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ARCHIMEDEAN EXTENSIONS OF DIRECTED
INTERPOLATION GROUPS

A. M. W. GLASS

P. F. Conrad has obtained some properties of archimedean
extensions (a-extensions) of lattice ordered groups (l-groups).
In particular, Conrad proved that every abelian [-group has
an Y -closure (an abelian a-extension which has no proper
abelian a-extension). D. Khuon proved that every [l-group
has an a-closure (an a-extension which has no proper a-exten-
sion). Using a slightly different definition, Conrad and
Bleier defined an a*-extension of an l-group and proved that
every abelian [-group has an a*-closure and every archimedean
l-group has a unique a*-closure. These results have been
extended to another class of [-groups by Glass and Holland
(unpublished).

The purpose of this paper is to extend the [-group results
to the class of directed interpolation groups. The obvious
definitions give rise to some negative results; the situation
for abelian Z°-groups is more propitious and it is proved that
any such group has an . -closure in this class. However,
taking less direct definitions of a-extensions and a*-extensions
gives (7 -closures and 97 *-closures in restricted classes of
abelian directed interpolation groups.

It is assumed that the reader is familiar with [1], [2], [3], [4],
and [5]

1. Definitions and notation. Throughout this paper, additive
notation will be used for all groups, abelian or not. < will denote
strict containment and & will denote strict containment or equality.
On will denote the collection of all ordinals.

If A is a p.o. set and «, Be A, then a8 will stand for o £ 3
and 8 £ «a.

If G is a group and X & G, {(X) will denote the subgroup of G
generated by X. If G and H are groups G @ H will denote the  car-
tesian sum of G and H. If G and H are p.o. groups, then GEBH
the lexicographic sum of G over H, is the group G @ H ordered by:
(9, h) > 0 if and only if g >0 (in G) or g=0 and >0 (in H). If
{G. axe A} is a family of p.o. groups, then II{G, a e A}(Z{G, ac A))
will denote the cartesian product (sum) of the family of groups
{G,: a€ A} ordered by: g =0 if ¢,=0 (in G,) for all « € A; II*{G,: a € A}
is the same group as above but ordered by: g > 0 if and only if g, > 0
(in G,) for all ac A.
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If G is a p.o. group, G+ will denote the positive cone of G =
{geG:g =0} and G* will denote the strictly positive cone of G =
{9 € G: g > 0}. R(Z) will denote the additive o-group of reals (integers)
but R+(Z*) will denote the strictly positive reals (integers).

Let G be a p.o. group. The partial order is said to be dense if
and only if for all g, he G, if g < h there exists fe(G such that
9 < f < h. The partial order satisfies the interpolation property if
whenever g, h, f, ke G and g, h < f, k, there exists xe G such that
g hZ<x< f, k. A p.o. group satisfying the interpolation property is
called an interpolation group. A directed interpolation group G in which
f Vg (or fAg) exists only when f < g or g < f is said to be an
antilattice. A directed group G such that for all f, g, h, k € G whenever
g9, h < f,k, there exists xe G such that g,h <o < f,k is called a
tight Riesz group. Let P = {ge G: ge G* or g is pseudo-positive} and
let the cone of < be P. If G has no pseudo-identities, then < is said
to be a compatible tight Riesz order for (G, X).

Let A be a partially ordered set. For each ac A. Let R, be a
partially ordered abelian group. Let K be the cartesian product of
{R.: «e A}. The set of all ke K such that {a € A: k, # 0} satisfies the
ascending chain condition (in A) forms abelian group which is denoted
by V(4, R,). For each ve V(4, R,), let M) = {e¢eAd:v,+ 0 and
v, = 0 for all B¢ A such that @ > a}. V(A4, R,) is a partially ordered
abelian group under the ordering: » > 0 if and only if », > 0 for all
ae Mv).

2. A naive approach to a-extensions of directed interpolation
groups. Let H be a directed interpolation group and let G be a sub-
group of H. G is said to be an interpolation subgroup of H if and
only if for all z,ye G and z,tec H, z, y < 2, t implies there exists g ¢
G such that ¢, y<g==z2,t. Note that this condition is equivalent to:
2, y€@G and z,tc H and x,y = z,t imply there exists g € G such that
T,Yy=9=zt.

It should be observed that if H is an Il-group and G an inter-
polation subgroup of H, then G is an l-subgroup of H. However,
let H= V(4, R, and G = V(B, R;) where A = {1, 2, 3} ordered by:
1,2>3and1||2,B=(1, 2} and R, = R forall ee A. H is a directed
interpolation group and G is an l-group under the induced order-
ing. However, G is not an interpolation subgroup of H as
0,0,1) <(1,0,0),(0,1,00 but there is no geG such that
0,0,1) =g =(,0,0),(0,1,0).

hy, h,€ H* are said to be a-equivalent if and only if there exist
M., Ny € Z* such that h, < n,h, and h, £ n,h,. H is an a-extension of G

if and only if every he H* is a-equivalent to some ge G* and G is
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an interpolation subgroup of H. This coincides with the definition
given in [2] for [-groups and is a natural extension to directed inter-
polation groups. Notice that if K is an a-extension of H and H is
an a-extension of G, then K is an a-extension of G. Using the method
of [2] and the results of [4] and [5] it is easy to see that H is an
a-extension of G if and only if there is ¢ (1:1) map of the convex
d-subgroups of G onto those of H which preserves inclusion and maps
prime subgroups of G (polars of G) to prime subgroups of H (polars
of H).

G is a-closed if and only if G has no proper a-extension. In view
of [2] and [6], we cannot hope for there to be a unique a-closure of
a directed interpolation group but we can try to prove that any path
of proper a-extensions eventually terminates. The next two theo-
rems shatter this dream—the second gives a path of proper a-exten-
sions of a certain class of abelian directed interpolation groups which
cannot be closed up; the first, more dramatically, proves that no path
of a-extensions of R can ever be closed up.

THEOREM A. Any a-extension (in the class of directed interpolation
groups) of a demse antilattice is a demse antilattice. Comsequently,
no dense antilattice other than {0} has an a-closure and no abelian dense
antilattice other than {0} has an a-closure in the class of abelian directed
interpolation groups.

Proof. It is easy to see that any a-extension of an antilattice is
an antilattice. Suppose G is a dense directed interpolation group and
that H is an a-extension of G. We prove that H is dense.

Assume that 0 < he H and that there is no ke H such that
0<k<h. Since G is dense, h¢ G. We first show that, under these
hypotheses, some multiple of 2 belongs to G. Let g be a-equivalent
to & and assume that m e Z*-is the least such that mg = h. Then
9,h =0,h — (m — 1)g. Since H is an interpolation group, there exists
ke H such that g, h =k >=0,h — (m — 1)g. Thus h = k=0 and so
h = k by the hypothesis and the choice of m. Consequently, g = k.
Let neZ* be least such that nh =g and let peZ* be greatest
such that g = ph. Now p < » and, by hypothesis, p # n. Hence
0,9 — (n—1) < g—gh, h and, as before, h < g — ph, a contradiction. Thus
nh = g for some ne Z* and g e G*. Choose g € G* so that »n is minimal.
Since G is dense, there exists ¢’ € G such that 0 < ¢’ < g = mh. Let
p € Z* be least such that ¢’ < ph. Thenp<nand ¢ — (p—1)h, 0Z¢', k.
Hence there exists ke H such that ¢ — (p — Dk, 0=k =g h.
By hypothesis, &k = h and so h < ¢’. Let qe Z* be greatest such that
gh <¢g'. Thus ¢q<p. If g<p, then ¢ — (p— DHh, 0= ¢ —qh, R
and, as before, h < g’ — qh. It follows that (¢ + 1) < ¢/, a contradic-
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tion. Consequently, ¢ = p and ¢’ = ph. By the choice of n, p = n.
Hence ¢’ = ph = nh = g, a contradiction.

Finally suppose K is an a-cloure of a dense antilattice G == {0}.
Then K is a dense antilattice. Let L be any abelian trivially ordered
group. It is immediate that K G—;L is a dense antilattice which is a
proper a-extension of K, a contradiction.

COROLLARY A.l. R has no a-closure in either the class of directed
interpolation groups or the class of abelian directed interpolation
groups.

THEOREM B. Suppose A is a p.o. set and for each ac A, R, +
{0} is a subgroup of either R or the trivially ordered additive group
of reals. If V(A4, R,) is a directed interpolation group, them there
exist {Gy: B e On} such that Gy = V(4, R,) and if N, p€Onand » < f,
them G, is a proper a-extemsion of G, in the class of abelian directed
interpolation groups.

Proof. Let B be a maximal totally ordered subset of A. If «,
is a minimal element of B and R, = Z, let S, = R, if @ # a, and
S,, = R. Then W= V(4,8,) is a directed interpolation group by
Teller’s conditions (see [8]) and is an a-extension of V = V(4, R,)
so we may assume that if B has a minimal element «,, E, is a dense
o-group or a subgroup of the trivially ordered additive group of reals.
Let I'= AU {v} where vy¢ A. ' is a p.o. set under the ordering:
v, <7, if and only if v, <7, in A or v, = v and v,e B. Let R; = R,
if 6e A and R, be the trivially ordered additive group of reals. Then
U= V({, R, is a directed interpolation group (by Teller’s conditions)
and an a-extension of V. Continuing in this fashion, the theorem is
proved.

Even removing pseudo-identities does not help since R B* R is an
a-extension of {(a, a): a € R} = R in the class of directed interpolation
groups without pseudo-identities.

3. a-extensions of abelian P-groups. Using the results of
[3] and the methods of [2], the following generalizations of theorems
of [2] are obtained:

THEOREM C.1. If G is an abelian F-group, then G has an a-
closure in the class of abelian F-groups. If H is any such a-closure
of G and 4 is a plenary subset of C,(G), then there exists am “I”-
isomorphism of H into V = V(4, R;).

THEOREM C.2. If A is a p.o. set and R, = R for all ac A, then
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V(A, R,) and F(A, R,) are a-closed in the class of abelian P-groups.
Moreover, F(A, R,) is an a-closure of 3(A, R,) in this class.

A p.o. group G is said to be archimedean if and only if for all
f,9eG, nf < g for all ne Z implies f = 0.

THEOREM D. If G is an archimedean abelian P-group, then so
18 any a-extemsion of G in the class of abelian P-groups.

Proof. Suppose that an abelian Z7-group H is an a-extension of
the archimedean abelian <&7-group G and nh < k for all ne Z(h, k€ H).
If h, k=0, then there exist f, g€ G which are a-equivalent to # and
I respectively. It is easy to see that ng’ < f’ for all weZ where
f', ¢ are fixed multiples of f, g respectively. Hence ¢’ = 0 and so
g =0. Thus A= 0. Since H is directed, it may be assumed that
k=0. If h<0, the proof is the same as above so assume k||0. There
exist hy, h, € H such that h = h, — h,and h,, h, are pseudo-disjoint. There
exist g, g.€ G such that g, is a-equivalent to %;(i =1, 2); say m,9; = h;

and n;h; = 9,0 = 1,2). Now ng, < nmh, = nn,(h + hy) < k + nnm.g,
for all n € Z and there exists f € G a-equivalent to k; say, k< pf, pe Z*.
Now n(g, — m.m.g,) < pf for all ne Z and hence g, = n,m.g.. It follows
that h, < m,g, = mnm.g, < mmyn,n,h, which is impossible since k, and
h, are pseudo-disjoint. Thus H is archimedean.

In [2], Conrad proved that every archimedean abelian .Z7-group
(and hence every integrally closed abelian .Z7-group) is an [-group.

Hence we have shown:

COROLLARY D. 1. FEwery a-extension of an archimedean l-group in
the class of abelian F-groups is an archimedean l-group.

In [2], the result was proved in the class of all I-groups not only
abelian l-groups. Consequently, that result cannot be captured by the
above proof. In view of Example 6.4 of [2], a-closures of archimedean
abelian <7-groups are not unique.

K. M. van Meter has proved that every archimedean .Z7-group
is an archimedean [l-group and has proved that any a-extension of an
archimedean Z-group in the class of .Z7-groups is an archimedean
ZP-group (see [9]) and so has proved a stronger theorem then Theorem
D. The proof given here is more direct and was discovered independ-
ently and at the same time.

In view of Theorem D and Theorem 3.1 of [1]:

COROLLARY D.2. FEwery archimedean (abelian) P-group has a
unique a*-closure in the class of (abelian) FP-groups.
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4. Archimedean extensions of compatible tight Riesz groups.
It is easy to see that G is a tight Riesz group if and only if G is a
dense antilattice. By Theorem A, any a-extension of a tight Riesz
group is a tight Riesz group. We will restrict our attention to the
class of directed interpolation groups without pseudo-identities and
confine ourselves to those tight Riesz groups compatible with an [-
group. Such partially ordered groups will be called acceptable tight
Riesz groups. If (G, <) is an acceptable tight Riesz group, then
(G, =) will be the l-group whose positive cone is the positive cone of
(G, £) together with its pseudo-positive elements. Let T= {g € G: g>0}.
Then there exists {M,: ae A} a collection of prime I-subgroups
of (G, <) such that T = G*\U {M,: ac A} (see Theorem 2.6 of [7]).
Recall that if (H, <) is an l-group which is an a-extension of the
l-group (G, <), then there is a (1: 1) map ¢ of the prime l-subgroups
of (G, <) onto the prime Il-subgroups of (H, <) which preserves con-
tainment. Let G be an abelian group and X< G. Let G be the
divisible closure of G and X={y € G: ny € X for some ne Z*}. If (G, X)
is an l-group, then (G, X) is an l-group where ke G+ if and only if
nh e G+ for some n e Z* (i.e., G = G*). Then T=G"\U{M,: a c A} is the
strict positive cone of a compatible tight Riesz group (G, <). Moreover,
(G, X) is an a-extension of (G, <) and there is a (1:1) map of the
prime subgroups of (G, <) onto those of (G, <) which preserves
containment. Using these facts, we define what is meant by an .o7-
extension of an abelian acceptable tight Riesz group. In view of the
above remarks, we need only concern ourselves with divisible abelian
acceptable tight Riesz groups. If (K, <) is an abelian acceptable
tight Riesz group and (K, <) the corresponding I-group, let K+ =
{keK:k =0} and Ty = {ke K: k> 0}.

Let (G, <) and (H, <) be divisible abelian acceptable tight Riesz
groups. (H, <) is an &7-extension of (G, =) if and only if (H, X) is
an -extension of (G, X) and if T, = G\ U {M.: a« € A} where each
M, is a prime l-subgroup of (G, <), then T, = H"\ J {N.: « € A} where
N, is the prime l-subgroup of (H, <) corresponding to M,. It follows
at once from the facts concerning .%7-extensions of l-groups that:

THEOREM E. FEwvery abelian acceptable tight Riesz group has an
Z-closure (in the class of abelian acceptable tight Riesz groups) which
18 mot mecessarily unique. Moreover, any 7 -extension of an archi-
medean abelian acceptable tight Riesz group is archimedean.

The last fact follows because (G, <) is archimedean if and only
if (G, =) is. The same is not true for integrally closed since if (G, <)
is R B* R, then (G, <) = R @ R is integrally closed whereas (G, =)
is not. It should be observed that if (H, <) is an .%/-extension of
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(G, £) where (H, <) and (G, £) are abelian divisible acceptable tight
Riesz groups, then there is a (1:1) map of the convex d-subgroups
of (G, <) onto the convex d-subgroups of (H, <) which preserves
containment and for every h = 0, there exists a g€ G such that g =
0 and g < nh and h < mg for some m, ne Z*.

An abelian acceptable tight Riesz group (G, <) will be called a
good tight Riesz group if and only if T, = G*\U {M,: ac A} where
each M, is a closed prime subgroup of (G, ZX). As before, we need
only consider divisible good tight Riesz groups.

Let (H, <) and (G, £) be divisible good tight Riesz groups. (H, <)
is an a*-extension of (G, <) if and only if (H, <) is an a*-extension
of (G, xX) and if T, = G"\U {M,: ac A}, then T, = H*\U {N,: ac A}
where N, is the closed prime I-subgroup of (H, <) corresponding to
the closed prime l-subgroup M, of (G, X).

THEOREM F.1. Ewvery good tight Riesz group has an a*-closure
(in the class of good tight Riesz groups).

2. Ewvery 7 -extension (in the class of divisible abelian acceptable
tight Riesz groups) of a good tight Riesz group (G, <) is a good tight
Riesz group which is an a*-extension of (G, <).

3. Ewery archimedean good tight Riesz group has a unique a*-
closure (in the class of good tight Riesz groups).
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