THREE REMARKS ON SYMMETRIC PRODUCTS AND SYMMETRIC MAPS

V. P. Snaith and J. J. Ucci

Abstract

The first remark establishes that the homotopy type of a certain space related to the m-fold symmetric product $S P^{m} S^{n}$ of the n-sphere is that of an $n^{\text {th }}$ suspension space. Remark two generalizes a well-known adjunction formula for $S P^{2} S^{n}$ due to Steenrod to a filtration of length m of $S P^{m} S^{n}$. The final remark provides a group-theoretic construction of G maps $f:\left(S^{n}\right)^{m} \rightarrow S^{n}$ where $G \subset S(m)$ acts on ($\left.S^{n}\right)^{m}$ by permutation of its factors.

1. Joins. The join $X * Y$ of X and Y is the quotient space $X \times Y \times I / \sim$ where $(x, y, 0) \sim\left(x, y^{\prime}, 0\right)$ and $(x, y, 1) \sim\left(x^{\prime}, y, 1\right)$ for all $x, x^{\prime} \in X$ and all $y, y^{\prime} \in Y$. Let (D, S) denote the unit disc and sphere in euclidean n-space R^{n} with its usual inner product

$$
\langle x, y\rangle=\Sigma x_{i} y_{i}
$$

For any decomposition $R^{n}=W_{1} \oplus W_{2}$ of R^{n} into the direct sum of a k-dimensional subspace W_{1} and its orthogonal complement $W_{2}=W_{1}^{\perp}$, let $D_{i}=D \cap W_{i}$ and $S_{i}=S \cap W_{i}, i=1,2$, be the associated discs and spheres. As well known the map $f: D_{1} * S_{2} \rightarrow D$ given by

$$
f[s x, y, t]=s \sqrt{1-t} x+\sqrt{t} y
$$

defines a homeomorphism of pairs

$$
\begin{equation*}
\left(D_{1} * S_{2}, S_{1} * S_{2}\right) \cong(D, S) \tag{1}
\end{equation*}
$$

Give $V_{i}=R^{n}, i=1, \cdots, n$, its usual inner product \langle,\rangle_{i}. Then the formula $\langle x, y\rangle=\Sigma\left\langle x_{i}, y_{i}\right\rangle_{i}$ for $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{n}\right)$ in $V=V_{1} \times \cdots \times V_{m} \cong R^{n m}$ coincides with the usual inner product on $R^{n m}$. So we may apply the preceding remarks to the diagonal subspace $W_{1}=\left\{v \in V \mid v_{1}=v_{2}=\cdots=v_{m}\right\}$ and its orthogonal complement $W_{2}=\left\{v \in V \mid \Sigma v_{i}=0\right\}=W_{1}^{\perp}$. The full symmetric group $S(m)$ acts on V by permutation of its factors V_{i}. For any subgroup H of $S(m)$ D_{i} and S_{i} are H-spaces and f an H-map inducing another homeomorphism of pairs

$$
\begin{equation*}
\left(D_{1} / H * S_{2} / H, S_{1} / H * S_{2} / H\right) \cong(D / H, S / H) \tag{2}
\end{equation*}
$$

As H acts trivially on $W_{1}, D_{1} / H=\bar{D}_{1}$ and $S_{1} / H=\bar{S}_{1}$ are again the disc and sphere. Moreover, for subgroups $H_{1} \subset H_{2}$ of $S(m)$ it is easily checked that the quotient map $p: D / H_{1} \rightarrow D / H_{2}$ corresponds via
(2) to the join map

$$
i d * p_{2}: \bar{D}_{1} *\left(S_{2} / H_{1}\right) \longrightarrow \bar{D}_{1} *\left(S_{2} / H_{2}\right)
$$

Recall from [7] the definition of the spaces $X_{m, l}^{n}$ which appear in the geometry of the symmetric product $S P^{m} S^{n}$. Let $h_{i}:\left(D^{n}\right)^{m} \rightarrow\left(D^{n}\right)^{m}$ be the permutation homeomorphism defined by $\tau \in S(m)$, and set

$$
A_{m, l}^{n}=\left(D^{n}\right)^{m-l} \times\left(S^{n-1}\right)^{l} \quad \text { for } 0 \leqslant l \leqslant m
$$

Then

$$
\widetilde{X}_{m, l}^{n}=\bigcup_{\tau \in S(m)} h_{\tau}\left(A_{m, l}^{n}\right)
$$

is an $S(m)$-subspace of $\left(D^{n}\right)^{m}$ and so $X_{m, l}^{n}=\widetilde{X}_{m, l}^{n} / S(m)$ is well defined. To identify the pairs $\left(D / S(m), S / S(m)\right.$) and ($X_{m, 0}^{n}, X_{m, 1}^{n}$) we make the following change of norms: let $V^{\prime}=V$ as sets but set

$$
\|v\|^{\prime}=\max _{i}\left\|v_{i}\right\|_{i}
$$

where $\left\|v_{i}\right\|_{i}=\left\langle v_{i} \cdot v_{i}\right\rangle_{i}^{1 / 2}$. Then $x \rightarrow\left(\|x\| /\|x\|^{\prime}\right) \cdot x$ defines a norm preserving (non-linear) $S(m)$-homeomorphism $V \rightarrow V^{\prime}$ establishing the desired result $(D / S(m), S / S(m)) \cong\left(X_{m, 0}^{n}, X_{m, 1}^{n}\right)$. Thus

$$
\begin{equation*}
\left(\bar{D}_{1} *\left(S_{2} / S(m)\right), \bar{S}_{1} *\left(S_{2} / S(m)\right)\right) \quad \text { and } \quad\left(X_{m, 0}^{n}, X_{m, 1}^{n}\right) \tag{3}
\end{equation*}
$$

are homeomorphic pairs. Moreover the canonical map $D^{n} \times X_{m-1,0}^{n} \rightarrow$ $X_{m, 0}^{n}$ is the quotient map $\left(D^{n}\right)^{m} / S(m-1) \rightarrow\left(D^{n}\right)^{m} / S(m)$ induced by the inclusion homomorphism $S(m-1) \rightarrow S(m)$ sending $S(m-1)$ onto the subgroup $\{e\} \times S(m-1)$ of $S(m)$ which acts on $\left(D^{n}\right)^{m}=D^{n} \times\left(D^{n}\right)^{m-1}$ by the identity on the first factor and by the usual symmetric action on the second factor. Combining the remark of the preceding paragraph with the above $S(m)$-homeomorphism $V \rightarrow V^{\prime}$ we see that the canonical map $D^{n} \times X_{m-1,0}^{n} \rightarrow X_{m, 0}^{n}$ corresponds to the join map

$$
\bar{D}_{1} *\left(S_{2} / S(m-1)\right) \longrightarrow \bar{D}_{1} *\left(S_{2} / S(m)\right)
$$

Our first remark establishes a conjecture stated in [7].
Proposition 1.1. $X_{m, m-1}^{n} / X_{m-1, m-2}^{n}$ has the homotopy type of a space of the form $S^{n-1} * K$ for K a suitable finite $C W$ complex. Hence $X_{m, m-1}^{n} / X_{m-1, m-2}^{n}$ has the homotopy type of an $n^{\text {th }}$ suspension.

Proof. Proposition 2.6 of [7] asserts the existence of a homotopy equivalence

$$
X_{m, m-1}^{n} / X_{m-1, m-2}^{n} \sim E X_{m, 1}^{n-1} \bigcup_{E \vartheta} C\left(E\left(X_{1,1}^{n-1} * X_{m-1,1}^{n-1}\right)\right)
$$

where ψ is given by the canonical maps

$$
X_{1,1}^{n-1} \times X_{m-1,0}^{n-1} \longrightarrow X_{m, 1}^{n-1}, \quad X_{1,0}^{n-1} \times X_{m-1,1}^{n-1} \longrightarrow X_{m, 1}^{n-1} .
$$

ψ is just the restriction of the canonical map

$$
\psi^{\prime}: X_{1,0}^{n-1} \times X_{m-1,0}^{n-1} \longrightarrow X_{m, 0}^{n-1}
$$

which, as we have already noted, can be identified with the join map $i d * \bar{\psi}^{\prime}: \bar{D}_{1} *\left(S_{2} / S(m-1)\right) \longrightarrow \bar{D}_{1} *\left(S_{2} / S(m)\right)$. Under this identification the subspaces $X_{1,1}^{n-1} \times X_{m-1,0}^{n-1} \cup X_{1,0}^{n-1} \times X_{m-1,1}^{n-1}$ and $X_{m, 1}^{n-1}$ correspond to $\bar{S}_{1} *\left(S_{2} / S(m-1)\right.$) and $\bar{S}_{1} *\left(S_{2} / S(m)\right)$, and so the map ir corresponds to the join map $i d * \bar{\psi}: \bar{S}_{1} *\left(S_{2} / S(m-1)\right) \rightarrow \bar{S}_{1} *\left(S_{2} / S(m)\right)$ which is the restriction of $i d * \bar{\psi}^{\prime}$. Hence there is a homotopy equivalence

$$
\begin{aligned}
X_{m, m-1}^{n} / X_{n-1, m-2}^{n} & \sim E\left(\left(E^{n-1}\left(S_{2} / S(m)\right)\right) \bigcup_{E^{n-1} \bar{\psi}} C\left(E^{n-1} X_{m-1,1}^{n-1}\right)\right) \\
& \sim E^{n}\left(\left(S_{2} / S(m)\right) \bigcup_{\bar{\psi}} C X_{m-1,1}^{n-1}\right.
\end{aligned}
$$

and the result is proved.
For p-fold cyclic products (p any prime) there is an analogous result to 1.1 whose proof differs only slightly from the preceding. For this let now $h_{\tau}:\left(D^{n}\right)^{p} \rightarrow\left(D^{n}\right)^{p}$ be the (cyclic) permutation homeomorphism defined by $\tau \in Z_{p} \subset S(p)$ and set $A_{p, l}^{n}=\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l}$. Then as before

$$
\widetilde{X}_{p, l}^{n}=\bigcup_{=\in Z_{p}} h_{\tau}\left(A_{p, l}^{n}\right)
$$

is a Z_{p}-space and $X_{p, l}^{n}=\widetilde{X}_{p, l}^{n} / Z_{p}$ is well defined. Let $W_{l}^{n-1} \subset\left(S^{n-1}\right)^{l}$ be the subspace $\left\{x \in\left(S^{n-1}\right)^{l} \mid x_{i}=\right.$ basepoint for some $\left.i\right\}, \widetilde{Z}_{p, l}^{n}=\left(D^{n}\right)^{p-l} \times$ W_{l}^{n-1} and $Z_{p, l}^{n}$ the image of $\widetilde{Z}_{p, l}^{n}$ under the canonical projection

$$
\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l} \longrightarrow X_{p, l}^{n} .
$$

Then $Z_{p, p-1}^{n} \subset X_{p, p-1}^{n}$ and formula (3.3) of [8] asserts the existence of a homeomorphism

$$
\begin{equation*}
X_{p, p-1}^{n} / Z_{p, p-1}^{n} \cong E X_{p, 1}^{n-1} \cup e^{n p-p+1} . \tag{4}
\end{equation*}
$$

The top cell $e^{n p-p+1}$ arises from the product $D^{n} \times\left(D^{n-1}\right)^{p-1}$ and the attaching map of (4) $S^{n-1} \times\left(D^{n-1}\right)^{p-1} \cup D^{n} \times \partial\left[\left(D^{n-1}\right)^{p-1}\right] \rightarrow E X_{p, 1}^{n-1}$ sends the contractible subspace

$$
A=S^{n-1} \times \partial\left[\left(D^{n-1}\right)^{p-1}\right] \cup \text { point } \times\left(D^{n-1}\right)^{p-1}
$$

to the basepoint of $E X_{p, 1}^{n-1}$ and so factors as $(E \psi) \circ p$, where p is the collapsing homotopy equivalence

$$
S^{n-1} * \partial\left[\left(D^{n-1}\right)^{p-1}\right] \longrightarrow S^{n-1} * \partial\left[\left(D^{n-1}\right)^{p-1}\right] / A
$$

and ψ the canonical projections

$$
S^{n-2} \times\left(D^{n-1}\right)^{p-1} \longrightarrow X_{p, 1}^{n-1}, \quad D^{n-1} \times \partial\left[\left(D^{n-1}\right)^{p-1}\right] \longrightarrow X_{p, 1}^{n-1}
$$

(see the proof of Prop. 2.6 of [7] with Z_{p} replacing $S(m)$). By the above $X_{p, 1}^{n-1}$ is homeomorphic to the join $S_{1} *\left(S_{2} / Z_{p}\right)-V$ is now $R^{n p}-$ and the map ψ can be identified via this homeomorphism with the join map $i d * p: S_{1} * S_{2} \rightarrow S_{1} *\left(S_{2} / Z_{p}\right)$. Thus we obtain the analogous result to 1.1.

Proposition 1.2. For the p-fold cyclic product of spheres the space $X_{p, p-1}^{n} / Z_{p, p-1}^{n}$ has the homotopy type of a space of the form $S^{n-1} * K$ for K a suitable finite $C W$ complex. Hence $X_{p, p-1}^{n} / \boldsymbol{Z}_{p, p-1}^{n}$ has the homotopy type of an $n^{\text {th }}$ suspension.

Application of 1.2 was made in [8].
Consider again the symmetric product situation. Lemma 2.5 (iii) of [7] provides a homeomorphism

$$
X_{m, l}^{n} / X_{m-1, l-1}^{n} \cong\left(X_{m, l+1}^{n} / X_{m-1, l}^{n}\right) \cup C\left(X_{m-l, 1}^{n} * X_{l, 1}^{n-1}\right)
$$

For $l=m$ and $l=m-1$ the spaces $X_{m, l}^{n} / X_{m-1, l-1}^{n}$ have now been shown to have the homotopy type of a space of the form $S^{n-1} * K$. It seems reasonable to expect the same to be true for the remaining values of $l, 2 \leqslant l \leqslant m-2$.
2. Geometry of $S P^{m} E X$. Our second remark extends the Steenrod adjunction formula [3]

$$
S P^{2} S^{n} \cong E\left(S P^{2} S^{n-1}\right) \cup e^{2 n}
$$

to higher symmetric products $S P^{m} E X$ of suspension spaces. Let

$$
\begin{aligned}
I^{n} & =\left\{x \in R^{n} \mid 0 \leqslant x_{i} \leqslant 1\right\} \\
A_{n} & =\left\{x \in I^{n} \mid x_{n}=1\right\} \\
T_{n} & =\left\{x \in I^{n} \mid x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{n}\right\} \\
p & =\{(1,1, \cdots, 1)\} \subset I^{n} .
\end{aligned}
$$

For $i=1,2, \cdots, n-1$ define $f_{i}: I^{n} \rightarrow I^{n}$ by $f_{i}\left(t_{1}, \cdots, t_{n}\right)=\left(t_{1}^{\prime}, \cdots, t_{n}^{\prime}\right)$ where $t_{j}^{\prime}=t_{j}$ if $j \neq i$ and $t_{i}^{\prime}=t_{i+1}+t_{i}\left(1-t_{i+1}\right)$. One shows easily that the composite $g_{n}=f_{1} \circ f_{2} \circ \cdots \circ f_{n-1}$ defines a relative homeomorphism $\left(I^{n}, A_{n}\right) \cong\left(T_{n}, p\right)$. The map g_{n} is useful in studying the quotients A_{i+1} / A_{i} arising from a filtration

$$
\begin{equation*}
S P^{m} E X=A_{m} \supset A_{m-1} \supset \cdots \supset A_{1}=E\left(S P^{m} X\right) \tag{5}
\end{equation*}
$$

which we define as follows. For $x^{\prime}=[x, t] \in E X$ call t the height of x^{\prime}. As each element $\left[x_{1}^{\prime}, \cdots, x_{m}^{\prime}\right] \in S P^{m} E X$ has a representative with heights $t_{1} \geqslant t_{2} \geqslant \cdots \geqslant t_{m}$ we can set A_{i} to be the subset of $S P^{m} E X$ of all elements having representatives with at most i distinct heights. The A_{i} define a filtration (5) of $S P^{m} E X$.

For any partition $\pi=\left[i_{1}: i_{2}: \cdots: i_{q}\right]$ of m let $A_{q \pi} \subset A_{q}$ be the set of all points having representatives with heights $t_{1} \geqslant t_{2} \geqslant \cdots \geqslant t_{q}, i_{1}$ of the m coordinates at height t_{1}, i_{2} of them at height t_{2}, etc. Set $Y_{1}=C\left(S P^{i_{1}} X\right), \quad Y_{j}=\left(S P^{i_{j}} X\right) \times I$ for $2 \leqslant j<q, \quad Y_{q}=\widetilde{C}\left(S P^{i_{q}} X\right)$ and $Y=Y_{1} \times \cdots \times Y_{q}$ where

$$
C(Z)=Z \times I / Z \times\{1\} \quad \text { and } \quad \widetilde{C}(Z)=Z \times I / Z \times\{0\}
$$

Set

$$
\partial C(Z)=\{[z, t] \in C(Z) \mid t=0\}, \partial \widetilde{C}(Z)=\{[z, t] \in \widetilde{C}(Z) \mid t=1\}
$$

and

$$
\partial\left(S P^{k} X \times I\right)=S P^{k} X \times\{0,1\}
$$

This defines ∂Y_{i} for $i=1, \cdots, q$. Finally set

$$
\partial Y=\bigcup_{i=1}^{q} Y_{1} \times \cdots \times \partial Y_{i} \times \cdots \times Y_{q}
$$

Clearly ∂ is just a kind of boundary operator for cones and related spaces.

Proposition 2.1. The map $Y \rightarrow S P^{m} E X$ given by

$$
\begin{aligned}
& \left(\left[x_{1}, t_{1}\right],\left(x_{2}, t_{2}\right), \cdots,\left(x_{q-1}, t_{q-1}\right),\left[x_{q}, t_{q}\right]\right) \\
\longrightarrow & {\left[\left[x_{1}, t_{1}^{\prime \prime}\right],\left[x_{2}, t_{2}^{\prime \prime}\right], \cdots,\left[x_{q}, t_{q}^{\prime \prime}\right]\right] }
\end{aligned}
$$

where $t_{j}^{\prime \prime}$ is the $j^{\text {th }}$ coordinate of $g_{q}\left(t_{1}, \cdots, t_{q}\right)$, induces a relative homeomorphism $(Y, \partial Y) \cong\left(A_{q \pi}, A_{q-1}\right)$ for each $2 \leqslant q<m$ and each partition $\pi=\left[i_{1}: \cdots: i_{q}\right]$ of m.

The proof is straighforward.
To obtain an expression for A_{q} / A_{q-1} first observe that

$$
A_{q} / A_{q-1}=\underset{\pi}{\mathrm{V}}\left(A_{q \pi} / A_{q-1}\right),
$$

the wedge taken over all partitions of m. Thus by 2.1 it suffices to consider for each π the corresponding quotient $Y / \partial Y$.

Proposition 2.2. For $\pi=\left[i_{1}: \cdots: i_{q}\right]$ and $Y=Y_{1} \times \cdots \times Y_{q}$ as above the space $Y / \partial Y$ has the same homotopy type as the space

$$
E^{q}\left(S P^{i_{1}} X \wedge S P^{i_{q}} X\right) \vee E^{q}\left(S P^{i_{1}} X \wedge \prod_{j=2}^{q-1} S P^{i_{j}} X \wedge S P^{i_{q}} X\right)
$$

Proof. Let B be a space with $\partial B=\phi$. Then the obvious quotient map $Q=C A \times B \times I^{q-2} \times C A^{\prime} \rightarrow P=E A \times B \times S^{q-2} \times E A^{\prime}$ induces a relative homeomorphism $(Q, \partial Q)=\left(P, P^{\prime}\right)$ where

$$
P^{\prime}=E A \times B \times S^{q-2} \vee E A \times B \times E A^{\prime} \vee B \times S^{q-2} \times E A^{\prime}
$$

So $P / P^{\prime}=B \times\left(E A \wedge S^{q-2} \wedge E A^{\prime}\right) / B \times$ point and the latter quotient has the homotopy type of the wedge $E^{q}\left(A \wedge A^{\prime}\right) \bigvee E^{q}\left(A \wedge B \wedge A^{\prime}\right)$ [5]. Therefore 2.2 is obtained by setting $A=S P^{i_{1}} X, B=\Pi_{j=2}^{q-1} S P^{i_{j}} X$ and $A^{\prime}=S P^{i_{q}} X$.

As an illustration of the preceding analysis let us return to the Steenrod formula for the symmetric square of a sphere. The space Y is just $C X \times \widetilde{C} X$ and the map $C X \times \widetilde{C} X \rightarrow S P^{2} E X$ is

$$
\left(\left[x_{1}, t_{1}\right],\left[x_{2}, t_{2}\right]\right) \longmapsto\left[\left[x_{1}, t_{2}+t_{1}\left(1-t_{2}\right)\right],\left[x_{2}, t_{2}\right]\right] .
$$

The subspace $X \times \widetilde{C} X \cup C X \times X$ (given by $t_{1}=0$ or $t_{2}=1$) is mapped to $E S P^{2} X$. It is well known that there are homeomorphisms

$$
X \times \widetilde{C} X \cup C X \times X \cong X * X
$$

and

$$
C X \times \widetilde{C} X \cong C(X \times \widetilde{C} X \cup C X \times X)
$$

Hence we obtain the adjunction formula $S P^{2} E X \cong E S P^{2} X \cup C(X * X)$ extending the Steenrod result from spheres to suspensions.

Remark. For $X=S^{n-1} 2.2$ can be used to recompute Nakaoka's results [4] on the integral cohomology of $S P^{m} S^{n}$ for low values of m.
3. Group theoretic construction of symmetric maps. Let $H \subset G \subset S(m)$ be subgroups of the symmetric group $S(m)$ and let $S(G / H)$ be the symmetric group on the set of right cosets G / H. Define a homomorphism $\alpha: G \rightarrow S(G / H)$ by $\alpha(g)\left(H g_{1}\right)=H g_{1} g^{-1}$. Kernel of α is just the normal subgroup $B=\bigcap_{g \in G} g H g^{-1}$ and so there is an injection $G / B \rightarrow S(G / H)$. Let A denote the image of α and $|G / H|$ the cardinality of G / H.

Proposition 3.1. If $v: X^{|G| H \mid} \rightarrow X$ and $w: X^{m} \rightarrow X$ are A and H-maps respectively, then $F: X^{m} \rightarrow X$ given by

$$
F(x)=v\left(w\left(g_{1} \cdot x\right), w\left(g_{2} \cdot x\right), \cdots, w\left(g_{l} \cdot x\right)\right)
$$

for g_{1}, \cdots, g_{l} a complete set of coset representatives in G / H, is a G-map.

Proof. As w is an H-map we have for any $g \in G$ and any

$$
1 \leqslant i \leqslant l=|G / H|
$$

the existence of an $h \in H$ and a unique $1 \leqslant j \leqslant l$ such that

$$
w\left(g_{i} \cdot(g \cdot x)\right)=w\left(h \cdot\left(g_{j} \cdot x\right)\right)=w\left(g_{j} \cdot x\right)
$$

where h arises from the coset equality $H g_{i} g=H g_{j}$. Hence there exists an element $\sigma \in S(G / H)$ in $A=$ image (α) satisfying

$$
\begin{aligned}
F(g \cdot x) & =v\left(w\left(g_{1} \cdot(g \cdot x)\right), \cdots, w\left(g_{l} \cdot(g \cdot x)\right)\right) \\
& =v\left(w\left(g_{\sigma(1)} \cdot x\right), \cdots, w\left(g_{\sigma(l)} \cdot x\right)\right) \\
& =v\left(\sigma \cdot\left(w\left(g_{1} \cdot x\right), \cdots, w\left(g_{l} \cdot x\right)\right)\right) \\
& =v\left(w\left(g_{1} \cdot x\right), \cdots, w\left(g_{l} \cdot x\right)\right)=F(x) .
\end{aligned}
$$

The result follows.
To compute the James number of F when $X=S^{n}$ note that the degree of the composite $S^{n} \xrightarrow{\Delta}\left(S^{n}\right)^{m} \xrightarrow{F} S^{n}$ (Δ the diagonal map) equals the product $\operatorname{deg}(v \circ \Delta) \cdot \operatorname{deg}(w \circ \Delta)$, since $F \circ \Delta=v \circ \Delta \circ w \circ \Delta$ as maps. Therefore the James number of F is easily computed from those of v and w via the Künneth formula.

Applications. Let $n=2 t+1$ in the following four applications.

1. Let $H=\{i d,(123),(132)\} \cong Z_{3}$ so $H \triangleleft S(3)=G$. Choose $v:\left(S^{n}\right)^{\left|G_{l} H\right|} \rightarrow S^{n}$ to be an $S(2)$-map with $J_{v}=2^{\phi(2 t)}$ [2] and $w:\left(S^{n}\right)^{3} \rightarrow S^{n}$ to be an H-map with $J_{w}=3^{t}[8]$. Then $J_{F}=2^{\phi^{\prime(2 t)+1} \cdot 3^{t} \text {. However }}$ obstruction theory can improve this result as follows. From [7] we know that there exists a map $S P^{m} S^{n} \rightarrow S^{n}$ of James number N if and only if the composite $X_{m, m-1}^{n} \xrightarrow{\phi} S^{n} \xrightarrow{f_{N}} S^{n}$, is nullhomotopic where deg $f_{N}=N$. Here ϕ arises from the geometry of $S P^{m} S^{n}$ given in $[7, \S 2]$. As $X_{2,1}^{n} \subset X_{3,2}^{n}$ the obstructions to extending an $S(2)$-map $g_{1}:\left(S^{n}\right)^{2} \rightarrow S^{n}$ to an $S(3)$-map $g:\left(S^{n}\right)^{3} \rightarrow S^{n}$ lie in the groups $H^{i}\left(X_{3,2}^{n}, X_{2,1}^{n} ; \pi_{i} S^{n}\right)$, which by Nakaoka [4] (see also [1], Lemma (4.3)) are 3-primary. Hence there exists an $S(3)$-map $G:\left(S^{n}\right)^{3} \rightarrow S^{n}$ with $J_{G}=2^{\dot{j}(2 t)} \cdot 3^{r}$ for some r. As the set of all possible James numbers of $S(m)$-maps forms an ideal [1], there must also exist an $S(3)$-map $G^{\prime}:\left(S^{n}\right)^{3} \rightarrow S^{n}$ with $J_{G^{\prime}}=2^{\dot{\phi}(2 t)} \cdot 3^{t}$ and so we recover the main result
of [7].
2. Let $H \subset S(4)$ be the subgroup generated by $\{(12)$, (34), (13)(24)\}, so $|H|=8, H \nrightarrow G$ and

$$
B=\bigcap_{g \in G} g H g^{-1}=\{i d,(14)(23),(13)(24),(12)(34)\} \cong Z_{2} \times Z_{2} .
$$

Hence $|B|=4$ and $A=S(3)$. Apply 3.1 with v an $S(3)$-map with $J_{v}=2^{\dot{\phi}(2 t)} \cdot 3^{t}$ and w the H-map $\left(S^{n}\right)^{4} \xrightarrow{h \circ h^{2}} S^{n}$ where $h:\left(S^{n}\right)^{2} \rightarrow S^{n}$ is an $S(2)$-map with $J_{h}=2^{\phi(2 t)}$. Clearly $J_{w}=2^{2 \cdot \phi(2 t)}$ and so we obtain an $S(4)$-map $F:\left(S^{n}\right)^{4} \rightarrow S^{n}$ with $J_{F}=2^{3 \phi(2 t)} \cdot 3^{t+1}$. Now an exactly analogous argument to that of (1) shows that the obstructions to extending an $S(3)$-map $\left(S^{n}\right)^{3} \rightarrow S^{n}$ to an $S(4)$-map $\left(S^{n}\right)^{4} \rightarrow S^{n}$ lie in the groups $H^{i}\left(X_{4,3}^{n}, X_{3,2}^{n} ; \pi_{i} S^{n}\right)$, which again by Nakaoka are 2-primary. Thus there is an $S(4)$-map of James number $J=2^{r} \cdot 2^{\phi(2 t)} \cdot 3^{t}$ for some r. This as above implies the existence of an $S(4)$-map with James number $2^{3 \phi(2 t)} \cdot 3^{t}$. Note it is not difficult using K-theory to show that the James number of any $S(4)$-map $\left(S^{n}\right)^{4} \rightarrow S^{n}$ must be a multiple of $2^{2 t} \cdot 3^{t}$ (the first named author has improved this bound to $2^{\phi(2 t)} \cdot 2^{t} \cdot 3^{t}$ via ad hoc considerations).
3. For $G=G^{r}$ the Sylow p-subgroup of $S\left(p^{r}\right)$ given by the r fold Wreath product of $G^{1} \cong Z_{p}$ with itself and $H=\Pi_{k=1}^{p} G^{r-1} \triangleleft G=G^{r}$ (see $[8, \S 2]$) we have $G / H \cong Z_{p}$. Let w be the composite

$$
\left(S^{n}\right)^{p^{r}} \xrightarrow{\pi_{1}}\left(S^{n}\right)^{p^{r-1}} \xrightarrow{w_{1}} S^{n}
$$

where w_{1} is a G^{r-1}-map with James number $J_{w_{1}}$ and π_{1} is projection onto the first p^{r-1} factors of $\left(S^{n}\right)^{p^{r}}$; let $v:\left(S^{n}\right)^{p} \rightarrow S^{n}$ be a Z_{p}-map with James number J_{v}. Then $J_{F}=J_{w_{1}} \cdot J_{v}$ where F is given by 3.1. From a Z_{p}-map h with $J_{h}=p^{t}$ [2], this result plus induction on r provides a G^{r}-map h^{\prime} with $J_{h^{\prime}}=p^{r t}$. This iteration of 3.1 applied to the G^{1}-map h gives precisely the composite G^{r}-map $h \circ h^{p} \circ \ldots \circ h^{p r-1}$: $\left(S^{n}\right)^{p^{r}} \rightarrow S^{n}$.
4. For $G=Z_{m n}$ and $H=Z_{n} \triangleleft G$ we have $A=Z_{m}$. In this situation 3.1 provides a G-map F with $J_{F}=J_{w} \cdot J_{v}$ where $w=w_{1} \circ \pi_{1}$ is the composite of a Z_{n}-map w_{1} and projection $\pi_{1}: X^{m} \rightarrow X^{n}$. Thus 3.1 provides the construction of the "best" cyclic map of order m from the "best" cyclic maps of prime-power orders occurring in the prime decomposition of m. The latter are studied in [6].

In conclusion we remark that if B is the trivial subgroup, 3.1 provides no useful information at all e.g. $G=S(m)$ for $m \geqslant 5$. Also the appearance of obstruction theory in applications 1 and 2 above
indicate the limitations of 3.1. It would appear now from the results of [9] that the most natural approach to constructing $S(m)$-maps of minimal James number is via obstruction theory using [8] and Nakaoka's results relating the cohomology of $S P^{m} S^{n}$ to that of iterated cyclic products of spheres.

References

1. I. M. James, Symmetric function of several variables whose range and domain is a sphere, Bol. Soc. Mat. Maxicana, 1 (1956), 85-88.
2. I. M. James, E. Thomas, H. Toda and G. W. Whitehead, On the symmetric square of a sphere, J. Math. and Mech., 12 (1963), 771-776.
3. S. D. Liao, On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954), 520-551.
4. M. Nakaoka, Cohomology theory of a complex with a transformation of prime period and its applications, J. Inst. Polytech. Osaka City Univ. Ser., A7 (1956), 51-102.
5. G. P. Porter, The homotopy groups of wedges of suspensions, Amer. J. Math., 88 (1966), 655-663.
6. V. P. Snaith, On cyclic maps, Proc. Camb. Phil. Soc., (to appear)
7. J. J. Ucci, On the symmetric cube of a sphere, Trans. Amer. Math. Soc., 151(1970), 527-549.
8. On cyclic and iterated cyclic products of spheres, Osaka J. Math., 8(1971), 393-404.
9. Symmetric maps of least positive James number, Indiana University Math. J., 21 (1972), 709-714.

Received October 7, 1971.
Emmanuel College, Cambridge
AND
Syracuse University

