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SOME REPRESENTATIONS OF THE AUTOMORPHISM
GROUP OF AN INFINITE CONTINUOUS
HOMOGENEOUS MEASURE ALGEBRA

ARTHUR LIEBERMAN

Let (X, r, m) be an infinite continuous homogeneous
measure space. Let A be the measure algebra of (X, τ, m)
and G be the automorphism group of A. The canonical
representation of G on the subspace of all elements of
®nL\X, r, m) of some fixed maximal symmetry type is irre-
ducible. Two such representations are equivalent iff they
correspond to the same ne Nand to the same partition of n.

l Introdution and notation* Let H be a Hubert space. If

neN, let (gΓ H denote the tensor product of H with itself n times.
Let Sn be the symmetric group on the first n natural numbers. Let
Θ be the unique representation of Sn on ®w H such that θ(g)(v1 (x) v2 (x)
• ® O = vgω (g) vgW (x) (x) ^ (Λ) if geSn and ̂ .e If for 1 ^ ί ^ w.

If S is a set of operators on a Hubert space and S contains the
adjoint of each of its members, then the commutant S' of S is a von
Neumann algebra; the double commutant S" of S is the smallest von
Neumann algebra which contains S [1].

Θ(Sn)" is generated by its mutually orthogonal minimal projec-
tions [9]. These projections are in a 1-1 correspondence with the
maximal symmetry types. The vectors in the range of a minimal
projection are said to be of the corresponding maximal symmetry type.

Let U{H) be the unitary group on H. Let I be the canonical
representation of U(H) on H. If ne N, let <gΓ / be the tensor product
of I with itself n times. The restriction of ®% I to the subspace of
all vectors of any fixed maximal symmetry type is irreducible. If H
is finite dimensional, this result is classical [9]; if H is infinite dimen-
sional, it is due to Segal [8]. The author has obtained similar results
[3] for the symmetric groups on an infinite set S, where S is an
orthonormal basis for H. In all three cases, these representations
can be explicitly characterized.

Below we prove that the analogous representations of the auto-
morphism group of an infinite homogeneous measure algebra are
irreducible. No characterization of these representations is known.

DEFINITION. A continuous measure algebra <M, μ} is homogene-
ous if and only if two principal ideals are isomorphic whenever their
generators have equal and finite measure. A continuous measure space
is homogeneous if and only if its measure algebra is homogeneous.
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These definitions differ slightly from those of Maharam [4]. Note
that we have no σ-finiteness requirement.

For the remainder of this paper, let (X, τ, m) be an infinite
homogeneous measure space with measure algebra {A, m>; Let G be
the automorphism group of (A, m). Let H = L2(X, τ, m). Let R be
the canonical representation of G on H; R{g)f = fg~\ where geG and
feH. If n e N, ®w R will denote the tensor product or R with itself
n times.

The remainder of this paper is devoted to proving the following
theorem:

THEOREM 1. Let (X, τ, m) be an infinite continuous homogeneous
measure space with measure algebra {A, m). Let G be the automor-
phism group of (A, m>. Let neN, and let y denote a maximal
symmetry type. Let Hny be the subspace of ®Λ H of all vectors of
maximal symmetry type y. If g e G, let Rny(g) = ®w R(g) \ Hny. Then
Rny is an irreducible representation of G.

Let meN and let k be a maximal symmetry type. Then
Rny — Rmk if and only if n = m and y corresponds to the same partition
of n as k does.

2. Proof of the theorem* The proof of the theorem requires
two definitions and two lemmas.

DEFINITION. A decomposition of {X, τ, m) of type r, where r is
a positive real number, is a subset D = {Eλ: XeΛ} of r, where Λ is
an index set, such that X = \JλeΔEl9 m(Eλ) = riΐXeΛ, and Eh Π Eh = φ
if λx, λ2 e A and \ Φ λ2.

DEFINITION. Let A = {Eλ: XeΛ} and D2 — {Fδ:δeΛ} be decom-
positions of (X, T, m), where Λ and A are index sets We say that
A is subordinate to D2 if every member of A is a subset of a mem-
ber of A

LEMMA 1. Let J be a Hilbert space. Let Γ be a unitary group
on Jo Let P be a projection on J. Let {Pq: qeQ) and {Pq

x: q e Q},
where Q is an index set, be sets of projections on J. Assume:

(1) PJΠP^JΦO if qeQ.
(2) PqJnP]

gJΦθ if qeQ.
(3) PeΓ".
(4) PqeΓ" and Pq e Γ" if qeQ.
(5) I = lub{Pq:qeQ}.
(6) {PJP \PJ:ye Γ"} acts irreducibly on PJ.
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(7) {PqyPq I PqJ: 7 G Γ"} acts irreducibly on PqJ ifqeQ.
(8) {Pι

qΊPι

q I P\J\ Ί e Γ") acts irreducibly on P\J if qeQ.
Then Γ acts irreducibly on J.

Proof. Let TeΓ'. Then T\PJ = cI for some scalar c by As-
sumptions 3 and 6, Let qeQ. By 4 and 8, T | P\J = c*/ for some
scalar ĉ 1. By 1, c\ — c. By 4 and 7, Γ| P ρJ = cql for some scalar cq.
By 2, eg = Cq = c. Therefore T — cl on the subspaced spanned by
Ugeρ(-Pge7). By 5, this subspace is dense in J.

LEMMA 2. Let r be a positive real number. Let D be a decom-
position of (X, r, m) of type r. Let EiQD for 1 ̂  i <; n. Assume
Eι Φ Ej if 1 ̂  i, j ^ n and i Φ j . Let Y be projection onto the
subspace of ®n Hspanned by θ(S%)[C(Ed®C(EJ® -*®C(EΛ)]. (C(Et)
is the characteristic function of E{.) Then Fe((®* jβ)((?))".

Proof. Let M = {1, 2, , n} and 2M be the power set of M. If
s e 2^, let Gs = {g e G: g(Et) = E{ for i e s}. Let P8 be projection onto
{v e ®w H: (®w B)(flr)v = t; for all g e Ga}. Then Ps e ((®w i2)(Gs))"
S((® n#)(G))" by the double commutant theorem [1].

Homogeneity of a measure algebra implies that two principle
ideals whose generators have equal and finite measure are carried
onto one another by an automorphism of the algebra. To prove this,
let x and y be generators of the principle ideals x and y. Assume
m(x) ϊ= m(y) < oo. Let xt — x — y and yt = y — x. By homogeneity
there is an isomorphism δ of xγ onto ylm If EeA, let Δ(E) =

(E Π (a?i U 2/0) U 8{E Π a?i) U δ " 1 ^ Π 2/0 ^ is an isomorphism of A and
4(5) = V-

Homogeneity of a measure space implies that any measurable
function on the space which is invariant under the automorphism
group of the corresponding measure algebra must be a constant a.e.
Consequently, Ps is projection on the subspace of (gΓ H spanned by
vectors of the form f (x) f2 (x) (x)/%, where for each j , l^j^n, fά —
C(Ei) for some i e s .

Y = PMΠ8e2M_M(I — Ps). (Note that the operators in this product
all commute.) This follows from the description of the P8 and an
easy consideration of various cases.

Proof of Theorem 1. Let D be a decomposition of (X, τ, m). If
Z is a subset of D of cardinality n, let Y(Z) be the projection as-
sociated with Z as in Lemma 2 and let T(Z) be projection on Y(Z)Hny.
By Lemma 2, Y(Z) € (®* Λ(G))"; consequently, T(Z) eRny(G)". Let

where the sum is taken over all Z^D such that
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Z has n members; Tn(D) e Rny(G)". Let Pn(D) = lub{Γn(JD'): & is
subordinate to D}; Pn{D) e Rny{G)".

Select a decomposition D of type 1. In Lemma 1, let J == lfw .Γ =
Rny{G), and P = Pn(D). Let Q be the set of decompositions of (X, τ, m)
of type 1. If d e Q, let a{d) be any member of Q such that
3i<\ e a(d), F2 e d, and Fs e D such that m(jF\ Π JPJ > 0 and m(Fx n F3) > 0.
Let Pd = Pn(d) and Pj = P.(α(d)).

The condition m ^ Π F2) > 0 leads to PdJ Π Pi/ Φ 0; this is
Hypothesis 2 of Lemma 1. To see this, let Ei9 1 ^i ^ n, be chosen
so that Et £ (Ft Γ) i^), m(^) > 0, and #< Π Ed = ψ if i Φ j . Let
v = C(J5Ί) (g) C(£ϋ (x) (x) C(En). Let w be the projection of v onto
iϊwί/. Then .--w Φ 0, wePdJ, and ^6PdJ. Similarly, the condition
m{Fι Π Ft) > 0 leads to PJ Π PiJ Φ 0, this is Hypothesis 1 of Lemma 1.

Hypotheses 3 and 4 of Lemma 1 are clearly satisfied. The sub-
space of ®%£Γ spanned by the characteristic functions of "rectangles"
is dense in ®% H; this is a property of product measures. Since the
measure is continuous, the subspace of (gΓ H spanned by the charac-
teristic functions of "rectangles" with disjoint sides is dense in <gp H;
any such characteristic function can be written as the sum of at most
countably many functions of the same type, each of which is in thβ
range of Pq for some q e Q.

To prove irreducibility, it obviously suffices to prove that Hypothe-
sis 6 is satisfied since Hypotheses 7 and 8 can be proved in an identical
manner.

We do this by using Lemma 1. In Lemma 1, let J — Pn(D)Hny, Γ =
Rny({9 € G: Rny(g)J = J})\J and P = Tn(D). Let Q be the set of those
decompositions of {X, τ, m) which are subordinate to D. If q e Q, let
Pq = p\ — Tn(q). The first four hypotheses of Lemma 1 are clearly
satisfied since PJ £ Pγ

qJ for each qeQ. Hypothesis 5 follows from
the definition of Pn{D).

Tn(D)Hny is spanned by functions of the form

where Ω is the projection of <gΓ H onto Hny, Eiβ D, 1 <̂  i <-n, and
EiΦE, if iΦJ. {geG:g(E)eD if EeD} acts on Tn(D)Hny as an
infinite permutation group; by [3, Lemma 5, part 3] this action is
irreducible. Consequently, Hypothesis 6 of Lemma 1 is satisfied.
Hypotheses 7 and 8 can be proved in an idential manner.

We now show that (gΓ R is disjoint from (gp R if n> m. Let the
irreducible subrepresentation Rny(Rmk) of <gΓ i2((g)m R) act on Hn(Hm).
Let Pn(Pm) be the orthogonal projection with domain <gp H(®m H)
and rangΌ Hn(Hm).

Let ^ G ΰ , l ^ i ^ % , with JS7, Φ E3- it i Φ j . Let v =
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C(E2) <g) <g) C(En). Pnv Φ 0, and Rny(g)Pnv = Pnv if g{E,) = JŜ  for
1 ^ ί <̂  w. Assume i7 implements an equivalence between Rny and Rmk.
Then Z7P»i; is contained in the subspace of Hm spanned by vectors of
the form Pmw, where w — fλ ® f2 (x) (x)/m and {/*: 1 <̂  ΐ <̂  m} £
{C(^): 1 ^ i ^ t&}. Assume {/<: 1 ^ i ^ m) = {C{E^: ί e s}> where s is
some proper subset of {1, 2, , w}. Then Rmk{g)Pmw — Pmw if g(Ei) = Ei
for i € s. Consequently, U'γPmw is in the subspace of iϊw spanned by
vectors of the form Pnv19 where vι = ̂  (x) h2 (x) (x) A% and {̂ : 1 ^ i ^ n} S
{C(Ei): i es}. Then ^ JL V, SO that U~ιUv ±v, which is a contradic-
tion. The equivalence of Rny with Rnk when and only when y and &
correspond to the same partition of n is a consequence of the pro-
perties of the regular representation of Sn [9] and of the properties
under equivalence of the set of common eigenvectors of eigenvalue 1
of a subset of a group.

Remarks. 1« Let G have the weakest topology such that R is
weakly continuous. G is a topological group in this topology but is
not locally compact. <gΓ R is continuous for neN.

Let Gf = {geG\ lEeτ:m(E) < oo, g \X - E = I\ X - E}, where
I is the identity map. Gf is a dense subgroup of G. Consequently,
the restriction of (gΓ -R to the subgroup Gf is irreducible.

2. Assume (X, r, m) — (&λeΛ(Xχ, τi9 mx), where φ means measure
space direct sum [6] and {Xλ, τλ, mλ) is a homogeneous measure space.
Assume that (Xh, τλι, mλ) 0 (Xh, τh, mλ) is not homogeneous if \, λ2 e
yl and λi Φ λ2. Then G = ΠλQΛGλ, where G(resp. Gλ) is the automor-
phism group of the measure algebra of (X, τ, m) (resp. (Xλ, τh mλ)),
and Π denotes complete direct product.

3. D. Maharam [4] has characterized continuous homogeneous
measure spaces and has shown that any σ-ίinite continuous measure
space is the measure space direct sum of homogeneous measure spaces.

4. A continuous measure space is pointwise homogeneous if and
onlf if two principal ideals of its measure algebra are isomorphic via
a measure preserving transformation whenever their generators have
equal and finite measure. If (X, r, m) is an infinite continuous point-
wise homogeneous measure space, then the restriction of Rny to the
group of measure preserving transformations of (X, r, m) is irreduci-
ble. The proof is identical to the proof of Theorem 1.

5. The theorem is not valid if m is a finite continuous homo-
geneous measure since then G acts irreducibly on the constant func-
tions in (gΓ H. The author does not know if the theorem holds with
modifications. The difficulty is that Lemma 2 is false for finite
measures.

6. If the measure m is not σ-finite, it is possible in the proof
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of the theorem that m(F2 nF 3 ) = 0 for all F2ed and Fz e D. This is
the reason for the complexity of Lemma 1.

Let 7 be the unit interval. Let (7, τ, m) be the unit interval
with Lebesgue measure; let (/, τl9 mx) be the unit interval with τι

the σ-algebra generated by all finite subsets of 7 and m1 the count-
ing measure. Let B be the measure algebra of (/, τ, m) x (7, r l f mO

Consider the measure space (I x 7, τ2, m2), where τ2 is the tf-algebra
generated by sets of the form 6X x Eι and E2 x 62> with 6̂  b2 e 7, £Ί, 2£2 G
τ, m2(6i x EJ — m1(EJ)9 and ms(Ĵ 2 x b2) = m^E^; let A be the measure
algebra of (I x 7, τ2, ra2).

A is a continuous homogeneous measure algebra; any principle
ideal of A whose generator has finite measure c is isomorphic to the
measure algebra of the interval [0, c]. Note that A is isomorphic to
B@B.

Let A = {6 x 7: b e 1} and 7?2 = {7 x b: b e 7}. Όγ and D2 are decom-
positions of (7 x 7, r2, m2) of type 1. m2((δ! x 7) Π (7 x b2)) = 0 for all
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