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SEMI-PRIMARY SPLIT RINGS

GARRY HELZER

This paper is concerned with Hochschild's "maximal
algebra" which has also been discussed by Jans, Jans and
Nakayama, and Zaks.

A category of rings for which the maximal algebra con-
struction is valid is first defined. These are the "split rings"
of the title. These rings include the split rings introduced
by Jans and Nakayama but they need not be semi-primary.
A second category consisting of a kind of sheaf over a direct-
ed graph is introduced. Using this second category the
maximal algebra construction is exhibited as a composition
of adjoint functors, and hence gives the universal mapping
property of the maximal algebra. The properties of the
sheaf category are then used to show that a semi-primary
split ring is the image of a semi-primary ring of a special
type.

In [6] the spectrum of a right perfect ring was modified to a
rected graph. Although the resulting functor (rings)op —* graphs

preserves and reflects coproducts it does not possess an adjoint. We
modify the graph to a kind of sheaf by putting stalks of rings over
the vertices and stalks of bimodules over the arrows. The resulting
ring —» (sheaves)op has a right adjoint (sheaves)op —* rings and the
composition functor rings —> rings is essentially Hoehsehid's "maximal
algebra" ([7], [8] and [9]).

Coupling this with known results (Theorem 2) gives the universal
mapping property of the maximal ring of a split semi-primary ring
[9].

Lastly we use the geometry of the sheaf category to show that
that every semi-primary split ring is a homomorphic image of a
certain type of subring of a split, hereditary generalized triangular
matrix ring. This result is stated twice below. First, as Theorem
3, it is stated in the special terminology of the sheaf category.
Following Theorem 3 we make such definitions as are necessary to
restate the result in ring theoretic terms: Theorem 3'.

The formality of the proofs somewhat obscures the construction
of the special ring so the construction is indicated for a special case
following Theorem 3'.

1* Definitions* In this section we define the categories and
functors to be used in subsequent sections. The symbols introduced
will retain their meaning throughout the paper.
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By a "ring homomorphism" we understand an additive and mul-
tiplicative mapping of rings with unit which carries unit to unit.
Unidentified maps are the obvious ones.

DEFINITION. A split ring R is a quadruple (α, b, c, d) such that
(Rl) and (R2) below hold.

(Rl) a: R—>Γ, b: Γ —>R are ring homomorphisms with ab = 1Γ

and Γ a semi-simple ring (with minimum condition).
If we set I — ker α then / and P are two-sided ideals of R and

hence R—R bimodules. The map 6 then induces a Γ — Γ bimodule
structure on I and P.

(R2) c: I—+I/P, d: IIP-+I are Γ—Γ bimodule homomorphisms
such that cd = lx.

We set A = Imd and then we have R = Γ 0 4 φ / 2 , / = Aξ&P
as Γ — Γ bimodules. This is the Jans-Nakayama definition (see [9])
when / is the Jacobson radical of R and R is semi-primary.

DEFINITION. A morphism of split rings R—*R' is a quadruple
(«, β, V, δ) satisfying (R3), (R4), and (R5) below.

(R3) a: 22—>J?' and β: Γ~+Γf are ring homomorphisms, 7 and
δ are induced by α, and the diagrams

Γ I ^z==ί I/I*

and

j
R' ^znz=iί Γ" P c > PIP*

V d'

commute.

(R4) If A' is a maximal two-sided ideal of Γf then

ker[Γ >Γ' >/7A']

is a maximal two-sided ideal of /\

(R5) If A\ Br are maximal two-sided ideals of Γ' and

P ' - ker [JB' > Γ' > Γ'/A'] , Q' = ker [Rf > Γ' > Γ1IB']

P = ker [R > R' > iZ'/P'] , Q = ker [R —-> i2' > i2'/Q']

then the induced monomorphism R/PQ —• R'/P'Q' carries the Jacobson
radical of R/PQ onto the Jacobson radical of R'/P'Q'-

By the split spectrum, SSpec(i2), of R we shall mean the set
of ideals of R of the form ker [R —* Γ —* Z7A] as A runs through the
set of maximal two-sided ideals of Γ. The axiom (R4) then assures
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that a morphism R —>Rf induces a map SSpec(ίί') —*SSpec(jβ)
In [6] we introduced in a somewhat different context the skeleton,

SkrR, of a right perfect ring. Axiom (R5) assures that a morphism
R-+R' induces a morphism SkrR'—>SkrR. We shall denote the
category of split rings by SRng.

DEFINITION. A sheaf of simple rings over a finite graph, F,
consists of

(51) An oriented graph G. That is, a set of arrows Άσ, a set
of vertices VG and two functions h, t: AG —> Va called head and tail.
We assume that AG and VG are finite.

(52) For each xe VG a ring R(x) which is simple (with d.c.c).
(53) For each aeAG a left R(ta) and right R(ha) bimodule

M(ta, ha).
We further assume

(54) The map (t, h): AG —>. VG x VG is one-to-one.
From now on we shall abbreviate "sheaf of simple rings over a

finite graph" to "sheaf."

DEFINITION. A morphism of sheaves rj\ F—>F' consists of
(55) A morphism ηG. G —> G' of graphs. That is, a pair of func-

tions AG—+AG,, VG-+VG, which commute with t and h.
(56) For each a e VG a ring homomorphism η(x): R'{ηx) —> R(x).
(57) For each aeAG a homomorphism

η{ta, ha): M{t'ηa, h'ηa) > M(ta, ha) of R'{t'ηa) - R\hfrja)

bimodules. Here the bimodule structure on M(ta, ha) is induced by
η(ta) and η(ha).
We further assume

(58) η(ta, ha) is an isomorphism for each a in AG.
We denote this category of sheaves by grass.
Next we define a functor S: (SRng)op —> grass.

Let Re SRng. For the graph of SR we adopt the skeleton of
[6] to split rings. The vertices of the graph, G, are the elements
of the set SSpec(i2). If PeSSpec(i2) we set R(P) = R/P. We have
an arrow P—>QeAG whenever the Jacobson radical of R/PQ is non-
zero. This radical is P n Q/PQ which is a left R/P and right R/Q
bimodule. If P - > Q G A G we set M(P, Q) = Pf] Q/PQ. The axioms
(R4) and (R5) now assure that the canonical definition of S on mor-
phisms defines a functor to grass.

PROPOSITION 1. Let R e SRng and give R/I2 the canonical split
ring structure. Then we may identify SR and S(R/I2) using the
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natural map R-^R/I2.

Proof. The correspondence P«-»P//2 is a one-to-one correspond-
ence between SSpec(i2) and SSpec(i2//2). We use the Nother iso-
morphisms to identify R/P with (R/P)/(P/P) and R/PQ with
(R/P)/(P/P)(Q/P).

Finally, we define T: (grass)op -+SRng. Let Fe grass with as-
sociated graph G. We first define a sequence of abelian groups
T,F, i = 0, 1, 2,

Let A°G = FG and An

G be the set of all sequences of arrows

in G. Given such a sequence of arrows we may form the left R(x0)
and right R(xn) bimodule

M(x0, xj ( x ) β U l ) M(xl9 x2) (g) (g>Λ(*Λ_ι>Λf (αv_ l f xn) .

We define Ϊ F to be the ring direct product ΪIR(x), xe VG and TnF,
n > 0, to be the abelian group direct product over AG of the above
bimodules.

Now set TF = ®~TiF, the direct sum of abelian groups. To
define a ring structure on TF it is sufficient to define pq for

p G Λf (#, ) (x) (x) Λί ( , ̂ /) and q e M(z,

We define pq = p(£)q if 2/ — ̂  and pg = 0 otherwise. If p or g is
in T0F we omit the tensor symbol. With this definition T0F is a
semi-simple ring with d.c.c, TJ? is a JΓ0F bimodule and TF is the
tensor ring of TλF over T0F.

For a split ring structure on TF we take Γ = T0F, I = © Γ Γ ^
and A = Γ^. Then Γ J F ^ Γ φ i φ / 2 as Γ - Γ bimodules and we
use the natural projections and injections for (α, 6, e, d).

Next assume that rj\F-+Ff e grass. To define a ring homo-
morphism Tη\ TFf-^ TF it is sufficient to construct TQη: Γ0F'-> T0F
a ring homomorphism and Ttf: TγF

f —̂  TXF compatible with Tjη.
We define Toη to be the unique map such that all diagrams

nVG,R'{x) _ 5 ϋ — , /7
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commute where the vertical maps are direct product projections and
axy is Ύ]{x) if y ^:ηGx and axύ ±= 0 otherwise. t{η is defined similarly
after replacing VG by AG.

2» Properties of the functors*

PROPOSITION 2. (grass)op —* SRng is a functor and ST is natural-
ly equivalent to the identity functor on grass.

Proof. Let η: F~+Fr e grass. We must first verify that Tη is
a morphism of split rings. Let A be a maximal two-sided ideal of
T0F. Then there is an xe VG such that A is the kernel of the pro-
jection πx\ T0F->R(x). Then

TQF> IX.ToFj£l> R(X) = %F>^U R\y) ̂ U R(χ)

where y = ηGx. Since R(x) and R'(y) are simple and η{x) is a homo-
morphism of rings with unit, η(x) is one-to-one and

ker η{x)πf

y = ker π'y

which is a maximal two-sided ideal of TΌ '̂ Thus (R4) is satisfied.

LEMMA. Let Re SRng with Γ = 0, SSpec(i2) = {Plf •• ,PJ and
and β: Π™R/Pi—>Γ the natural isomorphism. Let et be the image
of the identity of R/Pi under bβ. Then e& = dijf 1 = ̂ βi and the
natural map R..—•• R/PiPj carries ejej monomorphically onto the
Jacobson radical of

Proof. Clearly Y*e% = 1 and ,e<ey = δ<y. Since / .== ΠΓ-Pi we see
that Pi = YβkXk where X* = R it kΦi and X = I. Similarly P5 =

where Xk = R if k Φ j and: Xj = I. Thus we have PiPj^
where Xkt = R if k Φ i or I Φ j , Xu = / of Z ^ i, XAi = i"

if kΦi and X<y = /2 = 0.
Now as /"-bimodules, R — I@bΓ and hence ekIeι = ekReι if &=££.

Thus writing It — ^ekR^i we see that if \Φ j then R/PiP3 is isomorphic
to the matrix ring

* * * * 3

[_ 0 ejRej/eμejj

Since /S"1 α carries βλJSβλ onto R/Pk with kernel e&/efc we see that the
lemma holds for i Φ j . For i = j we have that R/PiPj is isomorphic
to βiRβi which has radical e^e^ Since P = 0 implies that I is the
radical of R.
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Now let R'eSRng and set R = TSR\ Identify SR' and S{R'[P)
(Proposition 1). We define a map R—*R' as follows. Since

Γ = ToSR' = mR'IPl

we take β: Γ -»Γf as in the lemma. An arrow P —> P, is in the
graph of &β' iff the radical of R'\P[P'ά is nonzero and then the as-
sociated stalk is the radical. The group TXSR' is the product of
these radicals. On the othe hand, I'/In is the product of the groups
ei(IfII*)es. Thus we have a mapping δ: TβR' —» Rf and this mapping
is a T0&R'-bimodule isomorphism. Thus, by the remarks preceding
the lemma we have a ring homomorphism Φ(R): TSR' —>jβ' which
satisfies (R3). Since β and S are isomorphisms (R4) and (R5) are
satisfied as well. It is not difficult to see that Φ(R) is natural in R.

THEOREM 1. The functors S: (SRng)op —> grass and T: (grass)op—>
SRng are adjoints of the type

Horn (TF, R) s Horn (SR, F) .

Proof. If we consider S to be a functor SRng —• {grass)09 then
the theorem states that £ is a right adjoint for T. Let

Ψ(F): F >STFe (grass)op

be the natural equivalence of Proposition 2. To prove the theorem
it is sufficient (see [4] or [10}) to show that the compositions

S [Φ(R)] o Ψ(SR): SR > STSR > SR

and

Φ(TF) o T(Ψ(F)]: TF > TSTF > TF

are identities. This is almost clear.

3. Split semi-primary rings.

DEFINITION. A split ring R = Γ + / is semi-primary if In = 0
for some n > 0.

A semi-primary split ring is semi-primary in the usual sense with
Jacobson radical J.

In what follows we shall often confuse the quadruple Φ(R) with
its first component.

PROPOSITION 3. Let R be a semi-primary split ring. Then Φ(R):
TSR—>R is onto with kernel contained in (®?TiSR)2.
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Proof. From the discussion preceding Theorem 1 we see that
Φ{R) carries T0SR isomorphieally onto bΓ and TΊS22 isomorphically
onto A = Imd. Thus I = Γ + φ{R) [0Γ TSR]. Since I is nilpotent
it follows from [8, Lemma 1.2] that Φ{R) is onto. It follows from
(R3) that the kernel is in ( φ

DEFINITION. Let Fe grass with graph G. We say that F has
no closed paths if for each path x —* y —• z —> z in G, x Φ z.

Suppose that F has no closed paths, then TF is isomorphic to a
generalized triangular matrix ring in Harada's sense [5]. To see
this first index the vertices of the graph of F as follows. First as-
sign the integers 1,2, •• ,τιfcl to those vertices which are not the
tails of any arrows. Erase these vertices and all arrows leading to
them obtaining a graph G'. Assign the integers nkι 4-1, , nk2 to
these vertices of G' which are not the tails of any arrows in G'.
Continue in this manner until VG is exhausted. Now set

Mu = JK, = B(xύ

and let M^ be the direct sum of all left R€ and right Rd modules
M(xi9 ) (x). (x) M( , Xj) for which x€ —• —> xd is a path in G.
The multiplication in TF then induces functions Miόx Mjk—*Mik and
the resulting generalized triangular matrix ring T(Rir Mjk) is isomor-
phic to TF.

Since TQF = Γ is semi-simple, i k f ® Γ i V = 0 = > M = 0 or N = 0.
Thus we have

PROPOSITION 4. Le£ Fe grass then TF is a semi-primary split
ring iff F has no closed paths.

The next statement rephrases known results in our language.
By results in [1] we need not distinguish between left and right
homological dimensions.

THEOREM 2. Let R be a semi-primary split ring. There is an
Fe grass 9 R= TFe SRng if and only if the ring R is hereditary.

Proof. Assume that R is hereditary. Since / is the radical of
R [3, Theorem 8] shows that the global dimension of R/P is finite.
Thus by [6, Theorem 3.1] SR has no closed paths and hence TSR is
a semi-primary split ring. Since Φ(R): TSR—>R is onto with kernel
in (φΓ TiSR)2 [2, Theorem I] shows that Φ(R) is an isomorphism.

Conversely, assume R = TF. Then TF is semi-primary and by
[9, Proposition 4] TF is an hereditary ring.
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An example dtie'to Zaks ([11] or [12]) shows that not every
hereditary generalized triangular matrix ring is split and hence not
every hereditary generalized triangular matrix ring is of the form
TF for some Fegfass.

DEFINITION. A morphism η: C—>Fegrass is a covering if the
corresponding map on graphs, H—*G, is onto and for each xe VH or
a 6 AH the stalkwise maps η(x) and η(ta, ha) are identities*

LEMMA. // Fe grass then there is a covering rj\ C~*F in grass
where C has no closed paths. Further, one may assume that C has
at most one path between any two vertices of its graph.

Proof. Let G be the graph of F and let xe VG. We define a
graph Gr as follows. VG* •= VG Y {#"} (disjoint union) and AG, = AG.
Let h, t: AG—> VG be the head and tail functions for G,

Hx= {aeVG\h(a) = x} and Tx ~ {ae VG\ t{a) = x) .

Choose decompositions Hx — HιSL H2 and Tx — 2\ IL T2.

We next define h',t':"Aσ,—*:Ύσ'. If aeHx we set h'(a) = x if
αe flΊ and Λ'(α) = &' if aeΉ2. If α e ^ X f f , we set λ'(α) = h(a).
If αe Γ̂  we set t'(a) = z if αe T, and ί'(α) = α?f' if αe T2. If
α e ^ X Γ ^ we set t'(a) = ί(α). This defines G'. We shall say that
G'""ϊ* obtained from G by making a cut at x.

Now define a morphism of graphs τjβ: G' —>G by taking ηG to be
the identity on VG, \ {̂ } and AG, and setting %(a?0 = x. We extend
% to a covering η: 'Θ—+'F by "pulling the stalks back along ηG."
That is, if xe VG, we set the stalk over x equal to R(ηGx), the stalk
of F over ηo(x)9 and let rj(χ): R(τ}σx)-+R(τ}Gx) be the identity. Simi-
larly for the stalks over arrows.

Since the composition of coverings is a covering we may make
successively a finite number of cuts to obtain a covering C —* F
where C has no closed paths.

In proving the second statement we may assume that F has no
closed paths. If x,y e VG such that there are two paths from x to
y whose final arrows a, β are such that a Φ β then make a cut at
y such that a and β no longer have the same head. This gives a
covering Fλ —> F. If there are two paths in the graph of i*\ with
the same beginning and end, make another cut and get a covering
F2—^Fι, etc. This process will end in a finite number of steps.

If η: O-+F is a covering and C has no closed paths then Tη:
TF —» TC is a morphism of TF to a split, hereditary generalized
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triangular matrix ring. Further assume that there is at most one
path between any two vertices of C and let R' be the set theoretic
image of Tη in TC. The (x, y) entry of the matrix ring TC is zero
if there is no path from x to y in the graph of C or varies in the
R{x), i?(2/)-bimodule associated to the unique path from x to y. If
the path from x to y has the same image under η as the path from
z to w then, as abelian groups, the (x,y) module for TC and the
(z, w) module for TC are identical and if a matrix lies in Rf then its
(x, y) entry equals its (z, w) entry. The ring R' is obtained from
TC by setting certain entries of TC equal to each other. For examples
of rings R' see [13, Examples 5.7, 6.7, and 7.7].

Now suppose that F = SR where R is a semi-primary split ring.
We have Φ(R): TF—+R, an onto ring homomorphism. Thus R will
be an image of Rf if ker Tηaker Φ(R). If / is the radical of R and
I"'1 ^ 0, In = 0 then kerΦ(jβ)=)©~ TiF. Thus it is sufficient to
have ker Tη c φ ~ TtF. This means that every path of length n in
F should be the image of a path of length n in C under η. To ac-
complish this we merely construct C from F by making cuts as
described in the proof of the lemma and then attach as many distinct
paths of appropriate length as we need to the freshly cut ends. Thus
we have

THEOREM 3. Let R be a semi-primary split ring. Then there
is a covering η: C —> SR where C has no closed paths and at most one
path between any two vertices and ker Tη c ker Φ{R).

The generalized triangular matrix rings TC are of a special type.
One is given a set of simple rings Si 1 :g i ^ n (corresponding to the
vertices of the graph C) and a set of left St and right Sj bimodules,
iMj (corresponding to the arrows of C).

Form a symbolic matrix M with St in the iiih place and iMj in
the ijt\ι place. Compute the formal products Mk using the tensor
product to multiply bimodules and using the identities: M®8S = M,
S ® s M = M. The sequence [Mk] stabilizes in less than n steps.
The ring TC may be defined as the generalized matrix ring for which
the ijth entry of a ring element varies in the ijth entry of Mn.

The condition that there be at most one path between any two
vertices of C means that given i and j there is at most one sequence
i = ii, 2̂, , ih = 3 such that ^M^+1 is nonzero for each I. This
means that any summations necessary to form the product Mk are
automatically defined.

Call the generalized triangular matrix rings defined in this way
pure tensorial triangular rings.
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The subrings R1 of TC are easily defined in terms of M or Mn.
If the elements on the main diagonal of TC in places ily « ,i f c are
to be identified, replace S4l,'•• ,Sik in M by the same symbol, say
S^. To do this we must of course have Sii9 •••, Sih identical as ab-
stract rings. Next replace xMj and kMt by the same symbol if the
places i and k as well as the places j and I are to be identified.
This process gives a new symbolic matrix M'. The subring Rr of
TC is defined by requiring that two entries of a matrix be equal
whenever the corresponding entries of {M')n are equal. Call the rings
Rf defined in this way special subrings of pure tensorial triangular
rings. For examples of such rings see [13, Examples 5.7, 6.7, and 7.7]
and below.

With this notation we may restate Theorem 3.

THEOREM 3'. Every semi-primary split ring is a homomorphic
image of a special subring of a pure tensorial triangular ring. The
kernel of the homomorphism is contained in the square of the radical.

EXAMPLE. We will work through the construction of C and Rf

for a specific ring: a finite dimensional algebra R over an algebraically
closed field F with the radical N such that R/N has two simple
components and N* — 0.

First notice that such rings are split. By the Wedderburn principal
theorem there is a semi-simple ring Γ — R/N contained in R such
that R = Γ 0 JV, a direct sum of Γ-bimodules. The ideal N2 is a
subbimodule of N and since F is the center of R this bimodule
structure is equivalent to a left Γ (&F Γ° structure. The semi-simple
ring Γ is isomorphic to a product of full matrix algebras over F.
The well-known isomorphism Mn(F) ®FMm(F)° — Mnm(F) shows that
Γ®FΓ° is semi-simple and hence that N2 is a bimodule summand
of N. It follows that R is a split semi-primary ring.

The stalks over the vertices of SR are the simple components
of Γ. Denote them by S< = Mn. (F). The stalks iMj over arrows
are radicals of homomorphic images of R. Thus they are in fact
left Mn.(F) ®FMn.{FY modules and hence are semi-simple as bimodules.
It follows that iMά is isomorphic to a finite direct sum of copies of
Mn.,n.(F), the set of Ui x n3- matrices with entries in F.

The tensor product of Miyj{F) and M5Λ{F) over M5{F) is iso-
morphic Mifk{F) as left MiiF) and right Mj(F) bimodules. This iso-
morphism carries tensor products of individual matrices to the product
of the matrices.

It follows from the last paragraph that entries of TC will be
formal sums of matrices and the multiplication in TC will be given



SEMI-PRIMARY SPLIT RINGS 551

by matrix multiplication plus the distributive laws. In particular if
the bimodules iMό are all simple TC will be isomorphic to a subring
of Mk{F) for some k.

Since Γ has two components there are ten possibilities for the
graph of SR. These reduce to seven if R is assumed indecomposable
[6, §2]. Suppose the vertices and arrows of the graph G are given
by

7 ={1,2}, A = {12, 21,11}

where 12 is an arrow from 1 to 2 etc.
We wish to find a morphism of graphs rj: C —> G where C has at

most one path between any two vertices. It may happen that N* Φ 0
so we also need the condition that any path of length three in G is
the image of a path in C. One choice of C and η is given by

F , = {1, ••-,£>},

Ac = {41, 52, 61, 54, 76, 75, 87, 98}

with Ύ] defined on Vc by

η{k) = 2 if and only if k = 8, 6, 2 .

The matrix Mr is 9 x 9. On the main diagonal Mr has S2 in the
8th, 6th and 2nd places and Sx elsewhere. Off the main diagonal it has

ίM1 in places 41, 54, and 75; M2 in places 52, 76, and 98; 2M1 in places
63 and 87 and zeros elsewhere. If N' is the radical of R' then
R s R/I where (N')2 z> J => (N')\
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