ON THE FITTING LENGTH OF A SOLUBLE LINEAR GROUP

Trevor Hawkes

Let G be a finite soluble completely reducible linear group of degree n over a perfect field. It is shown that the Fitting length $l(G)$ of G satisfies the inequality

$$
l(G) \leqq 3+2 \log _{3}(n / 2),
$$

and that this bound is best possible for infinitely many values of n.

Let G be a soluble completely reducible linear group of degree $n>1$ over a perfect field k. Huppert shows in [3], Satz 10, that the derived length of G is at most $6 \log _{2} n$. This is therefore an upper bound for the Fitting length $l(G)$ of G as well. In this note we assume in addition that G is finite and prove that

$$
l(G) \leqq 3+2 \log _{3}(n / 2)
$$

We show further that this bound is actually achieved for infinitely many values of n.

Lemma 1. Let K be a normal subgroup and M a maximal subgroup of a finite soluble group G. Then $l(M \cap K) \geqq l(K)-2$.

Proof. Let $l(K)=l$. The result is clearly true when $l \leqq 2$; therefore assume $l>2$ and proceed by induction on $|G|$. Set $F=F(K)$, the Fitting subgroup of K. Since F is the direct product of its Sylow subgroups, each of which is normal in G, we may assume by the R_{0}-closure of the class $L(l)$ of groups of Fitting length at most l that F has a Sylow p-complement S such that $l(K / S)=l$. Suppose $S \neq 1$. If $S \leqq M$, then M / S is maximal subgroup of G / S, and so by induction $l(M \cap K / S) \geqq l(K / S)-2=l-2$. But then $l(M \cap K) \geqq l-2$, as required. On the other hand, if $S \nsubseteq M$, then $M \cap K / M \cap S \cong S(M \cap K) / S=$ K / S has Fitting length l, whence $l(M \cap K)=l$. Hence we may assume that $S=1$ and that F is a p-group. Set $L / F=F(K / F)$. Then $l(K / L)=l-2$ and L / F is a p^{\prime}-group. There are two possibilities to consider:
(a) $L \not \equiv M$. In this case $L(M \cap K)=K$ and therefore $M \cap K / M \cap L$ $\cong K / L$ has Fitting length $l-2$. Hence $l(M \cap K) \geqq l-2$.
(b) $L \leqq M$. In this case, denoting the Fitting subgroup of $M \cap K$ by \bar{F}, since $F \leqq \bar{F}$ and $C_{K}(F) \leqq F$, we see that \bar{F} is a p-group. But then \bar{F} / F is a normal p-subgroup of $M \cap K / F$, and so $\bar{F} / F \leqq$
$C_{K / F}(L / F) \leqq L / F$, a p^{\prime}-group. Thus $F=\bar{F}$ and $l(M \cap K)=1+$ $l(M \cap K / F)$. By induction, $l(M \cap K / F) \leqq l(K / F)-2=l-3$, and so in this case too the conclusion of the lemma holds.

Lemma 2. Let T be an extra-special group of order 2^{7}, and let A be a soluble subgroup of Aut (T) acting irreducibly on $T / \Phi(T)$. Then $l(A) \leqq 4$.

Proof. By Huppert, [4], III. 13.9 (b), A is a subgroup of an orthogonal group of dimension 6 over the field of 2 elements; hence by Dieudonné [2], p. 68, $|A|$ divides $2^{7} \cdot 3^{2} \cdot 5 \cdot 7$ or $2^{7} \cdot 3^{4} \cdot 5$. Since $T / \Phi(T)$ is an irreducible $Z_{2}[A]$-module, $2 \nmid|F(A)|$ and hence $|F(A)|$ is a divisor of $3^{2} \cdot 5 \cdot 7$ or $3^{4} \cdot 5$. Let $F(A) / K$ be a chief factor of A and set $\bar{A}=A / C_{A}(F(A) / K)$. If $|F(A) / K|=3,3^{2}, 5$ or 7 , examination of the corresponding linear groups shows that $l(\bar{A}) \leqq 3$. If $|F(A) / K|=$ $3^{3}, \bar{A}$ is isomorphic with a subgroup of $G L(3,3)$. Its order therefore divides $|G L(3,3)|=2^{5} \cdot 3^{3} \cdot 13$. But its order also divides $2^{7} \cdot 3^{4} \cdot 5 / 3^{3}$ and therefore divides $2^{5} \cdot 3$. But then $0_{2,3,2}(\bar{A})=\bar{A}$ and so we have $l(\bar{A}) \leqq 3$. Since a Sylow 3 -subgroup of $G L(6,2)$ has order 3^{4} and is non-Abelian, there are no other possibilities for the order of $F(A) / K$. Hence $A / F(A)$, which is a subdirect product of the groups \bar{A}, has Fitting length at most 3 . Thus $l(A) \leqq 4$, as claimed.

We state without proof the following elementary arithmetical facts.

Lemma 3. (a) If $d \geqq 3,3^{d} \geqq d \sqrt{12}$;
(b) If $d \geqq 4,2^{d} \geqq d \sqrt{12}$;

We now come to our main result.
Theorem. Let G be a finite soluble completely reducible linear group of degree n over a perfect field k. Let $l(G)=l>1$. Then

$$
n \geqq 2 \cdot 3^{r^{(l-3) / 2}},
$$

where $\eta=0$ for $l=2,3$ and $\eta=1$ for $l \geqq 4$.
Proof. Since a linear group of degree one is Abelian, the theorem is clearly true for $l=2,3$. Therefore assume $l \geqq 4$. We may suppose there is an n-dimensional k-space V on which G acts (faithfully and completely reducibly). We proceed by induction on the integer $m=|G|+\operatorname{dim}_{k}(V)$, assuming the theorem has already been proved for all groups G and all fields k giving smaller values of m. Let $V=\mathscr{K}_{1} \oplus \cdots \oplus \mathscr{U}_{r}$ be a decomposition of V into irreducible components \mathscr{U}_{i}. Set $K_{i}=\operatorname{ker}\left(G\right.$ on $\left.\mathscr{U}_{i}\right)$. If $G / K_{i} \in L(l-1)$ for every i,
we have, $G \in R_{0} L(l-1)=L(l-1)$ since $\bigcap_{i=1}^{r} K_{i}=1$. Since this is not the case, we have $l\left(G / K_{i}\right)=l$ for some i, and therefore when $r>1$ we may apply induction to the triple $\left(G / K_{i}, \mathscr{U}_{i}, k\right)$ to give the result. Therefore assume V is irreducible as a $k[G]$-module. Since G is finite and k is perfect, we can find a finite extension \bar{k} of k which is a splitting field for G and its subgroups such that $\bar{V}=\bar{k} \boldsymbol{\otimes}_{k} V$ is completely reducible; in fact $\bar{V}=V_{1} \oplus \cdots \oplus V_{s}$ is the direct sum of algebraically conjugate irreducible $\bar{k}[G]$-modules. If $s>1, \operatorname{dim}_{\bar{k}}\left(V_{i}\right)<$ $\operatorname{dim}_{\bar{k}}(\bar{V})=\operatorname{dim}_{k}(V)$. Since $\operatorname{ker}\left(G\right.$ on $\left.V_{i}\right)=\operatorname{ker}(G$ on $V)=1$, we can apply induction to the triple $\left(G, V_{i}, \bar{k}\right)$ to give the result. Therefore we may assume that $s=1$ and without loss of generality that $k=\bar{k}$ is a splitting field for G and its subgroups.

Let H be a subgroup of G critical for the class $L(l-1)$; thus $H \in L(l) \backslash L(l-1)$ and all proper subgroups of H belong to $L(l-1)$. By Lemma 5.2 and Theorem 5.3 of [1] there is a prime q dividing $|F(G)|$ such that H has a special normal q-subgroup Q such that $Q / \Phi(Q)$ is a chief factor of H on which H induces a group of automorphisms of Fitting length exactly $l-1$. If k has finite characteristic p, by the irreducibility of V we have $O_{p}(G)=1$; thus $q \neq$ char k. Hence there exists a composition factor V^{*} of $\left.V\right|_{H}$ not centralized by Q. The subgroup $Q^{*}=C_{Q}\left(V^{*}\right)$ is proper and normal in H, and therefore $Q^{*} \Phi(Q)=Q$ or $\Phi(Q)$. But $Q^{*} \Phi(Q)=Q$ implies Q^{*} is not proper. Therefore $Q^{*} \leqq \Phi(Q)$. But then $l\left(H / Q^{*}\right)=l$. If $H<G$, induction applied to the triple $\left(H / Q^{*}, V^{*}, k\right)$ gives the result. Therefore we suppose $H=G$ is critical for $L(l)$.

Let A be an Abelian normal subgroup of G. Let $\left.V\right|_{A}=$ $W_{1} \oplus \cdots \oplus W_{t}$ be the decomposition into homogeneous components W_{i}. Suppose $t>1$, and let M be a maximal subgroup of G containing the stabilizer S of W_{1}. By Clifford theory W_{1} is an irreducible S-module and $V=W_{1}^{G}=\left(W_{1}^{M}\right)^{G}$. Furthermore, $Y=W_{1}^{M}$ is an irreducible $k[M]$-module. Applying induction to the triple ($M / \operatorname{ker}(M$ on Y), Y, k) gives $\operatorname{dim}_{k}(Y) \geqq 2.3^{\eta^{\prime(}\left(l^{\prime}-3\right) / 2}$, where $l^{\prime}=l(M)$. If $|G: M|=2$, then $M \triangleleft G$ and clearly $l^{\prime}=l-1$. But then $n=2 \operatorname{dim}_{k}(Y) \geqq 2 \cdot 2 \cdot 3^{\eta^{\prime \prime}(l-4) / 2}>$ $2 \cdot 3^{\eta(l-3) / 2}$. Therefore suppose $|G: M| \geqq 3$. By Lemma $1 l(M) \geqq l-2$, and so again by induction we have $n \geqq 3 \operatorname{dim}_{k}(Y) \geqq 3 \cdot 2 \cdot 3^{\gamma^{\prime(l-5) / 2}} \geqq$ $2 \cdot 3^{\eta(l-3) / 2}$. Therefore we may assume that $t=1$, and, since k is a splitting field for the subgroups of G, that every Abelian normal subgroup of G is cyclic and contained in $Z(G)$.

Thus Q is an extra-special group, say of order $q^{2 \alpha+1}$. By Huppert [4], V.16.14, the faithful irreducible $k[Q]$-modules have dimension q^{d}. Since V is faithful for Q, we have $n=\operatorname{dim}_{k}(V) \geqq q^{d} . \quad G$ induces on $U=Q / \Phi(Q)$ a soluble irreducible group S of symplectic linear transformations over \boldsymbol{Z}_{q}, and $l(S)=l-1$. If $l=4$ or $5, q^{d} \geqq 6$; for the ir-
reducible soluble subgroups of $\operatorname{Sp}(2,2), \operatorname{Sp}(2,3), \operatorname{Sp}(2,5)$ and $\operatorname{Sp}(4,2) \cong S_{6}$ all have Fitting length at most 2. In these cases we have $n \geqq q^{d} \geqq$ $6 \geqq 2 \cdot 3^{(l-3) / 2}$. If $l \geqq 6$, induction applied to $\left(G / \operatorname{ker}(G\right.$ on $\left.U), U, Z_{q}\right)$ shows that $d \geqq 3^{(l-4) / 2} \geqq 3$. Thus, if $q \neq 2$, by induction and Lemma 3(a), we have

$$
n \geqq q^{d} \geqq 3^{d} \geqq d \sqrt{12} \geqq 2 \cdot \sqrt{3} \cdot 3^{(l-4) / 2}=2 \cdot 3^{(l-3) / 2}
$$

And if $l \geqq 6$ and $q=2$, by Lemma 2 and induction we have $d \geqq$ $\max \left\{4,3^{(l-4) / 2}\right\}$. Hence using Lemma 3(b) we have

$$
n \geqq 2^{d} \geqq d \sqrt{12} \geqq 2 \cdot 3^{(l-3) / 2}
$$

This completes the proof.
The bound for this theorem can actually be achieved whenever l is odd and $k=Z_{3}$. For let $l=2 l^{\prime}+1$ and let H be the holomorph of an elementary Abelian group A of order 9. $H / A \cong G L(2,3)$ has Fitting length 3. Let $\left.W=\left(\cdots\left(H \backslash S_{3}\right)\right\} \cdots \backslash S_{3}\right)$, the successive wreath product of H with $l^{\prime}-1$ copies of the symmetric group of degree 3 according to its natural representation. It is easy to check that W has a self-centralizing elementary Abelian normal 3 -subgroup N such that $l(W / N)=2\left(l^{\prime}-1\right)+3=l . \quad N$ is a faithful irreducible $\boldsymbol{Z}_{3}[W / N]$-module of \boldsymbol{Z}_{3}-dimension $2 \cdot 3^{l^{\prime-1}}=2 \cdot 3^{(l-3) / 2}$.

We conclude by remarking that the above methods give better bounds for $l(G)$ in terms of n if the smallest prime divisor of $|G|$ is greater than 2 or, more generally, if the 2 -length of G is restricted.

References

1. R. W. Carter, B. Fischer, and T. O. Hawkes, Extreme classes of finite soluble groups, J. Algebra, 9 (1968), 285-313.
2. J. Dieudonné, La Géométrie des Groupes Classiques, Springer, Berlin-Heidelberg, 1955.
3. B. Huppert, Lineare Aufiösbare Gruppen, Math. Z., 67 (1957), 479-518.
4. \qquad , Endliche Gruppen, Springer, Berlin-Heidelberg, 1967.

Recived October 1, 1971. The author is grateful for the hospitality of the University of Oregon where this work was done with the support of a National Science Foundation grant.

[^0]
[^0]: University of Warwick, Coventry, England

