ON THE FITTING LENGTH OF A SOLUBLE LINEAR GROUP

TREVOR HAWKES

Let G be a finite soluble completely reducible linear group of degree n over a perfect field. It is shown that the Fitting length l(G) of G satisfies the inequality

$$l(G) \leq 3 + 2\log_3\left(n/2\right),$$

and that this bound is best possible for infinitely many values of n.

Let G be a soluble completely reducible linear group of degree n > 1 over a perfect field k. Huppert shows in [3], Satz 10, that the derived length of G is at most $6 \log_2 n$. This is therefore an upper bound for the Fitting length l(G) of G as well. In this note we assume in addition that G is finite and prove that

$$l(G) \leq 3 + 2\log_3(n/2).$$

We show further that this bound is actually achieved for infinitely many values of n.

LEMMA 1. Let K be a normal subgroup and M a maximal subgroup of a finite soluble group G. Then $l(M \cap K) \ge l(K) - 2$.

Proof. Let l(K) = l. The result is clearly true when $l \leq 2$; therefore assume l > 2 and proceed by induction on |G|. Set F = F(K), the Fitting subgroup of K. Since F is the direct product of its Sylow subgroups, each of which is normal in G, we may assume by the R_0 -closure of the class L(l) of groups of Fitting length at most l that F has a Sylow p-complement S such that l(K/S) = l. Suppose $S \neq 1$. If $S \leq M$, then M/S is maximal subgroup of G/S, and so by induction $l(M \cap K/S) \geq l(K/S) - 2 = l - 2$. But then $l(M \cap K) \geq l - 2$, as required. On the other hand, if $S \leq M$, then $M \cap K/M \cap S \approx S(M \cap K)/S =$ K/S has Fitting length l, whence $l(M \cap K) = l$. Hence we may assume that S = 1 and that F is a p-group. Set L/F = F(K/F). Then l(K/L) = l - 2 and L/F is a p'-group. There are two possibilities to consider:

(a) $L \leq M$. In this case $L(M \cap K) = K$ and therefore $M \cap K/M \cap L \simeq K/L$ has Fitting length l-2. Hence $l(M \cap K) \geq l-2$.

(b) $L \leq M$. In this case, denoting the Fitting subgroup of $M \cap K$ by \overline{F} , since $F \leq \overline{F}$ and $C_{\kappa}(F) \leq F$, we see that \overline{F} is a *p*-group. But then \overline{F}/F is a normal *p*-subgroup of $M \cap K/F$, and so $\overline{F}/F \leq C_{\kappa}(F) \leq C_{\kappa}(F)$

TREVOR HAWKES

 $C_{K/F}(L/F) \leq L/F$, a p'-group. Thus $F = \overline{F}$ and $l(M \cap K) = 1 + l(M \cap K/F)$. By induction, $l(M \cap K/F) \leq l(K/F) - 2 = l - 3$, and so in this case too the conclusion of the lemma holds.

LEMMA 2. Let T be an extra-special group of order 2^{τ} , and let A be a soluble subgroup of Aut (T) acting irreducibly on $T/\Phi(T)$. Then $l(A) \leq 4$.

Proof. By Huppert, [4], III.13.9 (b), A is a subgroup of an orthogonal group of dimension 6 over the field of 2 elements; hence by Dieudonné [2], p. 68, |A| divides $2^{7} \cdot 3^{2} \cdot 5 \cdot 7$ or $2^{7} \cdot 3^{4} \cdot 5$. Since $T/\Phi(T)$ is an irreducible $Z_{2}[A]$ -module, $2 \nmid |F(A)|$ and hence |F(A)| is a divisor of $3^{2} \cdot 5 \cdot 7$ or $3^{4} \cdot 5$. Let F(A)/K be a chief factor of A and set $\overline{A} = A/C_{A}(F(A)/K)$. If $|F(A)/K| = 3, 3^{2}, 5$ or 7, examination of the corresponding linear groups shows that $l(\overline{A}) \leq 3$. If $|F(A)/K| = 3^{3}, \overline{A}$ is isomorphic with a subgroup of GL(3, 3). Its order therefore divides $|GL(3, 3)| = 2^{5} \cdot 3^{3} \cdot 13$. But its order also divides $2^{7} \cdot 3^{4} \cdot 5/3^{3}$ and therefore divides $2^{5} \cdot 3$. But then $0_{2,3,2}(\overline{A}) = \overline{A}$ and so we have $l(\overline{A}) \leq 3$. Since a Sylow 3-subgroup of GL(6, 2) has order 3^{4} and is non-Abelian, there are no other possibilities for the order of F(A)/K. Hence A/F(A), which is a subdirect product of the groups \overline{A} , has Fitting length at most 3. Thus $l(A) \leq 4$, as claimed.

We state without proof the following elementary arithmetical facts.

LEMMA 3. (a) If $d \ge 3$, $3^d \ge d\sqrt{12}$; (b) If $d \ge 4$, $2^d \ge d\sqrt{12}$;

We now come to our main result.

THEOREM. Let G be a finite soluble completely reducible linear group of degree n over a perfect field k. Let l(G) = l > 1. Then

 $n \geq 2 \cdot 3^{\eta(l-3)/2}$,

where $\eta = 0$ for l = 2, 3 and $\eta = 1$ for $l \ge 4$.

Proof. Since a linear group of degree one is Abelian, the theorem is clearly true for l = 2, 3. Therefore assume $l \ge 4$. We may suppose there is an *n*-dimensional *k*-space *V* on which *G* acts (faithfully and completely reducibly). We proceed by induction on the integer $m = |G| + \dim_k(V)$, assuming the theorem has already been proved for all groups *G* and all fields *k* giving smaller values of *m*. Let $V = \mathscr{U}_1 \bigoplus \cdots \bigoplus \mathscr{U}_r$ be a decomposition of *V* into irreducible components \mathscr{U}_i . Set $K_i = \ker(G \text{ on } \mathscr{U}_i)$. If $G/K_i \in L(l-1)$ for every *i*,

we have, $G \in R_0L(l-1) = L(l-1)$ since $\bigcap_{i=1}^r K_i = 1$. Since this is not the case, we have $l(G/K_i) = l$ for some *i*, and therefore when r > 1we may apply induction to the triple $(G/K_i, \mathscr{U}_i, k)$ to give the result. Therefore assume *V* is irreducible as a k[G]-module. Since *G* is finite and *k* is perfect, we can find a finite extension \overline{k} of *k* which is a splitting field for *G* and its subgroups such that $\overline{V} = \overline{k} \bigotimes_k V$ is completely reducible; in fact $\overline{V} = V_1 \bigoplus \cdots \bigoplus V_s$ is the direct sum of algebraically conjugate irreducible $\overline{k}[G]$ -modules. If s > 1, $\dim_{\overline{k}}(V_i) < \dim_{\overline{k}}(\overline{V}) = \dim_k(V)$. Since ker (*G* on V_i) = ker (*G* on V) = 1, we can apply induction to the triple (G, V_i, \overline{k}) to give the result. Therefore we may assume that s = 1 and without loss of generality that $k = \overline{k}$ is a splitting field for *G* and its subgroups.

Let H be a subgroup of G critical for the class L(l-1); thus $H \in L(l) \setminus L(l-1)$ and all proper subgroups of H belong to L(l-1). By Lemma 5.2 and Theorem 5.3 of [1] there is a prime q dividing |F(G)| such that H has a special normal q-subgroup Q such that $Q/\Phi(Q)$ is a chief factor of H on which H induces a group of automorphisms of Fitting length exactly l-1. If k has finite characteristic p, by the irreducibility of V we have $O_p(G) = 1$; thus $q \neq$ char k. Hence there exists a composition factor V^* of $V|_H$ not centralized by Q. The subgroup $Q^* = C_Q(V^*)$ is proper and normal in H, and therefore $Q^*\Phi(Q) = Q$ or $\Phi(Q)$. But $Q^*\Phi(Q) = Q$ implies Q^* is not proper. Therefore $Q^* \leq \Phi(Q)$. But then $l(H/Q^*) = l$. If H < G, induction applied to the triple $(H/Q^*, V^*, k)$ gives the result. Therefore we suppose H = G is critical for L(l).

Let A be an Abelian normal subgroup of G. Let $V|_A = W_1 \bigoplus \cdots \bigoplus W_i$ be the decomposition into homogeneous components W_i . Suppose t > 1, and let M be a maximal subgroup of G containing the stabilizer S of W_1 . By Clifford theory W_1 is an irreducible S-module and $V = W_1^G = (W_1^M)^G$. Furthermore, $Y = W_1^M$ is an irreducible k[M]-module. Applying induction to the triple $(M/\ker (M \text{ on } Y), Y, k)$ gives $\dim_k (Y) \ge 2.3^{\gamma/(l-3)/2}$, where l' = l(M). If |G:M| = 2, then $M \triangleleft G$ and clearly l' = l - 1. But then $n = 2 \dim_k (Y) \ge 2 \cdot 2 \cdot 3^{\gamma/(l-4)/2} > 2 \cdot 3^{\gamma/(l-3)/2}$. Therefore suppose $|G:M| \ge 3$. By Lemma 1 $l(M) \ge l - 2$, and so again by induction we have $n \ge 3 \dim_k (Y) \ge 3 \cdot 2 \cdot 3^{\gamma/(l-5)/2} \ge 2 \cdot 3^{\gamma/(l-3)/2}$. Therefore we may assume that t = 1, and, since k is a splitting field for the subgroups of G, that every Abelian normal subgroup of G is cyclic and contained in Z(G).

Thus Q is an extra-special group, say of order q^{2d+1} . By Huppert [4], V.16.14, the faithful irreducible k[Q]-modules have dimension q^d . Since V is faithful for Q, we have $n = \dim_k(V) \ge q^d$. G induces on $U = Q/\Phi(Q)$ a soluble irreducible group S of symplectic linear transformations over Z_q , and l(S) = l - 1. If l = 4 or 5, $q^d \ge 6$; for the irreducible soluble subgroups of Sp(2, 2), Sp(2, 3), Sp (2, 5) and Sp (4, 2) $\cong S_6$ all have Fitting length at most 2. In these cases we have $n \geq q^d \geq 6 \geq 2 \cdot 3^{(l-3)/2}$. If $l \geq 6$, induction applied to $(G/\text{ker } (G \text{ on } U), U, Z_q)$ shows that $d \geq 3^{(l-4)/2} \geq 3$. Thus, if $q \neq 2$, by induction and Lemma 3(a), we have

$$n \geq q^d \geq 3^d \geq d\sqrt{12} \geq 2 \cdot \sqrt{3} \cdot 3^{(l-4)/2} = 2 \cdot 3^{(l-3)/2}$$
 .

And if $l \ge 6$ and q = 2, by Lemma 2 and induction we have $d \ge \max\{4, 3^{(l-4)/2}\}$. Hence using Lemma 3(b) we have

$$n \geq 2^{\scriptscriptstyle d} \geq d_{\scriptscriptstyle
m I} / \overline{12} \geq 2 \cdot 3^{\scriptscriptstyle (l-3)/2}$$
 .

This completes the proof.

The bound for this theorem can actually be achieved whenever l is odd and $k = \mathbb{Z}_3$. For let l = 2l' + 1 and let H be the holomorph of an elementary Abelian group A of order 9. $H/A \cong GL(2,3)$ has Fitting length 3. Let $W = (\cdots (H \wr S_3) \wr \cdots \wr S_3)$, the successive wreath product of H with l' - 1 copies of the symmetric group of degree 3 according to its natural representation. It is easy to check that W has a self-centralizing elementary Abelian normal 3-subgroup N such that l(W/N) = 2(l'-1) + 3 = l. N is a faithful irreducible $\mathbb{Z}_3[W/N]$ -module of \mathbb{Z}_3 -dimension $2 \cdot 3^{l'-1} = 2 \cdot 3^{(l-3)/2}$.

We conclude by remarking that the above methods give better bounds for l(G) in terms of n if the smallest prime divisor of |G| is greater than 2 or, more generally, if the 2-length of G is restricted.

References

- 1. R. W. Carter, B. Fischer, and T. O. Hawkes, *Extreme classes of finite soluble groups*, J. Algebra, **9** (1968), 285-313.
- 2. J. Dieudonné, La Géométrie des Groupes Classiques, Springer, Berlin-Heidelberg, 1955.
- 3. B. Huppert, Lineare Auflösbare Gruppen, Math. Z., 67 (1957), 479-518.
- 4. ____, Endliche Gruppen, Springer, Berlin-Heidelberg, 1967.

Recived October 1, 1971. The author is grateful for the hospitality of the University of Oregon where this work was done with the support of a National Science Foundation grant.

UNIVERSITY OF WARWICK, COVENTRY, ENGLAND