attention to Prϋfer domains, however, we wish to consider some
properties of arbitrary SFT-rings.

LEMMA 2.1. // Au A2 are SFT-ideals of R and if C is an ideal
of R such that At Π A2 2 C 2 ΛA2, then C is an SFT-ideal.

Proof. For i = 1, 2, there exists a finitely generated ideal
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Bi £ Ai and k{eω such that aϊ* e Bi for each α̂  e A+. Set fc = &! + fe.
Then for ceC, we have that ck = e * ^ e J S ^ s AXA2 £ C. Since
BXB2 is finitely generated, the lemma follows.

PROPOSITION 2.2. R is an SFT-ring if and only if each prime
ideal of R is an SFT-ideal.

Proof. Suppose that R is not an SFT-ring. It follows from a
straight-forward application of Zorn's Lemma that R contains an
ideal P which is maximal among those ideals of R which are not
SFT-ideals. Thus, if A and B are ideals of R which properly con-
tain P, then A and B are SFT-ideals. It is an immediate consequence
of Lemma 2.1 that P g AB, for otherwise, P would be an SFT-ideal.
Therefore, P is a prime ideal of R which is not an SFT-ideal.

PROPOSITION 2.3. If the ring S is the homomorphic image of an
SFT-ring R, then S is also an SFT-ring.

The proof of Proposition 2.3 is straightforward and will be
omitted.

Before stating our next result, we recall that an overring Rγ of
R is called a flat overring of R provided Eι is flat as an i2-module.
Richman in [8] has studied flat overrings of integral domains and
has dubbed them "generalized quotient rings" due to the fact that
many of the classical properties of quotient rings also hold for flat
overrings. Flat overrings are further considered in [2], where they
are shown to be a special class of "generalized transforms." Specifical-
ly, if Rγ is a flat overring of R, then there exists a multiplicatively
closed set S? of ideals of R such that

R1 = R^ = {ξ e T/ξA £ R for some A e &*) .

Moreover, S? may be chosen so that ARί — Rt for each i e y [ 2 ,
Thm. 1.3] Using this notation and terminology, we now prove the
following result.

PROPOSITION 2.4. Let R be an SFT-ring. If R1 is a flat over-
ring of R, then R1 is an SFT-ring.

Proof. Let Rt = R^ as described above, and let Q be a prime
ideal of R. If we set P = Q Π Rf then Q = P^ [2, Thm. 1.1]; thus,
for q6 Q, there exists 4 e y such that qA S P But P is an SFT-
ideal, so there is a finitely generated ideal B S P and keω such
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that pk eB for each peP. In particular, qkak e B for each a e A.
Let J ^ = {ξeRJq^eBR,}. Then szf is an ideal of R, and ak e s*f
for each aeA. Consequently, we have that V's*f — V ARt = Ru

from which it is immediate that S^f— Rx. This shows that qkeBR1

for each q e Q, and hence, that Q is an SFT-ideal in Rλ.

PROPOSITION 2.5. If R is an SFT-ring, then R satisfies the
ascending chain condition for radical ideals, i.e., the prime spectrum
of R is Noetherian.

Proof. Clearly, each radical ideal of R is the radical of a finitely
generated ideal. But this is equivalent to the ascending chain condi-
tion for radical ideals [7, p. 633].

If R satisfies the ascending chain condition for radical ideals,
then it is shown in [6, p. 59] that each ideal of R has only finitely
many minimal prime divisors. As an immediate consequence we
have

COROLLARY 2.6. Each ideal of an SFT-ring has only finitely
many minimal prime divisors.

We conclude this section with the following lemma.

LEMMA 2.7. Let D be an integral domain which is an SFT-ring.
If P is a nonzero prime ideal of D, then P Φ P2.

Proof. Let V be a valuation over ring of D for which PV' Φ V.
Since P is an SFT-ideal, there exists a finitely generated ideal B £ P
and keω such that pkeB for each peP. If Px = PV and Bt = BV,
then we also have ξk e Bx for each ξ e Pt. Since V is a valuation
ring, it follows that Pk g Bx Q Pλ. If Bι — Plf then Px is principal,
so P1 Φ Pi. If B, c P1? then Pk Φ Pίy and again it follows that Px Φ PI.
Consequently, P Φ P 2 as we wished to show.

3* Priifer domains which are SFT-rings* Throughout this
section D will denote a Priifer domain. We begin by giving a
characterization of those Priifer domains which are also SFT-rings.

PROPOSITON 3.1. In order that the Priifer domain D be an SFT-
ring, it is necessary and sufficient that for each nonzero prime ideal
P of D, there exists a finitely generated ideal A such that
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Proof. In view of Proposition 2.2, it is clear that the given
conditions are sufficient to insure that an arbitrary ring is an SFT-
ring. To show that they are also necessary for the Prufer domain
D, suppose that D is an SFT-ring and let P be a nonzero prime
ideal of D. Since P is an SFT-ideal, P = τ/ΊΓ for some finitely
generated ideal B of D. By Lemma 2.7 there exists pe P — P2. If
we set A = B + (p), then A is finitely generated, P — λ/A, and
P 2 =£ A. Let ilί be a maximal ideal of D which contains P. Since
P 2 is P - primary [4, 19.3], we have P 2 = P2DM f] D. It follows that
P2Z>^ g AD^; hence P2DM § AZ^. Consequently, P2^A^P.

COROLLARY 3.2. Suppose that D is an SFT-ring, let P be a
nonzero prime ideal of D and let p e P — P 2 . For each neω there
exists sneD - P such that snP

n+1 £ (pn).

Proof. Let A = (al9 , am) be a finitely generated ideal of D
such that P 2 g A £ P. Then ADP £ PZ?P = (j>)Z>P, so we may find
se D — P such that sα̂  e (p) for 1 <J £ <Ξ m. For each ne ω, set
sn = s\ For 7i = 1 we get sxP

2 £ sxA £ (p), and for n > 1 we get
snP

n+1 = OJP^O^P*-1) £ (^(β^P*"1) £ ViP % . The corollary follows
by induction on n.

Hereafter, we assume that D has finite dimension; Π =
is the set of minimal prime ideals for D, and ^/έ= {Mβ}βeΓ is the
set of maximal ideals of D.

If D is an SFT-ring, then as an immediate consequence of Lemma
2.7, we see that DQ is a discrete valuation ring for each prime ideal
Q of D [4, p. 177]. In particular, DPa is a rank one discrete valua-
tion ring for each Pa e Π. Dedekind domains and discrete valuation
rings with finite dimension provide immediate examples of Prufer
domains wich are SFT-rings. In fact, if dim D — 1, then it follows
from [4, 30.2] that D is an SFT-ring if and only if D is a Dedekind
domain. If we set D' = Γ\aDpa, then from [4, 22.1], we see that Df

is a Prufer domain. Richman shows in [8] that each overring of a
Prufer domain is a flat overring, so by Proposition 2.4 D' is an SFT-
ring. It is immediate from Corollary 2.6 that D' has finite real
character [cf. 4, p. 505], so by [4, 35.8] we have dimD' = 1. Our
preceding remarks now imply that D' is a Dedekind domain. By
[4, 36.11], Z)'[[X]] is a Krull domain, and since Df is Noetherian we
have that dim D'[[X]] = 2 [3, p. 603]. But the maximal ideals of D' [[X]]
are of the form P + (X), where P is a maximal ideal of D', so J' =
(D'[[X]])D,_(0) is a one-dimensional Krull domain—that is, J ' is a Dede-
kind domain [4, 35.16]. Set J = (D[[X]])D_{Q) and let L denote quotient
field of D[[X]].
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LEMMA 3.3. // D is an SFT-ring, then J = J' Π L.

Proof. Clearly, j g / ' n L , so let ξ{X) = f(X)/g(X) eJ'nL,
where f(X), g(X)eD[[X]], f(X) = ΣΓ=o fiX* and </(X) - S^ftX*.
Since ξ(X)eJ', there exist λeD'-(O) and h(X)eD'[[X]] such that
Xf(X)=g(X)h(X). Consequently, if there exists meωQ such that
g. = o for i <Ξ m, then we also have that /< = 0 for i ^ m. Therefore,
in our representation ξ(X) = f(X)/g(X), we may assume that gQ Φ 0.
If Mβ£^ is such that gQ&Mβ, then #(X) is a unit in Z)Jfi3 [[X]].
Thus, ξ(X) eDMβ[[X]]. Let Q be a minimal prime divisor of (go)D
and let P be the minimal prime ideal of D contained in Q. Clearly,
ξ{X) e ( ΰ P [ [ I ] ] ) v ί 0 ) and by [3, p. 602], (DP[[X]])Dp_[0) = (DQ[[X]])DQ-{0).
Hence, there exists dzDQ- (0) such that dξ(X) eDQ[[X]]. In fact,
we may assume that deD. If Mβ e ^ is such that Mβ Ξ> Q, then

S D^^ [4, 14.6]. Consequently, for qeQ - (0), we have

By Corollary 2.6, (<70)Ό only finitely many minimal prime divisors, so
it follows that we may find r e D — (0) such that

rξ(X)eΠDXβ[[X]] =D[[X]].

Therefore, ξ(X) e J as we wished to show.
We wish to show that J is, in fact, a Dedekind domain. In

order to do this, we first need to consider the domain

U=D'[[X]]ΠL.

LEMMA 3.4. // A is an ideal of U such that ADf[[X\] is con-
tained in no minimal prime ideal of 27 [[X]], then Xn e A for some
ne co.

Proof. The only possible minimal prime divisors for
are of the form P + (X), where P is a maximal ideal of D'. Con-
sequently, XeVAD'[[X\] — that is there exists neω such that
XneADr[[X}]. Let \(X)r ,λ,(X) eΰ'[[I]] and ax{X)r -,ak{X) e A
be such that Xn = ΣJu Xi{X)ai{X). If \(X) = Σ7=o βiSX

s

9 set τ,(X) =
ΣUβaX* and UX) = (λ,(X) - 7,(X))/X*+1. For 1 ^ i ^ k we have
that yi(X)eD'[[X]] Γ\ L - U, and hence,

Σ Ύi(X)ai(X) =
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But u(X) = 1 - X(ΣΪ=ι ζi(X)ai(X)) e U is a unit in D'[[X]], so it is
also a unit in U. Therefore, Xn e A.

Assuming that D is an SFT-ring, we know that DPa is a rank
one discrete valuation ring for each Pa e 77. If v is a valuation as-
sociated with DPa, then we may define a "trivial extension" v* of v
to L by setting

\hiXι) = min {'y*(^ ) | /£,• =£ 0}

for Σ~=oM^eJ9[[X]][5, p.380]. If F* is the valuation overring of
Z>[[X]] associated with v*, then F* is rank one discrete and is
centered on P*[[X]] in D[[X]]. Since Όf S DPa, we may also extend
Dpa to a rank one discrete valuation overring V* of D'[[X]]. If
Pi = PaDP(χ Π .£>'> then Fi* is the essential valuation overring of
D'[[X]] associated with the minimal prime ideal Pi [[X]] [5, p. 380].
It follows from [4,36.10] that U = D'[[X]\ n L is a Krull domain
and each minimal prime ideal of U has the form Q Π U, where Q
is a minimal prime ideal of D'[[X]]. Moreover, whenever Q is a
minimal prime ideal of D'[[X]] such that QΠ Uφ (0), then Q f] U
is a minimal prime ideal of U and (D'[[X]])ρ Π L is the essential
valuation overring of U associated with Q f] U. In particular, F* =
V* Π L is the essential valuation overring of U associated with
P[ — PJ[X]] Π V. We are now in a position to prove the following
key result.

PROPOSITION 3.5. Suppose that D is an SFT-ring and let Pa e Π.
Then Pα[[X]] is a minimal prime ideal of D[[X]\.

Proof. Let Q be a nonzero prime ideal of Z>[[XΠ, Q S
If ( 0 ) c Q n ΰ S P α = P*[[-XΊ] Γl D, then Q Π D = Pa. Consequently,
Q 3 PaD[[X]]. But Pa[[X]] = V PaD[[X]] [1, Thm. 1], so it follows
that Q = Pα[[X]]. Thus, we may assume that Q Π D = (0). Let W
be a valuation overring of Z)[[X]] with prime ideals Qi3Q2 such
that Qx is maximal in W, Q.ΠDUX]] = Pα[[X]] and Q2nD[[X]] = Q.
If pePa — P2

a, then p e Qj. — Q2, so we may assume that ζ>x = VpW.
We wish to show that U Q W. Thus, let f (X) e U. Since

we may write £(X) - /(X)/d, where f(X)eD[[X]] and i e ΰ - (0).
Suppose that ξ(X) <£ W. Then

ξ(X)-1 - ί//(X) G Q t, so w((2) > w(/(X)) ^ 0 ,

where w is a valuation associated with W. Now w(d) > 0 implies
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that dePa and hence, that v*(d) > 0. Since ξ(X) e U ^ V*, we
have that v*(ξ(X)) ^ 0 - that is, v*(f(X)) ^ v*(d) > 0. If v*(d) = jfc,
then (d)Dpa = PlDPa = (pk)DPa, so there exists s,teD-Pa such that
sd = tpk. "But then <;*(/(X)) ^ fc, so /(I)eP« f e [[I]]. Since Qx =
VpW', there exists w e ω such that dn/f(X)n — pλ(X) for some
λ ( I ) e l f . But / ( I ) % e P f [[I]], so by Corollary 3.2, there exists
τeD-Pa such that r(/(JΓ))* = p"*"" 1 /^), where Λ(X) eD[[X]].
Since rafc ^ ?;*(τ/(X)w) - ^ ( ^ " T U X ) ) - (nk-1) + ^(/^X)), it fol-
lows that f1(X)ePa[[X]]. We now have

X(X) = d*/p(f(X))n = τ8*d*/8*pτ(f(X))*

But w{τtnlsnf1{X)) = -w(MX)) <0, so it must be the case that

IF a 17.

Let Pi be the center of F* on U - that is, P[ = PJ[X]] Π Ϊ7,
and let Qί be the center of W on *7 We claim that Q[ 3 P/, for
let f(X) - f(X)/deP[. Then v*(/(X)) > v*(d) ^ 0; in particular,

If d £ Pα, then w(ξ(X)) = w(/(-X")) > 0 and hence, f (X) € Qt n ί7 = QI.
Thus, assume that dePa — say v*(d) = fc Then arguing as above,
there exist s, t e D — Pa such that sd — ίpfc Moreover,

k + i , so

Consequently, there exists τeD — Pa and /X(X) e P α [ [ X ] ] such t h a t

τf(X) - pVXX). This yields f(X) = sτf(X)/τsd - spkUX)lτtpk -
sf1(X)/τt which, as we have just observed, is in Q[. Therefore,
P[ S Qί But we also have that Q2 Π Ua Q[, and Q2 Π U^t P[ since
(Q2 Π U) n D[[X]] = Q c P α [ [ I ] ] - P; n ΰ[[X]] It follows that Q[
contains at least two distinct minimal prime ideals of U and hence,
(ζ>Ί)-D'[[̂ Π] cannot be contained in any minimal prime ideal of
D'[[X]] By Lemma 3.4, there exists neω such that XneQ[S Qi,
contrary to our assumption that Qxf)D[[X]] = Pa[[X]]. We conclude
that Pα[[X]] is minimal in D[[X]].

We now digress momentarily in order to strengthen the results
of Proposition 3.5. It follows from [4,16.10] that if P is a prime
ideal of D, then each prime ideal of D[X] contained in P[X] is the
extension of a prime ideal of D. We show that the following analogue
holds in D[[X]].

COROLLARY 3.6. // D is an SFT-ring and if P is a prime ideal
of D, then the only prime ideals of D[[X]] contained in P[[X]] have
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the form Pι[[X] for some prime ideal P± of D.

Proof. Suppose that D is an SFT-ring, let P be a prime ideal
of D, and let Q be a nonzero prime ideal of Z)[[X]] such that
QdP[[X]]. If QΠI> = P'=*(O), then Q^VP'D[[X]\ = P'[[X]]
[1, Thm. 1], so by considering D[[X]]/P'[[X]] s (D/P') [[X]], we may
assume that Q f] D = (0). In view of Proposition 3.5, we may also
assume that P is not minimal in D; hence, there exists a prime ideal
P1 of D such that P1 c P and there are no prime ideals properly
contained between P and Pλ [4, 19.3]. We further assume that
PΛ[X]] I Q . Let peP - P2 and p.eP,- P\.

S = {pks(X) \keω0, s(X) eD[[X]] -

is a multiplicative system in D[[X]] and Q Π S = φ. Let

f(X)eQ-Pd[X]]

and set A = (f(X), pJD[[X]]. Suppose that r(X), t(X)eD[[X]] are
such that r(X)f(X) + p£{X) = pks(X) e S. Since P.Dp = Πϊ=i Pw-Dp
[4, 14.1], there exist y, zeD, y &P, zeP19 such that ypι = ^pfc.
Therefore, yr(X)f(X) = ^fe(τ/s(X)-^ί(X)) e 5, contrary to the fact that
Q Γ) S = ^# Thus, An S = φ, and there exists a prime ideal Qx of
JD[[X]] such that 4 g Q, and Qt (Ί S = ^ Clearly, Qιc:P[[X]}, and
since fteftnflcPPUnΰ, it follows that Q,nD = Px. But then
we have PJ[X]] cQxCPlIX]] which yields, on reducing to (D/PJUX]],
a contradiction to Proposition 3.5. We conclude that no such Q
exists.

PROPOSITION 3.7. If D is an SFT-ring, then J is a Dedekind
domain.

Proof. Since J = J' n L, J is a Krull domain [4, 36.10]. There-
fore, it suffices to show that dim J = 1 [4, 35.16]. Let QJ be a non-
zero prime ideal of J, where Q is a prime ideal in D[[X]] such that
Q η D = (0). We first suppose that φD'[[X]] is contained in some
minimal prime ideal Q' of Z)'[[X]]. We cannot have Q' = PJ[X]]
for any prime ideal Pι of Df, for if we set Pa — Px ΓΊ D, then

But PaeΠ, so by Proposition 3.5, Pα[[X]] is minimal in
Since we must have Q S QD'[[X]\ n #[[X]] g Q ' Π jD[[-3f]], it follows
that Q' ΓΊ D' = (0). Consequently, Q'J' is a minimal prime ideal of
J ' . Since Q'J' Π J 3 QJ" ̂  (0), (?/ is a minimal prime ideal in J.
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We now consider the possibility that QD'[[X\] = {QU)D'[[X\\ is
contained in no minimal prime ideal of Z)'[[X]]. But if this is the
case, then by Lemma 3.4, Xn eQU for some neω. Since

Q = QJΠ D[[X]] = (QU)JΠ D[[X]] ,

it follows that XeQ. But Q Φ (X)D[[X]], for (X)D'[[X]] is a minimal
prime ideal of D'[[X]] and clearly, (X)D'[[X]]S(X)D[[X]]. There-
fore, QZD(X)D[[X]], from which it is immediate that Q Π D Φ (0).
Since this contradicts our assumption on Q, we conclude that QJ is
minimal in / .

We now state the principal result of this paper.

THEOREM 3.8. Let D be Prufer domain with dim D = n. The
following statements are equivalent:

(1) D is an SFT-ring.
(2) Dim£>[[X]] = n + 1.
(3) ΌimD[[X]] < oo.

Proof. It is clear that (2) implies (3) and it is shown in [1] that
(3) implies (1). We show that (1) implies (2) by induction of n.
But if n == 1, then D is a Dedekind domain, so the theorem holds.
Now suppose that dimD = n> 1 and let (0)cQiC c Q t , k> 1, be
a chain of prime ideals of D[[X]]. Since Q2 is not minimal, it follows
from Proposition 3.7 that Q2f) D Φ (0). In particular, Q2 Π D 3 Pa

for some Pa e Π. But then Q2 3 VPaD[[X]\ = Pa[[X]] [1, Thm. 1],
and the containment is proper since Pα[[X]] is minimal in D[[X]].
This yields a chain (0) c Q2/Pα[[X]] c c Qk/Pa[[X]] of k- 1 prime
ideals in Z?[[-XΊ1/Pβ[[-XΊ1 = (D/Pa)[[X]]. Since D/Pa is a Prufer domain
[4, 18.5] which is, by Proposition 2.3, an SFT-ring, our induction
hypothesis implies that k — 1 ^ n. Consequently, k fg n + 1. But
we already know that dim D[[X]] ^ n + 1, so equality must hold.

4. EXAMPLE. Suppose that dim R — n. We have seen that

dim R[X] = n + 1 ~ dim i?[[X]] = w + 1

for if D is any ^-dimensional Prufer domain which is not an SFT-
ring, then dimD[X] = n + 1 while dimD[[X]] = °o. We now give
an example which shows that

dim R[[X]] = n + 1 — dim R[X] =n + l.

Thus, let F be a field and K = F(Y) a simple transcendental exten-
sion of F. Let V = K + M be a rank one discrete valuation ring
with maximal ideal ilί(e.g., take V = K[[Z]]) and set D = F + M.
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Then D is integrally closed and M is the unique nonzero prime ideal
of D [4, App 2]. In particular, dimD — 1. But D is not a Prufer
domain, so dimjD[X] = 3 [4, 25.13]. For meM, we have

whence it follows that (F[[X]])F_(0) = (D[[X]])D_(0). But

dim(F[[X]])7_(0) - 1 ,

so if Q is a prime ideal of D[[X]] such that Q Π D = (0), then Q is
minimal in D[[X]]. Moreover, it is clear that Q = Q' Π 2?[[-X"Π for
some minimal prime ideal Q' of F[[X]], Q' Φ ilf [[X]]. Thus, in
order to see that ikf[[X]] is minimal in D[[X]], it suffices to see
that Q'ΠD[[X]] &M[[X]] for each such Q\ Therefore, let

and let r be the smallest integer for which ξr g M. Since ξr is a
unit in V, we assume that ξr — 1. If u(X) = ΣΠ=o fr+, X% then u(X)
is a unit in F[[X]] and

(%iχi)<χ)~' + xreQ'n D[[X]\.

Hence, Q'(\D[[X]\&M[[X]\.
Now let (0)dQ1c:Q2 be a chain of prime ideals of D[[X]]. Then

Q2f)DΦ(0); hence Q2^M[[X]]. But Λf[[X]] is minimal, so the
containment is proper. It follows that Q2 is maximal in Z)[[X] and
that dimD[[X]] - 2.
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