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SEMI-PRIMARY SPLIT RINGS
GARRY HELZER

This paper is concerned with Hochschild’s ‘‘maximal
algebra’ which has also been discussed by Jans, Jans and
Nakayama, and Zaks. :

A category of rings for which the maximal algebra con-
struction is valid is first defined. These are the ‘‘split rings’’
of the title. These rings include the split rings introduced
by Jans and Nakayama but they need not be semi-primary.
A second category consisting of a kind of sheaf over a direct-
ed graph is intreduced. Using this second category the
maximal algebra construction is exhibited as a composition
of adjoint functors, and hence gives the universal mapping
property of the maximal algebra. The properties of the
sheaf category are then used to show that a semi-primary
split ring is the image of a semi-primary ring of a special
type.

In [6] the spectrum of a right perfect ring was modified to a
rected graph. Although the resulting funector (rings)’”? — graphs
preserves and reflects coproducts it does not possess an adjoint. We
modify the graph to a kind of sheaf by putting stalks of rings over
the vertices and stalks of bimodules over the arrows. The resulting
ring — (sheaves)’” has a right adjoint (sheaves)’” — rings and the
composition functor rings — rings is essentially Hochschid’s “maximal
algebra” ([7], [8] and [9]).

Coupling this with known results (Theorem 2) gives the universal
mapping property of the maximal ring of a split semi-primary ring
[o].

Lastly we use the geometry of the sheaf category to show that
that every semi-primary split ring is a homomorphic image of a
certain type of subring of a split, hereditary generalized triangular
matrix ring. This result is stated twice below. First, as Theorem
3, it is stated in the special terminology of the sheaf category.
Following Theorem 3 we make such definitions as are necessary to
restate the result in ring theoretic terms: Theorem 3'.

The formality of the proofs somewhat obscures the construction
of the special ring so the construction is indicated for a special case
following Theorem 3’.

1. Definitions. In this section we define the categories and
functors to be used in subsequent sections. The symbols introduced
will retain their meaning throughout the paper.

541



542 GARRY HELZER

By a “ring homomorphism” we understand an additive and mul-
tiplicative mapping of rings with unit which carries unit to unit.
Unidentified maps are the obvious ones.

DEFINITION. A split ring R is a quadruple (a, b, ¢, d) such that
(R1) and (R2) below hold.

Rl a: R—1T, b: I'— R are ring homomorphisms with ab = 1,
and I" a semi-simple ring (with minimum condition).

If we set I = kera then I and I*® are two-sided ideals of R and
hence R — R bimodules. The map b then induces a I"— I" bimodule
structure on I and I*

R2) e: I—1I/I? d: I/I*—1I are I'—I" bimodule homomorphisms
such that ed = 1,.

We set A =Imd and then we have R=I"@PAPI}, [ = AP I*
as I — I bimodules. This is the Jans-Nakayama definition (see [9])
when I is the Jacobson radical of R and R is semi-primary.

DEFINITION. A morphism of split rings R— R’ is a quadruple
(a, B, v, 0) satisfying (R3), (R4), and (R5) below.

(R3) a: R— R’ and B: I —I" are ring homomorphisms, v and
0 are induced by «, and the diagrams

R——r I —— I
|a b ‘ﬁ and Ir d ’6
o [

R/ ‘_—-——) F’ I’ — I’/I’Z

4 d’

commute.
(R4) If A’ is a maximal two-sided ideal of I"" then

ker [[" —s " — I"[A']

is a maximal two-sided ideal of I.
(R5) If A’, B’ are maximal two-sided ideals of /" and

P’ ' =ker[R'—> I —> I''|A"], Q' =ker[R'—> I'" — I""/|B'}]
P =ker[R— R'— R'/P'], Q = ker[R—> R'— R'/Q']

then the induced monomorphism R/PQ — R’/P'Q’' carries the Jacobson
radical of R/PQ onto the Jacobson radical of R'/P'Q’.

By the split spectrum, SSpec(R), of R we shall mean the set
of ideals of R of the form ker [R— I" — I'/A] as A runs through the
set of maximal two-sided ideals of I". The axiom (R4) then assures
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that a morphism R — R’ induces a map SSpec(R’) — SSpec(R).

In [6] we introduced in a somewhat different context the skeleton,
Sk.R, of a right perfect ring. Axiom (R5) assures that a morphism
R — R’ induces a morphism Sk.R"— Sk,RB. We shall denote the
category of split rings by SRng.

DEFINITION. A sheaf of simple rings over a finite graph, F,
consists of

(S1) An oriented graph G. That is, a set of arrows A;, a set
of vertices V, and two functions h, t: A; — V, called head and tail.
We assume that A; and V, are finite.

(S2) For each z¢ V, a ring R(x) which is simple (with d.c.c.).

(S3) For each ac A, a left R(ta) and right R(ha) bimodule
M(ta, ha).
We further assume

(S4) The map (¢, h): A;— Vi X V; is one-to-one.

From now on we shall abbreviate “sheaf of simple rings over a
finite graph” to “sheaf.”

DEFINITION. A morphism of sheaves 7: F'— F’ consists of

(S5) A morphism 7, G— G' of graphs. That is, a pair of func-
tions A;— A,, Vy— V, which commute with ¢ and .

(S6) For each x ¢ V,; a ring homomorphism 7(z): R'(yx) — R(x).

(S7) For each a € A; a homomorphism

7(ta, ha): M(t'na, k'na) — M(ta, ha) of R'(t'na) — R'(h"7)a)

bimodules. Here the bimodule structure on M(ta, ha) is induced by
7(ta) and n(ha).
We further assume

(S8) 7(ta, ha) is an isomorphism for each a in A,.
We denote this category of sheaves by grass.
Next we define a functor S: (SRng)°® — grass.

Let Re SRng. For the graph of SR we adopt the skeleton of
[6] to split rings. The vertices of the graph, G, are the elements
of the set SSpee(R). If PecSSpec(R) we set R(P)= R/P. We have
an arrow P— Qe A, whenever the Jacobson radical of R/PQ is non-
zero. This radical is PN Q/PQ which is a left R/P and right R/Q
bimodule. If P—»Qec A, we set M(P,Q) = PN Q/PQ. The axioms
(R4) and (R5) now assure that the canonical definition of S on mor-
phisms defines a functor to grass.

PRrOPOSITION 1. Let Re SRng and give R/I* the canonical split
ring structure. Then we may identify SR and S(R/I? wusing the
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natural map R-— R/I%

Proof. The correspondence P — P/I* is a one-to-one correspond-
ence between SSpec(R) and SSpec(R/I?). We use the Nother. iso-
morphisms to identify R/P with (R/I%/(P/I®) and R/PQ with
(R/I)/(PI*)(Q/I?).

Finally, we define T: (grass)’®> — SRng. Let Fecgrass with as-
sociated graph G. We first define a sequence of abelian groups
T.F,i=10,1,2 -

Let A% = V,; and A% be the set of all sequences of arrows

xo ,xl s e m'n

in G. Given such a sequence of arrows we may form the left R(xz,)
and right R(x,) bimodule

M (2, ) ®E(xl) M (., xz) & - ®R(x”_1)M(xn~l’ z,) .

We define T,F' to be the ring direct product IR(x), x€ V, and T,F,
n > 0, to be the abelian group direct product over A% of the above
bimodules.

Now set TF = @;T;F, the direct- sum of abelian groups. To
define a ring structure on TF it is sufficient to- define pq.for

peM@, - )® - QM(-,y) and qeME )Q -+ QM(-,w).

We define pg = p®q if ¥y =2 and pg = 0 otherwise. If p or ¢ is
in T,F we omit the tensor symbol. With this definition T,F is a
semi-simple ring with d.c.c., T,F is a T,F bimodule and TF is the
tensor ring of T F over T,F.

For a split ring structure on TF we take I' = T,F, I = @7 T;F
and A=TF. Then TF=TI@PAPI* as I' — I" bimodules and we
use the natural projections and injections for (a, b, ¢, d).

Next assume that 7: FF— F' € grass. To define a ring homo-
morphism T#%: TF!—> TF it is sufficient to construct Typ: T F"'— T,F
a ring homomorphism and T.: T\F'’ — T,F compatible with Ty).

We define T,n to be the unigque map such that all diagrams

Toy

I HVGR(y)

R'(x) . 2o R(y)
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commute where the vertical maps are ‘direct product projections and
a,, is P(x) if y =7 and «@,; = 0 otherwise. T\ is defined similarly
after replacing V, by A,.

2. .Properties ‘of the functors.

ProOPOSITION 2. (grass)’®— SRng is a functor and ST is natural-
ly equivalent to the identity functor on grass.

Proof. Let 7: F— F’'egrass. We must first verify that T% is
a morphism of split rings. Let A ‘be a maximal two-sided ideal of
T,F. Then there is an xz e V, such that A is the kernel of the pro-
jection 7, T,F — R(x). Then
TF 20 TR 22 Riw) = TF' - R'@) 2> R(x)
where y = 7,x. Since R(x) and R’(y) are simple and %(z) is a homo-
morphism of rings with unit, 7(x) is one-to-one and

ker p(x)7, = ker «,

which is a maximal two-sided ideal of T,F’. Thus (R4) is satisfied.

LeEmMMA. Let Re SRng with I* =0, SSpec(R) = {P,--+,P,} and
and B: II? R/P;— I" the natural isomorphism. Let e; be the image
of the identity of R/P; under bB. Then ee; = 85, 1 = Sie; and the
natural map R— R/P,P; carries ede; monomorphically onto the
Jacobson radical of R/P.P;.

Proof. Clearly ;=1 and ee; = 6;;. Since I =)} P; we see
that P, = 3., X, where X, = Rif k%14 and X; = I. Similarly P,=
> X.e, where X, = R if k=+j and X; = I. Thus we have P,P;=
Se,Xe, where X, = R if k#iorl=j, X;=1o0f l#j, X;=1
if k+14and X;; =1°=0.

Now as I'-bimodules, R=1& bl and hence e,l¢, = ¢, Re, if k1.
Thus writing R = >e,Re, we see that if ¢+ j then R/P;P; is isomorphic
to the matrix ring

'lieiRei/eJe.-‘ eiIej ]
0 ¢;Rejle;le; )

Since B~ a carries ¢,Re, onto R/P, with kernel e,le, we see that the
lemma holds for 7 = j. For 1 = j we have that R/P;P; is isomorphic
to e;Re; which has radical ¢Je;; “since I* = 0 implies that I is the
radical of R.
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Now let R’ € SRng and set R = TSR’. Identify SR’ and S(R'/I?
(Proposition 1). We define a map R— R’ as follows. Since

I' =TSR = II'R'|P/

we take B: I"—I" as in the lemma. An arrow P; — P; is in the
graph of SR’ iff the radical of R'/P!/P] is nonzero and then the as-
sociated stalk is the radical. The group T.SR’ is the produet of
these radicals. On the othe hand, I'/I" is the product of the groups
e;(I'/T%e;. Thus we have a mapping 6: TSR’ — R’ and this mapping
is a T,SR’-bimodule isomorphism. Thus, by the remarks preceding
the lemma we have a ring homomorphism @(R): TSR’ — R’ which
satisfies (R3). Since @ and J are isomorphisms (R4) and (R5) are
satisfied as well. It is not difficult to see that @(R) is natural in R.

THEOREM 1. The functors S: (SRng)°® — grass and T: (grass)°®—
SRng are adjoints of the type
Hom (TF, R) =~ Hom (SR, F) .
Proof. If we consider S to be a functor SRng — (grass)°® then
the theorem states that S is a right adjoint for 7. Let
U(F). F—> STF € (grass)’®

be the natural equivalence of Proposition 2. To prove the theorem
it is sufficient (see [4] or [10]) to show that the compositions

S[0(R)] - ¥(SR): SR —> STSR— SR

and
O(TF) o TW(F)|: TF— TSTF — TF

are identities. This is almost clear.
3. Split semi-primary rings.

DEFINITION. A split ring R=I + I is semi-primary if I* =0
for some n > 0.

A semi-primary split ring is semi-primary in the usual sense with
Jacobson radical I.

In what follows we shall often confuse the quadruple @(R) with
its first component.

PROPOSITION 3. Let R be a semi-primary split ring. Then @(R):
TSR — R 1is onto with kernel contained in (@7 T;SR):.
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Proof. From the discussion preceding Theorem 1 we see that
O(R) carries T,SR isomorphically onto &/ and TSR isomorphically
onto A =Imd. Thus I =1I°+ ¢(R)[@B; T:SR]. Since I is nilpotent
it follows from [8, Lemma 1.2] that @(R) is onto. It follows from
(R3) that the kernel is in (@7 T.SR)".

DEFINITION. Let Fegrass with graph G. We say that F' has
no closed paths if for each path x -y —2z-.-- —2z2 in G,z # 2.

Suppose that F' has no closed paths, then TF is isomorphic to a
generalized triangular matrix ring in Harada’s sense [5]. To see
this first index the vertices of the graph of F' as follows. First as-
sign the integers 1,2, --., m, to those vertices which are not the
tails of any arrows. Erase these vertices and all arrows leading to
them obtaining a graph G’. Assign the integers m,, + 1, ---, ny, to
these vertices of G’ which are not the tails of any arrows in G'.
Continue in this manner until V, is exhausted. Now set

M;; = R; = R(x,)

and let M;; be the direct sum of all left R, and right R; modules
M@, )+~ QM(-,x;) for which z;— .- —2x; is a path in G.
The multiplication in TF then induces functions M;; X M;,— M, and
the resulting generalized triangular matrix ring T(R;, M;,) is isomor-
phic to TF.

Since T, F = I" is semi-simple, M@, N=0=M=0 or N=0.
Thus we have

PROPOSITION 4. Let Fegrass then TF is a semi-primary split
ring iff F has no closed paths.

The next statement rephrases known results in our language.
By results in [1] we need not distinguish between left and right
homological dimensions.

THEOREM 2. Let R be a semi-primary split ring. There is an
Fegrasss> R= TF e SRng if and only if the ring R s hereditary.

Proof. Assume that R is hereditary. Since I is the radical of
R [3, Theorem 8] shows that the global dimension of R/I* is finite.
Thus by [6, Theorem 3.1] SR has no closed paths and hence TSR is
a semi-primary split ring. Since @(R): TSR — R is onto with kernel
in (@B T;SR)* [2, Theorem I] shows that @(R) is an isomorphism.

Conversely, assume R = TF. Then TF is semi-primary and by
[9, Proposition 4] TF is an hereditary ring.
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An ‘example due.’to Zaks ([11] or. [12]). shows that not every
hereditary generalized triangular. matrix ring is split and hence not
every hereditary generalized triangular matrix ring is of the form
TF for some F ¢ grass.

DEFINITION. A morphism 7: C— Fegrass is a covering if the
corresponding map on graphs, H— G, is onto and for each € V, or
ae Ay the stalkwise maps 7(x) and 7(ta, ha) are identities.

LEMMA. If Fegrass then there is a covering n: C — F in grass
where C has no closed paths. Further, one may assume that C has
at most one path between any two vertices of its graph.

Proof. Let G be the graph of F' and let e V,. We define a
graph G’ as follows. Vg, = V, T {«"} (disjoint union) and A, = A,.
Let h, t: A;— V, be the head and tail functions for G,

H,={aeVy|h(@) =2} and T,={acVy|t@) =ua}.

Choose decompositions H, = H, 1L H, and T, = T, 1L T.

We next define #',t": Ay — Vg, If ac H, we set h'(a) = x if
acH, and W(a) =« if acH, If acd, \ H, we set h'(a) = h(a).
If acT, we set t'a) == if acT, and t'(a) =« if aec T, If
acA, \ T, we set t'(a) = t(a). This defines G'. We shall say that
G’ i optained from G by making a cut at x.

Now define a morphism of graphs 7, G' — G by taking 7, to be
the identity on Vi, \ {z} and A, and setting 74(x") = x. We extend
7s -to:a covering 7: C— F by “pulling the stalks back along 7,.”
That is, if x€ V, we set the stalk over x equal to R(7,x), the stalk
of F over 74(x), and let 7n(x): R(nx) — R(n,x) be the identity. Simi-
larly for the stalks over arrows. '

Since the composition of coverings is a covering we may make
successively a finite number of cuts to obtain a covering C— F
where C has no closed paths.

In proving the second statement we may assume that F' has no
closed paths. If #,y€ V,; such that there are two paths from z to
y whose final arrows «, 8 are such that @ + 8 then make a cut at
y such that @« and @ no longer have the same head. This gives a
covering F, — F. If there are two paths in the graph of F, with
the same beginning and end, make another cut and get a covering
F,— F,, ete. This process will end in a finite number of steps.

If »: C— F .is a covering and C has no closed paths then 7%:
TF — TC is a morphism of TF to a split, hereditary generalized
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triangular matrix ring. Further assume that there is at most one
path between any two vertices of C and let R’ be the set. theoretic
image of T% in TC. The (x,y) entry of the matrix ring 7C is zero
if there is no path from z to v in the graph of C or varies in the
R(z), R(y)-bimodule associated to the unique path from z to y. If
the path from # to y has the same image under 7 as the path from
z to w then, as abelian groups, the (x, y) module for TC and the
(2, w) module for TC are identical and if a matrix lies in R’ then its
(z, ¥y) entry equals its (z, w) entry. The ring R’ is. obtained from
TC by setting certain entries of TC equal to each other. For examples
of rings R’ see [13, Examples 5.7, 6.7, and 7.7].

Now suppose that F'= SR where R is a semi-primary split ring.
We have @(R): TF — R, an onto ring homomorphism. Thus R will
be an image of R’ if ker Ty C ker @(R). If I is the radical of R and
I** 0, I"=0 then ker ®(R) D@ T;F. Thus it is sufficient to
have ker Tpc @ T;F. This means that every path of length #» in
F should be the image of a path of length » in C under 7. To ac-
complish this we merely construct C from F by making cuts as
described in the proof of the lemma and then attach as many distinct
paths of appropriate length as we need to the freshly cut ends. Thus
we have

THEOREM 3. Let R be a semi-primary split ring. Then there
18 a covering 7: C — SR where C has no closed paths and at most one
path between any two vertices and ker Tn C ker @(R).

The generalized triangular matrix rings T'C are of a special type.
One is given a set of simple rings S; 1 < 7 < n (corresponding to the
vertices of the graph C) and a set of left S; and right S; bimodules,
JM; (corresponding to the arrows of C).

Form a symbolic matrix M with S; in the <ith place and ,M; in
the 4jth place. Compute the formal products M* using the tensor
product to multiply bimodules and using the identities: M @, S = M,
S@.M = M. The sequence [MF*] stabilizes in less than = steps.
The ring TC may be defined as the generalized matrix ring for which
the ¢jth entry of a ring element varies in the 4jth entry of M=,

The condition that there be at most one path between any two
vertices of C means that given 7 and j there is at most one sequence
T = 1,1, -+, %, =7J such that ;M  is nonzero for each !. This
means that any summations necessary to form the product M* are
automatically defined.

Call the generalized triangular matrix rings defined in this way
pure tensorial triangular rings.
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The subrings R! of TC are easily defined in terms of M or M".
If the elements on the main diagonal of TC in places %, ---, %, are
to be identified, replace S;,--:, S;, in M by the same symbol, say
S;,. To do this we must of course have S;, ---, S;, identical as ab-
stract rings. Next replace ;M; and .M, by the same symbol if the
places ¢ and %k as well as the places 7 and ! are to be identified.
This process gives a new symbolic matrix M’'. The subring R’ of
TC is defined by requiring that two entries of a matrix be equal
whenever the corresponding entries of (M')" are equal. Call the rings
R’ defined in this way special subrings of pure tensorial triangular
rings. For examples of such rings see [13, Examples 5.7, 6.7, and 7.7]
and below.

With this notation we may restate Theorem 3.

THEOREM 8'. Ewvery semi-primary split ring s a homomorphic
image of a special subring of a pure temsorial triangular ring. The
kernel of the homomorphism is contained in the square of the radical.

ExaMPLE. We will work through the construction of C and R’
for a specific ring: a finite dimensional algebra R over an algebraically
closed field F with the radical N such that R/N has two simple
components and N* = 0.

First notice that such rings are split. By the Wedderburn principal
theorem there is a semi-simple ring I" = R/N contained in R such
that R = I"@ N, a direct sum of I'-bimodules. The ideal N* is a
subbimodule of N and since F is the center of R this bimodule
structure is equivalent to a left I" ®, I structure. The semi-simple
ring [” is isomorphic to a product of full matrix algebras over F.
The well-known isomorphism M, (F) ®r M, (F)° = M,,(F) shows that
I' ®;I"° is semi-simple and hence that N? is a bimodule summand
of N. It follows that R is a split semi-primary ring.

The stalks over the vertices of SR are the simple components
of I'. Denote them by S;= M, (F). The stalks ;M; over arrows
are radicals of homomorphic images of R. Thus they are in fact
left M, (F) ® M, (F)° modules and hence are semi-simple as bimodules.
It follows that ,M; is isomorphic to a finite direct sum of copies of
M, .,(F), the set of n; X n; matrices with entries in F.

The tensor product of M, ;(F') and M, ,(F) over M;(F) is iso-
morphic M, ,(F) as left M,(F) and right M;(F) bimodules. This iso-
morphism carries tensor products of individual matrices to the product
of the matrices.

It follows from the last paragraph that entries of TC will be
formal sums of matrices and the multiplication in 7C will be given
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by matrix multiplication plus the distributive laws. In particular if
the bimodules ;M; are all simple TC will be isomorphic to a subring
of M,(F) for some k.

Since I" has two components there are ten possibilities for the
graph of SR. These reduce to seven if R is assumed indecomposable
[6,82]. Suppose the vertices and arrows of the graph G are given
by

V={1,2}, A = {12, 21, 11}

where 12 is an arrow from 1 to 2 etc.

We wish to find a morphism of graphs 7: C — G where C has at
most one path between any two vertices. It may happen that N* =+~ 0
so we also need the condition that any path of length three in G is
the image of a path in C. One choice of C and 7 is given by

VC’ = {1) ] 9} ’
A, = {41, 52, 61, 54, T6, T5, 87, 98)

with 7 defined on V, by
nk) = 2 if and only if k= 8,6,2.

The matrix M’ is 9 x 9. On the main diagonal M’ has S, in the
8th, 6th and 2nd places and S, elsewhere. Off the main diagonal it has
.M, in places 41, 54, and 75; M, in places 52, 76, and 98; ,M, in places
63 and 87 and zeros elsewhere. If N’ is the radical of R’ then
R = R/I where (N)*DID (N
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