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GVDIAGONALS AND METRIZATION THEOREMS

WILLIAM G. MCARTHUR

The topological space X is said to have a Gs-diagonal if
the diagonal Δ = {(x, x): xeX} is a G3-set in X X X. It is
easy to see that if X has a coarser metrizable topology, then
X has a (^-diagonal. The main result is that a completely
regular pseudocompact space with a regular G*-diagonal is
metrizable.

A considerable amount of research has been done on the question
of what topological properties imply metrizability in the presence of
a G5-diagonal. For example, it is well-known that the existence of
a G5-diagonal is sufficient for metrizability in any of the following
classes of spaces:

compact Hausdorff spaces
linearly ordered spaces
paracompact p-spaces.

A question still open is whether a countably compact regular space
with a ^-diagonal must be metrizable. A space X is said to have
a regular Gδ-diagonal if the diagonal Δ is the intersection of countably
many closures of open subsets of X x X(see [5]). It is known that
a countably compact space with a regular G3-diagonal is metrizable
[1].

2* The main result*

DEFINITION 2.1. A space X is pseudocompact if every real-valued
continuous function on X is bounded.

Pseudocompact spaces were first defined and investigated by Hewitt
in [3]. The following characterization of completely regular pseudo-
compact spaces may be found in [2], page 134.

LEMMA 2.2. Let X be a completely regular space. X is pseudo-
compact if and only if for every sequence β p G p D G . D of
nonvoid open subsets of X, Γ)~=iclχ(^) ^ 0

LEMMA 2.3. Let X be a completely regular pseudocompact space.
Suppose <?! 13 G2 D ZD Gn z> is a sequence of open sets such that

f\Gn=f\ Λz(G%) = {x}

for a point x of X. Then the sets G% form a local neighborhood
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base at x.

Proof. Let G be an open set containing x. Suppose

Gn n (X - G) Φ 0

for every n. Choose H open such that xeHd clΓ(H) c G. Then,
(Gn Π (X— clx (iϊ)))~=1 is

 a decreasing sequence of nonvoid open sub-
sets of X. Thus, by Lemma 2.2, there is a point p of X such that
P e ΓΊ^! clx (GΛ Π (X-clx(£Γ)). But, p belongs to Π~=i clx <?., a con-
tradiction! Therefore, there must be an integer n such that GncGM

DEFINITION 2.4. Let Ŝ  be an open cover of X, xeX, and i J c X
Then,

st(x9^) = [J{Gs^:xeG}

st(i2, ^ ) = (J{Ge5^: GΠHΦ 0}.

The following result was announced by Moore in [4].

LEMMA 2.5. (Moore's metrίzation theorem) A topologίcal space
is metrizable if

(1) X is Hausdorff, and
(2) There is a decreasing sequence ^ Ί D ̂ 2 D c &n z> o/

ope% covers of X such that for every x in X, the sets st(st(#, S^), ̂ Λ )
/or w = 1, 2, 3, /orm α iocαϊ neighborhood base at x.

Our main result appears below.

THEOREM 2.6. Let X be a completely regular pseudocompact
space. If X has a regular Gδ-diagonal, then X is metrizable.

Proof. A = {(x, x): xeX}. Then, there is a decreasing sequence
Gi Z) G2 3 Z) Gn Z) of open subsets of X x X such that

Δ - n Gn = n ciXXχ ((?.).

For each α? in X, choose a sequence (gn(x)) of open subsets of X such
that (α?, a;) e gn(x) x flrw(α?) c Gn for each ^. Then, for each n let

Then, ^ D ^ D O ^ D is a decreasing sequence of open covers
of X.

( i ) For aj in X, fϊ"=i clx (st (x, &n)) = {x}. Let 2/ ̂  a?. Then,
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there is an integer n such that (x, y) ί dxxx (Gm) for m^n. Then,
there are neighborhoods U and V of x and y respectively such that
(U x F) Π Gm = 0 for m ^ n. Suppose that FΠ st(a?, Sfw) =£ 0 .
Then, there is an integer k^n and a point 2; of I such that x is
in gk(z) and 7 ί Ί ^ ) ^ 0 . Then,

0 = (tf x. F) ΓΊ GkZ)(Ux V)f) (gk(z) x </fc(z)) =* 0 .

Contradiction! Thus, it must be that

V Π st (a?, gf») - 0 and 0 g clz (st(a?, Sf»)) .

(ii) We conclude by Lemma 2.3 that (st(#, \&n)) forms a local
base at x, for each α? in X.

(iii) For a? in X, Π?=i clχ(st (st (a?, ̂ ) , ^ ) ) - {α;}. Let 1/ =£ a.
Then, there is an integer n such that m ^ ^ implies that

(a?, y) <£ clxxx((?m) .

Then, there are neighborhoods U and F of x and 7/ respectively such
that (U x F) Π Gm = 0 for m^n. There are integers & and i
such that st(a;, &k) c !7 and st (y,"&j) c F. Let m — max {w, fc, i}.
Then, (st (a?, Sfm).x st (1/, gfj) n G»c (17 x V) f) Gm = 0. Suppose

st (y, S?m) n st (st (x, SfJ, ^ m ) ^ 0 .

Then, there is an integer k ^ m and a point £ of X such that

gk(z) Π st (x, 5fm) :* 0

and st (2/, gfj Π flrfc(ίs) ̂  0 . Then,

(st (a?, SfJ x st (2/, ̂ J ) n ((/*(«) x ίjr*(«)) ^ 0 .

Contradiction! Thus, it must be that st (y, S^J Π st (st (a?, 2fm), ^ w ) = 0
and hence y $ clx (st (st (a?, 5fm), ^ J ) .

(iv) We conclude by Lemma 2.3 that (st (st (a?, S^J, &m)) forms a
local base at x, for each a? in X.

(v) By Moore's Metrization Theorem (Lemma 2.5), X is metri-
zable.ϋ

COROLLARY 2.7. If X is a completely regular pseudocompact
space with a coarser metric topology, then X is metrizable.

Proof. If X has a coarser metric topology, so does X x XM

EXAMPLE 2.8. The space # n [0,1] of [2], problem 3J is pseudo-
compact, Hausdorίf, and has a coarser metric topology. Since the
space is not completely regular, it is not metrizable.
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EXAMPLE 2.9. The space Ψ of [2], Problem 51 is pseudocompact,
completely regular, and the diagonal in Ψ x Ψ is a G3-set. But, Ψ
is not metrizable.

3* Some remarks on the countably compact case.

DEFINITION 3.1. A space X is countably compact if every count-
able family of closed sets with the finite intersection property has
nonempty intersection.

PROPOSITION 3.2. // X is countably compact, regular, with a Gδ-
diagonaly then X is first countable.

Proof. Suppose A = f|» Gn where the sets Gl9 G2y , Gn, are
open subsets of X x X. For x in X, choose a sequence (gn(x)) of
open subsets of X which contain x such that for each n,

clχ (flr«+i(α?)) c gn(x) and gn(x) x gn(x) c Gn .

Note that Π~=i cl* (gn(x)) = {x} Now, suppose G is an open subset
of X which contains x. If it is true that no set gn(x) is contained
in G, then (clz (gn(x)) Π (X— G))n is a countable collection of closed
sets with the finite intersection property. Thus, since X is count-
ably compact, (Π~=iclx (gn(x))) Π (X—G) Φ 0 . Contradiction! Hence,
there must exist an integer n such that gn{x) c G. This shows that
(g»(χ))n forms a neighborhood base at x and hence X is first count-
able.!!

PROPOSITION 3.3. // X is countably compact, regular, with a Gδ-
diagonal, then X x X is countably compact, regular, and has a Gδ-
diagonal.

Proof. It is well-known that regularity is productive and that
countable compactness is countably productive in the presence of first
countability. Now, suppose that Δ = f]n Gn with the sets Gn open
in X x X. Let Δf = {({x, y), (x, y)): x, yeX}. For each n, let

g»{n, v) = 9»(x) x ff iv)

where the sets gn(x) are as in Proposition 3.2. Let

Hn= u (ff*(χ, v) x 9 (χ, y))
(x,y)eχxχ

Claim: Δf = Γl"=i Hn. Clearly, Δ' c fl"=i Hn. Suppose (xl9 yx) Φ (x2, y2).

Case I. xx Φ x2. Then, there is an integer n such that
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{xu x2) ί Gn. Suppose ((xly y^, (x2, y2)) e iϊ%. Then, there is a pair
(x, y) in X x X such that (α ,̂ y,) e gn(x, y) and (x2, y2) e gn(x, y). Then,
#1 e 0»(#) and #2 e flfΛ(α) which implies that (xu x2) e G%. Contradiction!

Case II. i/! 9̂  y2. Similar argument to that of Case I. Thus,
X x X has a Gδ-diagonal.ϋ

PROPOSITION 3.4. Every countably compact, regular, space with
a Gδ-diagonal is metrizable if and only if every countably compact,
regular, space with a Gδ-diagonal is normal.

Proof. If X has a Gδ-diagonal and X x X is normal, then X
has a regular Gδ-diagonal.ϋ

The author would like to thank Professor Robert Heath of the
University of Pittsburgh for his many enlightening remarks on this
subject matter.
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