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WILD ARCS IN THREE-SPACE
2: AN INVARIANT OF NON-ORIENTED LOCAL TYPE

JAMES M. MCPHERSON

An invariant of the oriented local type of a Fox-Artin arc
has already been developed in the previous paper in this
sequence. This paper is concerned with finding an invariant
of the non-oriented local type of an arc whose only wild point
is an endpoint, where the arc has penetration index at least
five, and where the penetration index with respect to solid
tori is equal to one.

This paper contains most of the results announced in §3 of [5],
and forms the first chapter of the author’s Ph. D. thesis [4], written
under the supervision of Professor N. Smythe.

1. Preliminaries. Rather than work with 3-cells as in [6], our
cutting and pasting arguments will be applied to sequences of solid
tori, making use of the theorems of H. Schubert ([7], §§16, 17). The
notations Bd, Cl, Int, N(X), v(k N X) are used as in [6].

1. k is an oriented arc in Euclidean 3-space R® (the orientation
of R® is fixed), and k is tame except at the endpoint p.

2. A handlebody of genus g (Henkelkorper von Geschlechte g,
[8], p. 219) is a tame closed regular neighbourhood of a wedge of g
circles. If g =1, such a handlebody is a solid torus (i.e., the topo-
logical product of S* with a 2-dise, called “Vollring” in [7]), and if
g = 0 we have a 3-cell.

The penetration index P,(k, p) of k at p, relative to handlebodies
of genus g, is the smallest integer n such that there exist arbitrarily
small neighbourhoods of » which are handlebodies of genus g, each
meeting k& on its boundary in » points. When there is no danger of
confusion, we write P,(k, p) = P,. (Note: It is not known whether
P,(k, p) is the same as the penetration index of k relative to surfaces
of genus g, as defined by B. J. Ball in [1]—ecf. question 1 of [5].)

P, is called the toral penetration index; P, is called the 3-cell
penetration index and is the “nice penetration index” defined by
Henderson ([3], p. 470).

As in [6], we choose a 3-cell neighbourhood E, of p, chosen so
that if £ cInt E, is any other such neighbourhood, then Bd E meets
k in at least as many points as does Bd FE,.

3. For the notion of cofinality of two sequences, see [6], §2.

Two arcs k, and k, have the same non-oriented local type at points
»; and p, if there exist neighbourhoods U; of p;, and a homeomorphism
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h of U, to U, which takes (U, Nk, ) to (U.N k., v,).

In these terms, then, the aim of this paper is to find an invariant
of the non-oriented local embedding type of &k in E,, if P,(k, p) = 1 and
Pyk, p) = 5. In some cases, we may associate an infinite sequence
of solid tori with %, and show that the cofinality class of the knot
types (q.v., no. 4) of these solid tori is an invariant of the non-oriented
local type of &k at p. Analogous results have been obtained in [4]
for arcs or simple closed curves with P, = 2 and P, = 8: for conven-
ience, however, we shall restrict ourselves to arcs which are wild at
an endpoint.

4. Let V be a solid torus. A meridian of Bd V is a curve which
bounds a disc in V' but not on BdV; such a disc will be called a
meridian disc of V. A longitude of BdV is any curve on Bd V which
is nullhomologous in Cl (R®* — V) but not on BdV; a core of V is a
curve homologous in V to a longitude of BdV. If A is a longitude
of V, we denote by x(V) the non-oriented knot type of A, and say
that V is knotted with knot type x(V).

Let U and V be solid tori with Uc V. The order of U in V,
denoted O(U, V), is the minimum number of intersections of a meridian
disc of V with a longitude of U (this integer depends on neither the
longitude nor the meridian disc chosen). If T — U is another solid
torus, then

O(T, V) = O(T, U)-O(U, V)

(7], ». 172 ).

We write U< V iff O(U, V) = 0, that is, if and only if U lies
in a 3-cell in the interior of V.

The knot £, is a companion of the knot k, if a solid torus V,,
such that x(V,) = k,, may be embedded with nonzero order in the
interior of a solid torus V, with £(V)) = k.. &, is a factor of k, if V,
may be embedded in V, with order one.

Two solid tori V,, V,, with V, c Int V,, are concentric if the closure
of V, — V, is homeomorphic to I x Bd V), where I is the unit interval.
Theorem 3 of [2] asserts that V; and V, are concentric iff (V) =
£(V,) and V, has order one in V..

5. A k-torus is a non-oriented tame closed solid torus V < Int E,,
which contains p in its interior, and meets % on its boundary in one
point only, at which it is pierced by k.

A containing sequence (in E;) for a k-torus V is a sequence of
k-tori

V: Vn'<Vn_.1< e '<V0CE0
with the property: if U is any k-torus, V,c UcV,_,, then either V;
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has nonzero order in U, or U has nonzero order in V,_,. If V,cUc
E,, we require that V, have nonzero order in U. A containing sequence
is of length » if V=V,.

A constructing sequence for k (in E;) is a sequence of k-tori K, D
VoV, >V,> --+ such that NV, = p, and for each ¢,

V,;"<Vi_.1'< e '<VOC.Eo

is a containing sequence for V..

A Fk-sequence is a constructing sequence with the further property
that if V is a k-torus with V;cVcV,.,, and V has nonzero order
in V,_,, then V and V,_, are concentric. V and V,_, are equally knotted,
therefore: thus a k-sequence is a constructing sequence in which the
k-tori occurring are as “tightly knotted” (stdrker verknotet, [7], p.
211) as possible.

An example may help to highlight the difference between a cons-
tructing sequence and a k-sequence. The arc k& of Figure 1(a) may

FIGURE 1
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be constructed from solid tori placed in relation to each other and
to & as shown in Figure 1(b). But one can replace U; and U;,, by
solid tori V; and V,,,, as shown in Figure 1(c), to construct the same
arc. A sequence of solid tori of the type of U;, U,,, will suffice to
construct the are, but will not be a k-sequence.

6. Two k-tori U and V are k-similar,' if there exists a pair of
k-tori A, and A,, such that 4, cInt (UNV), Int A, DUUYV, and 4,
has nonzero order in 4,. We say that U is k-similar to V via the
k-tori A, and A.,.

We note that if U lies in the interior of V with nonzero order,
then U and V are k-similar. Similarly, if U and V are k-similar via
the k-tori A, and A,, then any two of U, V, A4,, A, are k-similar.

k-similarity is a reflexive and symmetric relation, but unfortunately
is not transitive. In Figure 2, T and U are k-similar, U and V are
k-similar, but T and V cannot be k-similar.

FIGURE 2

QUESTION (Fox). Is it possible to replace k-similarity by a transi-

tive relation?
7. We come to two simple but important lemmas.

LEMMA 1. If V is a k-torus, every meridian disc of V meets k
wn at least two points (we asswme that our meridian discs do mot
contain p). If V is unknotied, every disc bounded by a longitude of
Bd V meets k in at least two points.

Proof. Let D be a meridian disc of V. Then V-{an open regular
neighbourhood of D} is a 3-cell neighbourhood of » which meets & on

1 The use of the notation S>> and the terms “containing sequence” and “k-similar” both
here and in [6] should not lead to any confusion. If the two uses of any of these terms
should occur together in one paper, context will decide which use is intended. This paper
will not use the terms as they are used in [6].
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its boundary in P, + 2N(k N D) points. Hence
P +2NkND)=1+2NkND) =P, =5,

and the first result follows. The proof of the second result is similar.

LEMMA 2. Let U, B,, B, be k-tori with B,c U c B,, and let U* be
a k-torus which is k-similar to U via k-tori A, and A,, with B,C A; C B,.
Then B, has monzero order im U* iff it has monzero order in U, and
U* has nonzero order in B, iff U has monzero order in B,.

Proof. The numbers O(U*, A), O(U, A), O(4,, U*), and O(4,, U)
are all nonzero. The result follows from the relations (cf. no. 4):

O(B,, U*)-O(U*, A)) = O(B,, A) = O(B,, U)-0(U, A)
and

0(4,, U*)-0(U*, B) = O(4,, B) = O(4,, U)-O(U, B) .

2. Some surgical lemmas. The following lemmas will be useful
in our cutting and pasting arguments. In each, U and V are k-tori
whose boundaries are in general position. We are also assuming that
none of the curves of Bd U N Bd V contains any points of k—this may
be achieved by a small ambient isotopy of E,, if necessary.

LEMMA 3. Let D and D' be discs on the boundaries of U and V
respectively, such that Bd D = Bd D', and suppose further that the
wnterior of D does not meet the boundary of V. D U D’ is the boundary
of a 3-cell S; S does mot contain p, and the solid torus V' is a k-torus,
where

V' =VUSif DcCl(E— V)
V' =Cl(V-28) if DcV.

Moreover, V and V' are equally knotted.

Proof. To show that S cannot contain p, we show that N(kN
Bd S) < P,. Now

N(kn BdS) = N(kn D) + Nk n D)
<NENBAU)+ NkNBdV)=1+1<5<P,.

So p¢ S, and p must therefore lie in V’. If V’ is to be a k-torus,
we must show that N(k N Bd V') = P, =1, and for this it is sufficient
to show that N(k N D) = N(kn D’), because BAV' = DU BAdV — D).

V'’ is a small torus containing p in its interior, so N(k N Bd V") =
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NEk N BAV) = Pk, p); that is, N(kN D) = N(k N D). We have two
cases to consider:
NFEND) =1. Since p¢S,vkNBdS) = 0. Now

vkNBdS) =vknND) +vEknD)=vknNnD)x+1=0,

so y(kN D) = F1. D’ therefore meets k in an odd number of points;
since D’ is on the boundary of a torus which meets k& in one point
only, D’ can contain at most one point of k. Hence NkND) =1=
N(k n D).

N(n D) =0. Then we have

1< NENBAV") = Nkn B4V — D)) + Nk n D)
= NEN®BAV - D) <NENBAV) =1;

thus N(kN(BdV — D)) =1 = N(kN BdV), so D’ contains no points
of k. That is, N(kNnD') =0 = Nk N D).

In both cases above, then, V' is a k-torus. In fact, V' and V are
equivalently knotted, for there is an ambient isotopy A, of E, which
fixes everything outside an open regular neighbourhood of S, and
takes V to V.

Although Bd V is in general position with respect to Bd U, Bd V*
is not, for the disc D is one component of Bd U N Bd V' We may put
the surfaces into general position by a small “push” in the appro-
priate direction: if D c V, take V" = V — {an open regular neighbour-
hood of S}, and take V” = VU {a closed regular neighbourhood
of S} if DcCl(E,— V). Then BdV” is in general position with
respect to Bd U, and by requiring our regular neighbourhoods to be
sufficiently small, we may ensure that V” has the properties claimed
for V’. It is in this sense that we will be applying Lemma 3.

LEMMA 4. Let A and A’ be annuli on the boundaries of U and
V respectively, such that Bd A = Bd A’, and suppose further that the
interior of A does mot meet the boundary of V. If AUA" 1is the
boundary of a solid torus which contains p in its interior, then this
torus V' is a k-torus.

Proof. We need only show that & meets V' on its boundary in
one point. Since N(k N Bd V) is minimal, N(k N Bd V') = N(knBd V),
that is N(kN 4) = Nk N (BdV — A’)) (for, to obtain V', we replaced
the annulus BdV — A’ on BdV by the annulus A). Thus we need
only show that N(knN A) = N(kn (BdV — A’))—but this follows as in
Lemma 3.

We may put Bd V’ into general position with respect to Bd U, by
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taking V" = V' — {an open regular neighbourhood of A} if AcCV,
or by taking V” = ¥V’ U {a closed regular neighbourhood of A} if Ac
Cl (B, — V). By requiring our regular neighbourhoods to be sufficiently
small, we may ensure that V" is a k-torus. It is in this sense that
we will be applying Lemma 4.

LEMMA 5. There exists a k-torus V* with the properties:

(i) V* and V are k-similar,

(ii) BdV*NBAU = @, and

(iii) &(V) is a companion of £(V*) {(¢f. §1, no. 4).

Moreover, if B, and B, are k-tori with B,cInt (UN V), Int B, D
UUYV, then we may choose V* so that B, Int V* c V* < Int B,.

NoTE. The essence of this lemma is that given two k-tori U and
V, we can leave U fixed and cut around the boundary of V to obtain
another k-torus V* whose boundary does not meet Bd U; and all this
may be done without moving Bd V too far.

Proof. Let 7" be the class of all k-tori T which are k-similar to
V, B,cInt Tc T < Int B,, such that x£(V) is a companion of £(7") and
such that Bd T is in general position with respect to BAdU. Ve ¥,
so0 77 is not empty; therefore there exists a k-torus V* in 7 whose
boundary intersects Bd U in fewer curves than does the boundary of
any other Te #. We intend to show that BAV*NBdU = @.

(a) Suppose some intersection curve is null-homologous on Bd U.
We may choose one such curve, ¢ say, which bounds a disc D not
containing any other intersection curves: Int DN BdV* = @. Either
@) DcV* or (ii) DcCl (B, — V*).

(i) DcV*. D cannot be a meridian disc of V*, since such
discs meet k£ in at least two points, by Lemma 1, and N(kN D) <
NFENBAU) =1. So ¢ must be null-homologous on Bd V*.

(ii) DcCl (B, — V*). If V* is non-trivially knotted, ¢ must be
null-homologous on Bd V*, for a curve which is not nullhomologous
on Bd V* cannot bound a disc in Cl(E, — V*). If V* is unknotted,
D cannot be a longitude disc, because such discs meet k£ in at least
two points and D meets k& in at most one point.

It follows in both cases that ¢ must also be null-homologous on
Bd V*, bounding a disc D’, say. DU D’ is the boundary of a 3-cell
S, and we may apply Lemma 3 to obtain a k-torus V' with (V') =
£(V*), and whose boundary is in general position with respect to
Bd U; in fact, Bd V' meets BdU in fewer intersection curves than
does Bd V*, since the curve ¢ = Bd D in particular has been eliminated.
Also, we may choose our regular neighbourhoods of S (see the remark
after Lemma 3) so that V’ lies in the interior of B,, and contains B,
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in its interior. V” will be an element of 7" if we can prove that V'
and V are k-similar—the existence of this k-torus V’e 7" will then
contradict the minimality assumption involved in our choice of V*e
7. With this contradiction, we must conclude that no intersection
curve is null-homologous on Bd U.

Suppose that V* and V are k-similar via the k-tori A} and A}.
Then after general positioning, Bd V' N Bd A} consists of a finite
number of simple closed curves a;, -+, &,, and we note that each of
these curves lies in the interior of D. Thus each of the curves «;
is null-homologous on Bd A, by Lemma 1.

Note that Bd V’ does not meet Bd 4} if V'O V* U SO V*, and that
Bd V' does not meet Bd A} if V' Cl(V* — S)cV*. Thus we need
only “adjust” the appropriate k-torus A} to obtain a k-torus A4; such
that V'’ and V are k-similar via A, and AF or via A} and A4, which-
ever is appropriate.

We may choose a curve, a, say, which bounds a disc D(a,) on
Bd V’, which contains no other “a-curves”. Let D’(a;,) be the corres-
ponding disc on the boundary of A}; then D(a;) U D’(ax,) is the boundary
of a 3-cell S(a,) not containing p. Using Lemma 3, we obtain a k-
torus A}, which we put into general position with respect to Bd V”,
so that

BdANBAdV'cBdA;NBAV' — {a}.

We may eliminate all our a-curves in this way, and obtain a k-torus
A,;. Clearly A; will meet our requirements: for 7 = 1,

O(Aéky Al) = O(A;" A;k) :# 0’ and
A¥cInt(V'NnV)cVuvVclint4,,

while for i = 2, O(A,, A¥) = O(A}, A?), and
A,cInt(VNnV)cV'UVclInt A .

V and V' are therefore k-similar, and V'€ 7": we conclude that
no curve of Bd U N Bd V* can be null-homologous on Bd U.

(b) Suppose some curve of Bd U N Bd V* bounds a disc on Bd V*.
Then interchanging U and V* in the arguments a(i) and af(ii), it
follows that this intersection curve also bounds a disc on Bd U, which
we have shown in (a) to be impossible. Therefore no intersection
curve bounds a disc on either surface.

Hence there is an even number of curves of Bd UN Bd V*, bounding
parallel annuli on Bd U lying alternately inside and outside V*, with
similar annuli on BdV*. We may therefore choose two curves o,
and o, which bound an annulus A c Bd U which contains no other
intersection curves and which lies entirely inside V*. We will use
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the theorems of H. Schubert ([7], §§16, 17).

(i) Suppose o, is not a meridian of Bd V*. By Satz 1, p. 207,
A separates V* into two solid tori T, and T,; T, has nonzero order
in V* because it has o, as a core, and T, has order 1 in V*. £(V*)
(and therefore £(V)) is a companion of both £(7)) and £(T,). We put
Bd T, and Bd T, into general position with respect to Bd U, by taking
T¥ = T; — {an open regular neighbourhood of A}. Then

BAT*NBAU)U BATF NBAU) = BAV* N BAU — {0, 0} .

Now one of the tori, T* say, contains p, and we may use Lemma
4 to show that T} is a k-torus; moreover, we may choose a very
small regular neighbourhood of A and so ensure that T contains B, in
its interior. (Certainly T, < Int B,.) Also, we may modify the argu-
ments of part (a) to show that V and T are k-similar, i.e. that TF e 7
But since

BdTNBdUcBdV*NBAU — {o,, 05},

the existence of this T} e 7 contradicts the minimality assumption
involved in our choice of V*. The curves of Bd U N Bd V* must be
meridians of Bd V*, therefore,

(ii) o, is a meridian of Bd V*. According to Satz 2, p. 211, A
separates V* into a solid torus 7T(4A) which shares a meridian disc
with V*, and which has order one in V* (so £(T(A)) has £(V*) as a
factor, and hence has £(V) as a companion); and another space which
is a solid torus iff T(4) and V* are equally knotted. If p lies in
T(A), we may proceed as in part (i) above to eliminate the curves
of Bd A by putting Bd T(4) into general position with respect to Bd U—
but then we would obtain a k-torus T* e ?" which would contradict
our choice of V*.

We suppose therefore that » lies in V* — T(4). Let A’ be the
annulus on Bd V*, bounded by o, and o,, such that A and A’ together
bound CIl(V* — T(A)). Since AU A’ separates » from Bd E,, and
both annuli meet k£ in at most one point each, kN (A U 4’) cannot be
empty and in fact

1=NEkNn(AUA) =2.

There are then three cases to consider:

NENA) =0, Nkn A’) =1. In this case, the torus T(A) does
not meet k on its boundary at all, because kN BdV* = kN 4’, and
Bd T(4) = AU (BdV* — A"). But T(A) and V* share a meridian disc.
By Lemma 1, there is therefore a subarc of %k inside T(A4) which
does not meet Bd T(4) at all—since p is a point of %k lying outside
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T(A), k must be disconnected. This is impossible, so this combination
of intersection numbers cannot occur if p is to lie in V* — T(4A).

NkNnA) = NknA’) =1. Lk is an arc which is wild at one
endpoint, so v(k N (AU 4’)) = + 1; so k meets A U A’ in an odd number
of points. This is impossible in this case, for N(k N (AU 4")) = 2.

NkNnA) =1, NknA') =0. Let R be any other annulus on
Bd U, bounded by intersection curves and whose interior lies in Int V*,
and let the annulus R’ be chosen on Bd V* so that RU R’ = Bd (V* —
T(R)), where T(R) is the solid torus given by Satz 2, p. 211. £ does
not meet R at all, since R lies in the interior of BAU — 4 and kN
BdU=knA. k can meet R’ in at most one point: if kN R = @,
then p cannot lie in V* — T(R) and we may eliminate the curves of
Bd R by cutting V* along R. If k meets R’ in one point, then we
have N(kN R) = 0 and N(k N R’) =1, which, we have shown above,
implies that p must lie in T(R). So again we may eliminate the
curves of Bd R.

Bd U Bd V* must therefore consist of only the two curves o,
and 0,., We set A =Cl(BdV* — A’), and 4, =Cl(BAdU — 4). Since

A,NBdV* =Bd A, = Bd A = {0, 0.},

Af U A, is the boundary of a solid torus V'’ (Satz 8, p. 215) which
is easily shown to be a k-torus and k-similar to V. V' lies in the
interior of B,, and contains B, in its interior; V* has order one in
V'. Therefore if V" is a sufficiently small closed regular neighbour-
hood of V', Ve if we can prove that £(V) is a companion of
£(V")—we then note that Bd V" does not meet Bd U at all, so the
existence of V" ¢ 7" will contradict our choice of V*.

Now o0, is not a meridian of Bd U, since it bounds a disc in V*
(the common meridian disec of V* and T(A4), for example) which lies
in Cl (B, — U). o, is not null-homologous on Bd U, by (a). Then by
Satz 1, p. 207, A’ separates U into two solid tori, one of which is
Cl(V'— V*). By Satz 2, p. 211, therefore V' and V* are equally
knotted, so (V") = k(V*). Thus £(V) is a companion of £(V") and
V'"e 77

Therefore no intersection curve ¢ < Bd UNBd V* can be a meridian
of Bd V*; ¢ cannot be null-homologous on Bd V*, by (a), and cannot
fail to be a meridian of Bd V*, by (b)(i). The existence of any inter-
section curves at all leads to a contradiction, and we conclude that
BdV*NBAU = @ for this choice of V*e <#. This proves the lemma.

3. Containing sequences. Theorem 1 below will be of use later
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in finding invariants of oriented local type for arcs with P, =1 and
P, = 5, as well as in this paper.

THEOREM 1. Let V be a k-torus for an arc k in R* which is
locally tame modulo one endpoint p at which Pk, p) =1 and Pk,
p) =5, and let

V=V, <V,,<: <XV, CE
and
V: Um'<Um_1'< e -<U0CE0

be two containing sequences for V im E,. Then m = n, and there
exists a comtaining sequemnce

V=U,<U;,<-+-<UfCE,

with the properties

(i) BAUNBAV; =@ forall 1,7 =0,1,+-+,n—1 and

(ii) for all 7, (U;) is a companion of k(U¥), and Uf and U, are
k-similar.

Proof. The proof involves more complicated cutting and pasting
arguments than the proof of Lemma 5, for instead of juggling two
k-tori, we are juggling two sequences of k-tori simultaneously.

It is sufficient to prove that the assumption n < m leads to
a contradiction, for then a symmetric argument will show that it
is impossible for m to be less than n.

Let _# be the class of all containing sequences

V=T, <T,.<-+-<T,CE

of length m in E,, such that the surfaces Bd T are in general position
with respect to the surfaces Bd V;, and for each %, U; and T, are
k-similar and «£(T;) has «£(U;) as a companion. If ¢ is the minimum
of the distances from BAd U, to Bd U,;,, we may ensure that the
sequence

V=U,<Up<+-<UCE,

is an element of _#, by an ambient isotopy of E, which leaves every-
thing fixed outside an open regular neighbourhood of Bd U, U Bd U, U
««+ UBd U,_,, and moves no point further than o/4.

# is not empty, therefore, and we may choose a sequence

V=U,<U.<:-<UfCE

in _# such that the set C = {BdU; NBdV;:i=0,1,---,m — 1 and
j=20,1 -« n — 1} consists of a minimal number of intersection
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curves. Our aim is to show that C is empty.

(a) Suppose some o€ C bounds a disc on Bd U, for some ¢; then
we may choose an innermost intersection curve 7 which bounds a dise
D c Bd Uy containing no other intersection curves. Using Lemma 1
as in part (a) of the proof of Lemma 5, we see that v also bounds
a disc D(7) on BdV; if tcBd Uf N Bd V,;. There exists an index h
and a curve pc Bd U N Bd V; such that o bounds a subdise D(po) C
D(r) cBd V;, and such that D(o) contains no other intersection curves
in its interior. o also bounds a disc on the boundary of Uj.

Thus, if there is any curve which bounds a disec on a surface
Bd Uy or BdV;, there exists an index # and a curve o < Bd U N Bd V;
which bounds a disec D(0) on Bd V;, not containing any other intersec-
tion curves, and bounding a disec D* on Bd U}.

D(o) U D* is a 2-sphere bounding a 3-cell S. Applying Lemma 3
(and general positioning), we obtain a k-torus U}, with £(U}) = &(Uj).
£(U,) is therefore a companion of x(U;), and we may also show, as
in Lemma 5, that U, and U, are k-similar. Moreover, for each s,
Bd U] meets Bd V, in fewer curves than does Bd U}, for BA U, N Bd V,
consists of those curves of Bd U} N Bd V, which do not lie in D*—in
particular, o0 has been eliminated. Thus the sequence

(*) V=Ui<Ui <+ <U, <0, <UE, < <+« < UFCE,

meets {Bd V;} on its boundary surfaces in fewer curves than our
original sequence {Bd U}}. This will contradict our choice of the
sequence {Uf} if we can show that the sequence (*) lies in the class
_#; it is only necessary to show that (*) is a containing sequence
for V.

Suppose A =0, and let U be any k-torus with Ujc Uc E,. If
U, o Uy, then U, has nonzero order in U because {U}} is a containing
sequence in E, and O(Uy, U;) = 1. If U] c Uy, there exists a k-torus
U’ which contains U;, is k-similar to U, and whose boundary does not
meet Bd Uy, by Lemma 5. By Lemma 2, O(U;, U’) and O(U;, U) are
zero or nonzero together: if U’ — Uy¥, then

1 =0, U) = O(Us, U')-O(U", UY)

so U; has nonzero order in U’; while if U’ D U#, U; has nonzero order
in U’ because

o(Us;, U") = O(U;, Uy)-O(Uy, Uy = O(U5, U

and Uy is the first term in a containing sequence in E,. In either
case, U; has nonzero order in U, and the sequence (*) lies in _Z

Suppose % > 0. We need only consider the case U, = Uj-{an open
regular neighbourhood of S}, the other case is analogous.
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Let U be a k-torus with U, c Uc U}.,. By Lemma 5, there exists
a k-torus U’, k-similar to U with U; c U’ cU}_, and whose boundary
does not meet Bd Uy. Then, by Lemma 2, O(U;, U) and O(U;,U") are
either zero or nonzero together, and O(U, U) and O(U’, Uy, are
both zero or both nonzero.

If U'cUy;, U, has order 1 in U’ because O(U;, UF) =1. If U'>D

%, then either U; has zero order in U’ and U’ has nonzero order in
*_ (because {Uj} is a containing sequence), or O(U}, U") == 0. Thus
U either contains U, with nonzero order, or is contained in U, with
nonzero order, by Lemma 2. A similar argument shows that if U
is any k-torus with Ujy,, c Uc U, then either O(U},,, U)# 0 or O(T,
1) = 0.

It follows that (*) is a containing sequence for V' in F,, and its
existence in _# contradicts the choice of our original sequence {U;},
so we conclude that no peC can bound a disc on any of the surfaces
Bd Uy or BdV;.

(b) For each pair ¢ and j, therefore, there is an even number
of intersection curves bounding parallel annuli on Bd V; and bounding
parallel annuli on Bd Uf. We may therefore choose a pair of curves
o, and o, which bound an annulus A c Bd V; which contains no other
intersection curves, and such that Int A < Int U} for some h. Once
again we shall use Schubert’s theorems.

(i) o, is not a meridian of Bd U}. We apply Satz 1, p. 207:
A separates U; into two solid tori T, and 7, T, has nonzero order
in Uy because it has o, as a core, and T, has order 1 in U}; x(Uy)
(and therefore £(U,)) is a companion of both «(T) and #(T,). We put
Bd T, and Bd T, into general position with respect to the surfaces
{BdV.} by setting T} = T,-{fan open regular neighbourhood of A}.
Then

BT NBAV,)UBI Ty nNBAV, =BIU;nBAV,,
except when s = j, when
BAT: NBAV)UBITyNBAV;) = BAdUnBLV; — {0, 0,} .

Now one of these tori, say T, contains U}, in its interior. By
Lemma 4, Tj is a k-torus and, as in Lemma 5, T} is k-similar to U,.
Further, because T; has nonzero order in U}, Ui, < Ty < U;_, and
we prove, as in (a) above, that the sequence

V=Up< - <Uf < T <UL <+ <Uf CE,

in an element of _#. The k-tori in this sequence meet the surfaces
{Bd V;} on their boundaries in fewer curves than do the k-tori in our
original sequence {U}} (the curves {0,, g.} = Bd Ahave been eliminated),
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and this contradicts the minimality assumption involved in our choice
of {Uf}.

(i) Therefore, if the family C of intersection curves is not
empty, the curves of Bd Ui N Bd V; must be meridians of Bd U;. We
will show that this is impossible.

We show first that Bd V; cannot meet Bd Uj,, if it meets Bd U;*.
For, if BdV; N Bd U},, is not empty, its curves cannot bound discs
on Bd U}, by (a), and cannot fail to be meridians of Bd U}.,, by part
(i) above. Since the curves of Bd V; N (Bd U;* U Bd U},,) bound parallel
annuli on Bd V;, we may choose two curves «; and «,., of Bd V;NBd U}
and Bd V; N Bd U;,, respectively, so that «, is a meridian of Bd Uj, and
so that «, and «,., together bound an annulus on Bd V; whose interior
lies in Int (U} — Uy.). But Lemma 1 of [2] then shows that Uj,, must
have order one in Uj, contradicting the assumption that Uj,, has zero
order in Uy. This contradiction shows that Bd V; cannot meet Bd Uy,
if it meets Bd Uj.

Nor can Bd V; meet Bd Uy, if it meets Bd Uf. We may choose
two intersection curves «,, which is a meridian of Bd U}, and «,_,
on Bd U;.,, which together bound an annulus on Bd V; whose interior
lies in Int (Ui, — Uf). «; and «a;,_, are therefore homologous in U;_;
but «, bounds a disec in U}, so a;_, is null-homologous in U}_..
«,_; is therefore either null-homologous on Bd U}, or a meridian of
Bd U, ([7], p. 164). By (a), a;_, cannot bound a disc on Bd U},
S0 «,_, is a meridian of Bd U} ; this implies, by Lemma 1 of [2],
that U; has order one in U} ,, which is impossible. Therefore no such
curve «,_, exists, and Bd V; cannot meet Bd U}, if it meets Bd U}.

If BdV; N Bd U} is not empty, it follows that Bd V; c Int (U}, —
Ui.). We may therefore use the same cutting and pasting techniques
as were used in the last part of the proof of Lemma 5, to obtain a
k-torus U, which is k-similar to U,, such that £(Uj}) is a factor of
£(U}), and such that BAU,NBdV,=BdU; N BdV, except when
s = 7, when

BdU,nBdV; =@ .
We can also show (as in part (a)), that the sequence
*) V=Ur<:++ <Uin, <UL XU < -+« < UFCE,

is a containing sequence in _#; since the k-tori in this sequence meet
the surfaces {Bd V,} in fewer curves on their boundaries than do the
surfaces {Bd U}}, the existence of this sequence in _# contradicts
the minimality assumption involved in our choice of the sequence
{U#}. This contradiction ensures that Bd V; does not meet Bd U5 at all.

() It follows from the above that the family C of intersection
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curves must be empty, that is, that BAU N BdV; = @ for all 7 =
0,1,---,m—1and 5=0,1,---, 7 — 1. We then have two contain-

ing sequences for V in E,, viz
V= V-n'< Vn_1'< e '<VOCEO

and
V=U:i<U; <+ <USCE,

such that for each ¢ and j, either V; lies in the interior of U, or
contains U] in its interior.
Ui and V, both equal V, so suppose V,_, lies in the interior of
* i« Then

U::z = V» < Vn—l - U‘:‘n{—i ’

so V,_, has nonzero order in U_, because the {U}} form a containing
sequence. On the other hand, if UZ_, lies in the interior of V,_,, it
has non-zero order in V,_,, because the {V;} form a containing sequence.
Proceeding in this way, we can show that for each r=0,1, ---, n,
either V,_, has nonzero order in U;_,, or U;_, has nonzero order in
V... (whichever is applicable). '

But m — » =1 by hypothesis, so O(V,, U%_,) # 0 implies

VoCU;:,_.,;'< U;‘CEO!

which contradicts our choice of V, as the first k-torus in a containing
sequence for V in E,. If U*_, has nonzero order in V;, on the other
hand, then V, must lie in the interior of U%_,_,, and in fact have zero
order in U%*_,_,—again contradicting our choice of V,.

The assumption n < m therefore leads to a contradiction, and
n = m.

4. Invariance of k-sequences. Theorem 2, p. 24 of [4], asserts
that every are with P, =1 and P, = 5 has a k-sequence in some 3-cell
E. Unfortunately, there are two errors in the proof of that theorem
one the bald assertion that every such are has a constructing sequence
in some 3-cell, and the other a misuse of corollary 8 of [2]*. The
validity of Theorem 2 is therefore in doubt, and we are led to the

following problems, for ares with P, =1 and P, = 5.

ProBLEM 1. Find sufficient conditions for an are to have a
constructing sequence in some 3-cell E. If possible, exhibit an arc
which has no constructing sequences at all.

2 The author wishes to thank Professor Smythe for bringing the first of these to
his attention.
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A set of sufficient conditions will be given in a later paper in
this series, dealing with “special” arcs (cf. [4], Chapters III and IV).

PROBLEM 2. Does the existence of a constructing sequence imply
the existence of a k-sequence?

The author suspects that Theorem 2 on p. 24 of [4] is still true,
that is that every arc has a constructing sequence and therefore a
k-sequence, but has been unable to turn his hand to a suitable proof.

It is worth noting, however, that if an arc k, has a. k,-sequence
EoV,>V,>V,> +++, and k, has the same nonoriented local type
at p, as k, has at p,, then k, has a k,-sequence. For let h, U,, U, be
as in the definition of non-oriented local type (§1, no. 3). Since NV, =
{p.}, there exists an index N such that VycIntU,; let E, be any
3-cell in the interior of V,, which contains V., in its interior. Then

MEY) Dh(Vyss) > B(Viyyg) > oo

is a k,-sequence.
We come now to the invariance of k-sequences.

. be k-
sequences in K, Tnen U; and V; are equivalently knotted, for all 4.

Proof. Given U, there exists an index s(0) = s and a k-torus V,
lying in the interior of U,. By Theorem 1, there exist s — 1 k-tori
T, ++-, T,_, such that

V.<V,.,< -+ <V,CE,
and
Vs< Ts—1'< cee < T1"< LfoCEo

are containing sequences for V, in Ei, and s k-tori T}, ..., T%,, U
such that

(i) V,<Tt,<+++ < Tk <UsfCE,is a containing sequence for
V, in E,,

(ii) Bd Uy does not meet BdV; for any j = 0,1, -+, s, and

(iili) Uy and U, are k-similar, and £(Uy) has £(U;) as a companion.

From (ii), it follows that either Uy lies in the interior of V,, or
that V,c Int Uy. In the latter case, V, cannot have zero order in U}, so
k(Uy¥) is a companion of £(V,), hence x£(U,) is a companion of x(V,).
If Uy cIntV, (i) shows that Uy has nonzero order in V,, so U and
V, must be concentric because {V}} is a k-sequence. So £(Uy) = k(Vy),
by Theorem 3 of [2], and again x(U,) is a companion of £(V,).

On the other hand, we may use similar arguments to prove that
£(Vy) is a companion of x(U,).
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It follows that «(Uy) = £(V,). We next observe that for some
s(1), V., lies in the interior of U;: by exactly the same method, we
show that £(U,) = £(V,) and, proceeding inductively, that £(U;) = &(V))
for all 4.

The proof of the following theorem is similar to the proof of the
main theorem of [6]. '

THEOREM 2. Let k and k, be arcs in R?, locally tame modulo
endpoints p, and p, respectively, at which P(k;, p;) = 1 and Py(k;, p;) =
5. If k has a ki-sequence Uy> U, > U, > +++in some 3-cell E,1),
and k, a k-sequence V, >V, >V, > +++in some 3-cell E\(2), and k,
has the same non-oriented local type at p, as k, has at p,, then the
sequences {£(U,), £(U), «++} and {£(V,), &(V)), -++} are cofinal.

Unfortunately, the k-sequence is too unwieldy an invariant to be
of much use in distinguishing nearly polyhedral arcs. A later paper
will develop an invariant of oriented local type which is much simpler
to apply than the k-sequence invariant, and we will show how these
invariants may be used to distinguish wild ares. Meantime, we merely
assert that k-sequences will distinguish the arc of Figure 3 from the
arc of Figure 1 (a).

\/\/\?\/\\f = >0 b

\//&/

FIGURE 3
Added in proof. In connection with the note of §1, no. 2:
Neville Smythe, Geoffrey Hemion and myself have shown that the

FIGURE 4
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arc constructed in the Fox-Artin manner from cylindrical sections of
the type shown in Figure 4, has P, = 3 but has penetration index 1
with respect to surfaces of genus 1.
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