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MAPPINGS AND DECOMPOSITIONS

G. K WILLIAMS

If X is a locally connected, locally compact Hausdorff
space and R is an equivalence relation on X with fibers
which are connected with compact boundaries, then it is
known that three types of continuity for R are equivalent.
The main result of this note shows that the connectedness
of the fibers can be replaced by the requirement that the
decomposition be almost proper, i.e., the saturation of each
compact set has compact components.

The duality concerning mappings and decompositions is well
known [9J. In this note we prove some mapping theorems which
result from theorems about decompositions and, vice versa, some
theorems on decompositions which follows from mapping theorems.
Results concerning quasi-open, proper and almost proper mappings
are obtained as well as results on proper and almost proper decom-
positions.

2 Mappings* A mapping / : X—* Y is quasi-open if when
y e Y and U is an open set in X which contains a compact component
of f~ι(y), then y is interior to f(U) It is semiclosed when the
image of a compact set is closed. If f~ι(K) is compact whenever K
is compact, then the mapping is called proper (or compact); if each
component of f~ι{K) is compact, then / is almost proper. The map-
ping is monotone if f~\y) is compact and connected for each y e Y
and it is strongly monotone if the inverse of each compact connected
set is compact and connected.

For examples involving quasi-open functions see [8] or [6]. An
important application of almost proper mappings is given in [1].

A space is locally peripherally compact if each point has arbitra-
rily small neighborhoods with compact boundaries. The notation
/ : X => Y will mean the mapping is onto.

LEMMA. If X is a locally peripherally compact Hausdorff space
and f:X=>Yisa semiclosed quotient mapping with fibers which are
connected with compact boundaries, then f is closed and Y is a locally
peripherally compact Hausdorff space.

Proof. Let KczX be closed and let ye Y\f(K). Then there is
an open set U containing f^iy) such that bdry U is compact and
UΠK = 0 . If bdry U = 0 , U is an open inverse set, f(U) is open
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and f(U) Π f{K) = 0. If bdry UΦ 0 , then C-/(bdry U) is closed
and if W = Y\C and D = f~ι{W) Π 17, then D is an open inverse
set and hence f(D) is open and f(D)f)f(K) = 0 . Thus / is closed.

Y is locally peripherally compact by a result of Stone [7] and is
easily seen to be Hausdorff.

REMARK. The fact that / is closed could have been obtained
by quoting results from [4], but the above standard argument is
more straightforward.

THEOREM 1. // / : X => Y is a monotone mapping where X, Y
are Hausdorff and X is locally peripherally compact, then the fol-
lowing are equivalent.

( i ) f is a quotient mapping.
(ii) f is closed.
(iii) / is quasi-open.

If, in addition, Y is a k-space, then (i), (ii) and (iii) are equivalent
to

(iv) / is proper.

Proof. (i)—>(ii). This is a direct result of the lemma.
(ii)--•(iii). Let U be an open set containing f~\y).

Then X\f{X\U) is an open set which contains y and which is con-
tained in f(U).

(iii)—•( i ) . If / is monotone and quasi-open, then the image of
any open inverse set is clearly open.

The last part of the theorem follows from the fact that a mapping
is proper if and only if it is closed and has compact point inverses
whenever the image space is a Λ-space.

The equivalence of (iii) and (iv) is generalization of a result due
to Why burn [10]. Note also that if any one of the conditions holds,
then the inverse of any closed connected set is connected, hence /
is strongly monotone.

Using techniques developed by Whyburn we prove the following
theorem which will be applied to decompositions in the next section.

THEOREM 2. // X, Y are Hausdorff spaces with X locally com-
pact and locally connected and f: X=> Y is a quasi-open almost
proper mapping, then Y is locally compact and locally connected and
for any region R c Y each component of f~\R) maps onto R.

Proof, f is clearly a quotient mapping and hence Y is locally
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connected. The proof that Y is locally compact is also straight-
forward [5].

To prove the last part of the theorem we first show that it is
enough to prove that if y e Y and U is any open set which contains
y, there exists a region 22* with y e R*aU such that each component
of f~ι{R*) maps onto 22*. For suppose 22 is any region in Y and Q
is a component of f~\R). Then f{Q) is open because if z e f{Q)
there is a compact component of f~ι(z) contained in Q and thus z is
interior to f(Q). Now if f{Q) Φ R there is a point

wef(Q)Π(R\f(Q)).

Let R * c R be a region containing w such that each component of
f~\R*) maps onto 22*. There exists w'ef(Q) Π 22*. Let

^ e Q n /~1(22*)

and let K be the component of f~λ{R*) which contains x. Then we
must have KaQ which contradicts.

Now let yeY and suppose U is an open set containing y. Let
V be a connected open set with compact closure such that y e 7 c U
and let I be a component of f~ι(V). As before, f{M) is open.
Suppose seJ(M) Π (V\f(M)). Then there is a filterbase A on /(ikf)
which converges to s. f~ι(A) Π M is a filterbase on ikί and since Λf
is relatively compact there is a filterbase B subordinate to /~X(A) Π M
such that 2? converges to a point α?\ But then f{x') = s and thus
E' e If and hence S e f(M).

3* Decompositions* Let X be a topological space and 22 an
equivalence relation on X. Then X/22 is the topological space con-
sisting of the set of equivalence classes provided with the quotient
topology and p:X=>X/R is the natural projection mapping. If
SaX, then R(S) — {x\xeX and xRy for some yeS} is called the
saturation of S and, in particular, R(x) is called a fiber.

A relation 22 is called open {closed) if the saturation of every
open {closed) set is open {closed). It is semiclosed if the saturation
of every compact set is closed. 22 is proper if the saturation of
each compact set is compact and almost proper if the saturation of
each compact set has compact components. 22 is Hausdorff if the
quotient space X/22 is Hausdorff.

Three definitions of continuity for decompositions have appeared
in the literature and have proved to be useful in analysis as well as
topology. (See [11] for a bibliograpy and also for some of the results
stated below.) These definitions are as follows:

(1) 22 is open and closed.
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(2) R is open, semiclosed, and for each region VczX/R, each
component of p~\V) maps onto V.

(3) R is open and Hausdorff.
We shall refer to condition i, i — 1, 2, 3, as C* continuity for decom-
positions.

For general topological spaces these conditions are not related in
the sense that one condition always implies another but for locally
connected, locally compact Hausdorff spaces we do have that

If X is a locally connected, locally peripherally compact Hausdorff
space and the fibers of R are connected with compact boundaries
then all three conditions are equivalent. Simple examples show that
the connectedness is essential. The question then arises as to what
conditions must be satisfied by the decomposition in order to drop
the connectedness of the fibers and still have some or all of the d
conditions equivalent. It turns out that the useful notion here is
that of an almost proper decomposition.

THEOREM 3. If X is a locally connected, locally compact Haus-
dorff space and R is an almost proper equivalence relation on X,
then C2 «-> C3.

Proof. —•) Any C2 relation on a locally compact Hausdorff space
is C3 by [4].

*—) If R is C3, then it is open and Hausdorff and hence, open
and semiclosed. Thus by Theorem 2 it is enough to show that p is
almost proper and to do this we only need to show that if K is a
compact set in XjR, then there exists a compact set M in X such
that p(M) — K. For each xep^iK), let Uz be a relatively compact
open set about x. Then there exist xlf 9xn such that Ka \Jp{Ux%),
i = 1, ., n. Now let M = (\J Όx, Π P~\K)).

In [1], we stated the following result which is essentially due
to Whyburn.

PROPOSITION 1. Let X be a locally connected, locally peripherally
compact Hausdorff space and suppose R is a C2 relation with fibers
which have compact boundaries. Then R is CΊ.

Proposition 1 and Theorem 3 together give us the following
result.
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THEOREM 4. If X is a locally connected, locally compact Haus-
dorff space and R is almost proper with fibers which have compact
boundaries then all three continuity conditions are equivalent.

EXAMPLE. Let S be the following subset of the plane,

S — {(x, y) I o ^ x <^ 1, y is positive integer} .

Two points are R equivalent if they have the same x coordinate-
Then R is an almost proper C3 relation, hence it is C2 but it is not
d . Thus the compactness of the boundaries is essential.

COROLLARY TO THEOREM 4. // X is a connected, locally connect-
ed, locally compact Hausdorff space and R is a nondegenerate almost
proper Cz relation with fibers which have compact boundaries, then
R is proper.

In [2], three equivalent conditions were stated concerning proper
equivalence relations on locally compact Hausdorίf spaces. We ob-
serve that it is sufficient for the space to be a ά-space.

TREOREM 5. If X is a k-space and R is an equivalence relation
on X, then the following are equivalent.

( i ) R is proper.
(ii) Each fiber is compact and has a fundamental system of

saturated neighborhoods.
(iii) XjR is a k-space and p: X=>X/R is a proper mapping.

Proof, (i)—»(ii). It is clear that each fiber is compact. We
must show that the saturation of each closed set is closed. Let
A c l b e closed and let C be a compact set such that R{A)(λCφ 0 .
It suffices to show that R(A) Π R(C) is closed since

R(A) n c = (R(A) nR{C)) n c .

Consider now A Π R(C). This is compact and hence R(A Π R(C)) is
compact and thus closed. But R(A Γ) R(C)) = R(A) n R(C) and hence
R(A) Π C is closed.

REMARK. This method of proof came out of a conversation with
Leonard Rubin. See [3] for another proof of this.

(ii) —• (iii). Since a quotient space of a &-space is a Λ-space if
and only if it is Hausdorίf we need only show that we can separate
points. But we can clearly find disjoint neighborhoods of two distinct
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fibers and thus condition (ii) implies that there must be disjoint
saturated neighborhoods of the fibers.

Property (ii) clearly implies that p is closed and since the fibers
are compact p is proper.

(iii) —> (i). Clear.
Another area in which decompositions have been useful is that

of the factorization of mappings. It is well known that if / : X—> Y
is a mapping with fibers which have compact components where X,
Y are Hausdorff and X is locally compact, then / has an essentially
unique monotone light factorization where the monotone factor is a
quotient mapping. If X, Y are Hausdorff and / is proper, then the
same is true. What about the case where / is almost proper and
X is a fc-space or X is locally peripherally compact?
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