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ON HAUSDORFF COMPACTIFICATIONS

MARLON C. RAYBURN

Given a pair of spaces X and Y, a necessary and sufficient
condition is found for Y to be homeomorphic to daχ(aX— X)
for some compactification aX of X. From this follows a neces-
sary and sufficient condition for Y to be homeomorphic to
aX — X for some aX. As an application, a sufficient condition
is found to insure the isomorphism of the upper semi-lattices
of compactifications K(X) and K(Y) for arbitrary X and Y,
and in consequence it appears that for every space X, there
is a pseudocompact space Y with K(X) isomorphic to K(Y).
A necessary condition for K(X) to be isomorphic to K(Y) is
observed for arbitrary X and Y, and this leads to the consi-
deration of spaces compactly generated at infinity. Examples
are constructed.

All spaces considered are completely regular and Hausdorff. We
consider the family of Hausdorff compactifications of X, each obtained
by a quotient map on βX fixing X pointwise. It is known [3: 10.13]
that this map, hereafter called the "Cech map" of the compactification,
must be unique. Identify any two such compactifications if there is
a homeomorphism between them which fixes X pointwise and let K(X)
be the family of equivalence classes partially ordered in the standard
way: axX ^ a2X if there is a continuous map from a2X onto axX
which fixes X pointwise. From [2], K{X) is an upper semi-lattice
which is a complete lattice if and only if X is locally compact. In
[5] K. D. Magill, Jr. obtained the result which shall be referred to
as MagίlΓs theorem: For any two locally compact spaces X and
Γ, K{X) is lattice-isomorphic to K{Y) if and only if βX - X is
homeomorphic to β Y — Y.

In this paper, generalizations are obtained to each direction of
MagilΓs theorem by dropping the requirement that X and Y be
locally compact.

1* Compactifications •

LEMMA 1.0. Let X be a compact Hausdorff space, Ybe a compact
Tx space and f: X—+ Y- be continuous and onto. The following are
equivalent:

(a) Y is Hausdorff
(b) / is closed
(c) For every peY and for all open sets UξΞ^X such that

f*~(p) S U, there is an open set F £ F with p e V and f*~[V] £ U.
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For any space X, let R{X) be the set of all points at which X
is not locally compact. It follows that for any compactϊfication aX
of X, R{X) = XΠ clαX(αX - X).

THEOREM 1.1. Given any two spaces X and Y, there is a com-
pactification aX of X such that Y is homeomorphic to claX(aX — X)
if and only if there is a continuous map h from clβx(βX — X) onto
Y such that h is one-to-one on R(X).

Proof. From the existence of the Cech map, the "only if" is trivial.
Conversely with no loss of generality assume Y and X — R{X) to be
disjoint and define aX to be the set YU X - R(X). Let / : βX->aY
be given by f(x) = x for x in X — R(X) and f(x) = h(x) for x in
c\βx(βX — X). Place the quotient topology of / on aX, which is thus
a compact Tι space containing [X — R(X)] U h[R(X)] densely. We
need to show aX to be Hausdorff, and shall use part (c) of the Lemma
to do this.

First suppose peX — R{X) and U is an open set in βX such
that Γ{p) = {p}^ U. Let V= [X - R(X)] Π U. Then V is a βX-
o p e n s e t a n d Γ~<>f[V] = V. S o F = f [ V ] i s o p e n i n aXy p e V a n d
ΠV]SU.

Now let p e aX - [X - R(X)]. Then p e Y and /-(p) = hr(p) in
o\βX(βX — X). Let U be any /3X-open neighborhood of h*~(p). Then
UΓ\ c\βx(βX — X) is an open set in c\βx{βX — X) and contains h*~(p).
Since h is a closed map, there exists a F-open set A such that
fc~(p) Sh*~[A] <ϋ UΓ\ dβz(βX — X)' But considering A as a set in
aX-[X- R(X)l f-[A] = h*~[A] is open in elβx(βX - X). So there
exists a /SX-open set B such that B f] c\βx(βX - X) = /*"[A]. Let
G = Bf) U, this is an open set in /3X Then G ί l [ I - R{X)\ ^Uf]
[X - R{X)\ and G Π cl^OSX - X) = /-[A]. Whence if we set V -
4 U [ G n I - R(X)h we have p e V and

= /-[A U ( ( ? n l - i2(X))] = /-[A] u f-[G Π X - i?(X)]

= [G n cl^CS-Γ - X)] U [ G ί l I - R(X)] = G .

Thus V is open in αX and f~[V] = G^U.
We conclude that aX is a compact Hausdorίf space containing a

dense homeomorphic image of X, and /: βX-^-aX is its Cech map.
Finally, let τ: Γ— c\aX(aX - X) be given by τ(y) = f[hr(y)\ for

each | / G 7 , Since hΓ(y) £cl^/SX — X), for each point qeh*~(y) we
have /(#) = Λ(g) = y. So τ is well defined, and indeed it is a bijec-
tion. Moreover since / and h are closed maps, any set F of Y is
closed if and only if h*~[F] is closed in cl^/SX — X), which is true
if and only if f(fr~[F]) is closed in c\aX(aX — X). Thus τ is a home-
omorphism from Y onto c\aX(aX — X).
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COROLLARY 1.2. For any space X, the following are equivalent:
(a) X is locally compact.
(b) For every space Y: Y is homeomorphic to aX — X for some

Hausdorff compactification aX of X if and only if Y is a continuous
image of βX — X.

Proof. For (b) implies (a), note that a map onto a single point
is trivially continuous. For the converse, take R(X) = 0 in the
Theorem. The fact that (a) implies (b) was first observed in [4].

THEOREM 1.3. Let X and Y be any two spaces. There is a com-
pactification aX of X such that Y is homeomorphic to aX — X if and
only if there is a compactification aY of Y and a continuous map h
from oλβx(βX — X) onto aY such that h carries R{X) homeomorphically
onto aY — Y.

Proof. (If). By Theorem 1.1, there is a compactification aX of
X such that oλaX{aX — X) is homeomorphic to aY. Moreover if
f- dβχ(βX — X) —>claX(aX— X) is the restriction of the Cech map,
we may choose the homeomorphism τ: claX(aX — X) —+ aY by τ(X) =
h[f*~(X)] as in the final paragraph of Theorem 1.1. Since τ[R(X)] =
aY — Y9 we see that τ carries aX — X homeomorphically onto Y.

(Only if) Suppose that h: aX — X—* Y is the given homeomorphism.
Without loss of generality assume Y and R{X) disjoint, and let aY
be the set Y\jR(X). Define k: claX(aX - X)-+aY by k(p) = p if
p e R(X) and k(p) — h(p) if p e aX — X. Place the quotient topology
with respect to k on aY, making aY into a compact 2\ space.

If F is any closed subset of c\aX(aX — X), then since fc is a
bisection, kΓok[F] = F and k[F] is closed in the quotient topology
on aY. Hence k is a homeomorphism between claX(aX — X) and
aY. So aY is Hausdorff and Y, being the image of a dense subset
of claX(aX — X) is dense in aY. Thus aY is a Hausdorff compacti-
fication of Y.

Let / be the restriction to clβx(βX — X) of the Cech map of αX.
Then kof is continuous from c\βx(βX — X) onto αY. But ko f takes
βX — X onto Y and also takes R(X) one-to-one onto αY — Y, so it
is a homeomorphism from R(X) onto αY — Y.

COROLLARY 1.4. Let X and Y be any two spaces and h be a
homeomorphism from c\βx(βX — X) onto clβT(βY — Y) which carries
R(X) onto R(Y). Let aX be any compactification of X and let f be
the restriction of its Cech map to c\βx(βX — X). Then there exists a
unique (up to a homeomorphism preserving Y pointwise) compactifica-
tion aY of Y, with Cech map g, such that g(h(f*~(x))) is a homeomor-
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phism from daX(aX — X) onto c\aY(aY — Y) taking R(X) onto R{Y).

2* The upper semi-lattice of compactifications* For each com-
pactiίication aX of X, with Cech map /, define

jr{μχ) = {f<-(p): p G daX{aX - X)} .

This is a partition of c\βx(βX — X) into compact subsets and coincides
with MagilΓs terminology on locally compact spaces [5]. In particular,
we retain his

LEMMA 2.1. axX <£ α^X if and only if jr (a*X) refines
Observe that in K{X), the correspondence between compactifications
and their decompositions is one-to-one.

Let X and Y be any spaces and K(X) and K(Y) be their upper
semi-lattices of compactifications. We say K{X) is isomorphic to K(Y)
if there is a bijection between them which preserves order in both
directions. Clearly an isomorphism preserves meets and joins wherever
they exist.

THEOREM 2.2. Let X and Y be any two spaces. If there is a
homeomorphism from c\βx(βX — X) onto clβτ(βY — Y) which carries
R(X) onto R(Y), then K{X) is isomorphic to K(Y).

Proof. Let h be the given homeomorphism and Γ:K(X) -+K(Y)
the correspondence constructed in 1.4. By the symmetry of 1.4, Γ
is a bijection. That Γ preserves order in both directions follows from
the fact that h[jr (aX)\ = J?~ [Γ{aX)\ and 2.1.

COROLLARY 2.3. Let X and Y be two spaces with | JB(-XΓ) | =
|jβ(Γ)| ^ 1. If βX- X is homeomorphic to βY - Y, then K{X) is
isomorphic to K(Y).

Proof. In view of MagilΓs theorem, it suffices to consider | R{X) \ —
\R(Y)\ = 1. Let R(X) - {p} and R{Y) = {q}. Since o\βx(βX - X) is
the one point compactification of βX — X, open neighborhoods of p
in oλβziβX — X) are the complements of compact sets in βX — X. If
h is the given homomorphism, then h carries compact sets onto com-
pact sets. So it carries neighborhoods of p onto neighborhoods of q
and vice versa. Hence if we let k: elβx(βX - X)—> dβγ(βY — Y)
extend h by k(p) = q, then k is a homeomorphism and k[R(X)] = R(Y).
The result now follows from 2.2.

The next result follows from a well known exercise [3: 9K].
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LEMMA 2.4. For any space Y and any compactification aY, there
is a pseudo-compact space X such that Y is homeomorphic to βX — X
and ocY— Y is homeomorphic to R(X).

THEOREM 2.5. For each space Y, there is a pseudocompact space
X such that K{Y) is isomorphic to K(X).

Proof. As in the construction for 2.4, let W be the ordinals
less than the first uncountable ordinal ωγ and W* be its compactifi-
cation. Set X= [W* x clβγ(βY- Y)\ - [{ωj x (βY - Y)]. Then X
is pseudocompact, R(X) = {ωj x R(Y) and βX- X= {ωj x (βY- Y).
The result now follows from 2.2.

3* λvabsolute spaces* A space is called compactly generated,
or a yfc-space, if every set whose intersection with every compact set
is compact is itself closed. To each space X we may associate a
unique fc-space S^X with the same underlying set and the same
compact sets by requiring that the closed sets be precisely those
whose intersection with every compact set is compact. It follows that
X is a fc-space if and only if X =

DEFINITION 3.1. X is a yk-absolute space if βX — X is a &-space.
This terminology is motivated by

THEOREM 3.2. For any space X, the following are equivalent:
(a) βX — X is a k-space.
(b) For every compactification aX, aX — X is a k-space.
(c) There exists a compactification ocX such that ocX — X is a

k-space.

Proof. Use the fact that the restriction to βX — X of the Cech
map of aX is perfect (i.e., closed, continuous, onto and the pre-image
of each point is compact), and the fact that if / : V—> W is a perfect
map, then 7 is a fc-space if and only if W is SL fc-space [1: Theorem 8].

^-absolute space include, but are not restricted to, locally compact
spaces, realcompact spaces (N. Noble [6]) and spaces with compact
R(X). Some examples showing the independence of these classes are
considered in §4.

THEOREM 3.3. Let X and Y be any two spaces. If Γ: K(X) —•
K(Y) is an isomorphism, then there is a homeomorphism f: J3?~{βX —
X)-+3ίΓ{βY- Y) such that for each aX in K(X), J?~[Γ(aX)] f)
(βY - Y) = {f[H]ι He^~(aX) Π (βX - X)}. There are two such
homeomorphisms if \βX — X\ — \βY — Y\ — 2; otherwise the home-
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omorphism is unique.

Proof, f: V—• W is a bijection which preserves compact sets in
both directions if and only if / : 3Z~V'—> <5ίΓW is a homeomorphism.
The proof now, with only minor changes, is that of K. D. Magill [5:
Theorem 1].

COROLLARY 3.4. Let X and Y be any two k-absolute spaces. If
K{X) is isomorphic to K(Y), then βX — Xis homeomorphic to βY — Y.

An example showing the converse of this corollary to be false is
found in the following section. An example has been obtained by
T. Thrivikraman [7] of a pair of spaces, one of which is ^-absolute
and the other is not, with K{X) isomorphic to K{Y), yet βX — X
not homeomorphic to βY — Y.

4. Examples*
(A) fc-absolute spaces.
(a) The rational numbers Q form a realcompact, thus fc-absolute

space which is nowhere locally compact. Hence R{X) = Q is not
compact.

(b) Let X be the ordinals ^ ωι with the discrete topology except
at ω19 which has a neighborhood base of tails. Then X is realcompact
and R{X) — {ωj is compact.

(c) If W is the set of ordinals < ωt with the interval topology
and N is the positive integers, then W x N is locally compact, yet
neither realcompact nor pseudocompact. (Not realcompact follows
from the fact that closed subsets of realcompact spaces are realcom-
pact, and W x N contains closed copies of W).

(d) To construct a class of ifc-absolute spaces which are neither
locally compact nor realcompact, let Y be any Λ-space and as in 2.4,
let X— W* x βY — {α>i} x Y. This is a ^-absolute, pseudocompact
and not compact, hence not realcompact space. R{X) is homeomorphic
to β Y — Y, hence it is compact if and only if Y is locally compact.
NOTE: X is locally compact if and only if Y is compact.

(B) A pair of ^-absolute spaces X and Y with βX — X homeo-
morphic to βY — Y, yet K(X) and K{Y) not isomorphic. Let T =
(0, 1) under its usual topology, T* its one point compactification and
Γ** its two point compactification. Write T* - T= {a} and T** -
T={b,c}.

Set X = W* x T* - {α>J x T, so R{X) = {(ωί9 a)}.
Set Y= W* x Γ** - {ω,} x Γ, so B(Y) = {(ωl9 δ), (ωu c)}. So

\R(X)\ Φ |β(Γ) | , yet βX - X = βY - Y= {ωj x Γ, which is a k-
space.
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Place the following compact partition on βX — X: for each r, 0 <
r < 1/2, let Fr = {(ωu r), (α ,̂ 1 — r)}; choose ίr £ /9X and set α l =
[β - Ur *VJ U {tr: 0 < r < 1/2}. Define the map /: βX-*aX by f(x) = x
if a; 6 X and /(a?) = tr if a? € F r and f(ωl91/2) - K , 1/2). If G £ ySX - X,
then /*~°/[G] = G if and only if G is symmetric with respect to
(ωu 1/2). Place the quotient topology with respect to / on α X To
show aX is Hausdorff, we apply (c) of Lemma 1.0.

Let x e X — {a} and U be an open set of βX such that x e U. Then
set V = Uf] X - {a}. So /*~°/[F] = V, which is an open set in βX,
and peV= f[V]SU.

If U is a /SX-open neighborhood of α, then C/Π /3X — X3{α)x} x
(0,1) — {ωj x [d, e] for some [cZ, e] S (0,1). Choose ε > 0 so that
[ d , e ] S [ ε , l - ε ] S ( 0 , l ) .

Then {ωx} x (0,1) — {coj x [ε, 1 — ε] is open in βX — X, so there
exists a β X open set H such that ίZ" Π /3X— X equals this set. Let V =
f[Uf)H]. Since UΠ Hf] βX — X is symmetric with respect to
(ωlf 1/2) we see that

- X) u (tfn Jin
= (UnHnβX- x)Of^

Therefore V is open in aXy aeV and f*~[V] £ ί7.
If treaX - X, then /*"(ίr) = Fr. Let ίf be a /3X-open neigh-

borhood of Fr. Then Uf] βX — X contains (ωu r), so there exists an
e1 > 0 such that {α>J x (r — εl9 r + e,) £ U Π /SX — X In the same
way, there exists an ε2 > 0 such that {ωj x (1 — r — ε2,1 — r + ε2) g
Uf] βX - X. Let ε = min (εlf ε2). Then [{ωj x (r - ε, r + ε)] U
[{ωj x (1 — r — ε, 1 — r + ε)] is an open set in βX — X. So there
exists a /SX-open set i ϊ such that H Π /3X — X is equal to this set.
Let V=f[UΠH]. Note Un Hn βX - X= Hf] βX - X is sym-
metric with respect to (ωlf 1/2), f~of[Uf] Hf] βX - X] = Z7Π BTl
/5X - X. Hence f^of[JJf]H]= Uf] H and F is open in αX. Since
FrSUf] H, we have £re V and / [ F ] £ ?7. So aX is Hausdorff and
thus in K(X).

Suppose Γ: K(X) —>K{Y) is any isomorphism; then by 3.4 there
is a homeomorphism h: βX — X—> βY — Y such that &~\Γ{μX)\ Π
C 8 Γ - Y) - {Λ[iϊ]: ί ί G ^ " ( α I ) n (βY ~ Γ)}. Notice that any home-
omorphism from (0,1) to (0,1) must be monotone: our argument is
the same whether h is monotone increasing or monotone decreasing.
So without loss of generality, suppose h monotone increasing.

Write Γ(aX) — aY, where aX is the previously constructed com-
pactification of X and let g be the restriction of the Cech map of
aY to βY - Y. Since f: βX - X-+aX - X is perfect, it follows
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that if k = goho/-, then k is a homeomorphism from aX — X onto
aY — Y. Consider the sequence tn = (ωlf 1/n), n^2, in βX — X.
The image of this sequence in aX — X, which we may write as pn =
f(tn), n^2, has limpn = a. So (pn), n ^ 2, is a converging sequence
in (t\aY{aY— Y). But in c\βγ(βY — Y), limh(ωl9 1/n) = b and l i m ^ , 1—
1/n) = c. Therefore k(pn), n ^ 2, converges to both b and c in
claY(aY — Y). Since in a Hausdorff space, no sequence can converge
to more than one point, Γ(aX) must not be Hausdorff. So Γ must
not be an isomorphism and thus K{X) and K(Y) are not isomorphic.
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