THREE REMARKS ON SYMMETRIC PRODUCTS AND SYMMETRIC MAPS

V. P. SNAITH AND J. J. UCCI

The first remark establishes that the homotopy type of a certain space related to the *m*-fold symmetric product SP^mS^n of the *n*-sphere is that of an n^{th} suspension space. Remark two generalizes a well-known adjunction formula for SP^2S^n due to Steenrod to a filtration of length *m* of SP^mS^n . The final remark provides a group-theoretic construction of *G*-maps $f: (S^n)^m \to S^n$ where $G \subset S(m)$ acts on $(S^n)^m$ by permutation of its factors.

1. Joins. The join X * Y of X and Y is the quotient space $X \times Y \times I / \sim$ where $(x, y, 0) \sim (x, y', 0)$ and $(x, y, 1) \sim (x', y, 1)$ for all $x, x' \in X$ and all $y, y' \in Y$. Let (D, S) denote the unit disc and sphere in euclidean *n*-space R^* with its usual inner product

$$\langle x, y \rangle = \Sigma x_i y_i$$
.

For any decomposition $R^n = W_1 \bigoplus W_2$ of R^n into the direct sum of a *k*-dimensional subspace W_1 and its orthogonal complement $W_2 = W_1^{\perp}$, let $D_i = D \cap W_i$ and $S_i = S \cap W_i$, i = 1, 2, be the associated discs and spheres. As well known the map $f: D_1 * S_2 \to D$ given by

$$f[sx, y, t] = s\sqrt{1-t}x + \sqrt{t}y$$

defines a homeomorphism of pairs

(1)
$$(D_1 * S_2, S_1 * S_2) \cong (D, S)$$
.

Give $V_i = R^n$, $i = 1, \dots, n$, its usual inner product \langle , \rangle_i . Then the formula $\langle x, y \rangle = \Sigma \langle x_i, y_i \rangle_i$ for $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$ in $V = V_1 \times \dots \times V_m \cong R^{nm}$ coincides with the usual inner product on R^{nm} . So we may apply the preceding remarks to the diagonal subspace $W_1 = \{v \in V \mid v_1 = v_2 = \dots = v_m\}$ and its orthogonal complement $W_2 = \{v \in V \mid \Sigma v_i = 0\} = W_1^{\perp}$. The full symmetric group S(m) acts on V by permutation of its factors V_i . For any subgroup H of S(m) D_i and S_i are H-spaces and f an H-map inducing another homeomorphism of pairs

(2)
$$(D_1/H * S_2/H, S_1/H * S_2/H) \cong (D/H, S/H)$$
.

As H acts trivially on W_1 , $D_1/H = \overline{D}_1$ and $S_1/H = \overline{S}_1$ are again the disc and sphere. Moreover, for subgroups $H_1 \subset H_2$ of S(m) it is easily checked that the quotient map $p: D/H_1 \rightarrow D/H_2$ corresponds via

(2) to the join map

$$id * p_2: \, ar{D}_1 * (S_2/H_1) \longrightarrow ar{D}_1 * (S_2/H_2)$$
 .

Recall from [7] the definition of the spaces $X_{m,l}^n$ which appear in the geometry of the symmetric product SP^mS^n . Let $h_{\tau}: (D^n)^m \to (D^n)^m$ be the permutation homeomorphism defined by $\tau \in S(m)$, and set

$$A^n_{m,l}=(D^n)^{m-l}\! imes\!(S^{n-1})^l \qquad \qquad ext{for } 0\leqslant l\leqslant m$$
 .

Then

$$\widetilde{X}^n_{m,l} = igcup_{ au \in S(m)} h_{ au}(A^n_{m,l})$$

is an S(m)-subspace of $(D^n)^m$ and so $X_{m,l}^n = \widetilde{X}_{m,l}^n/S(m)$ is well defined. To identify the pairs (D/S(m), S/S(m)) and $(X_{m,0}^n, X_{m,1}^n)$ we make the following change of norms: let V' = V as sets but set

$$||v||' = \max_i ||v_i||_i$$

where $||v_i||_i = \langle v_i \cdot v_i \rangle_i^{1/2}$. Then $x \to (||x||/||x||') \cdot x$ defines a norm preserving (non-linear) S(m)-homeomorphism $V \to V'$ establishing the desired result $(D/S(m), S/S(m)) \cong (X_{m,0}^n, X_{m,1}^n)$. Thus

(3)
$$(\bar{D}_1 * (S_2/S(m)), \bar{S}_1 * (S_2/S(m)))$$
 and $(X_{m,0}^n, X_{m,1}^n)$

are homeomorphic pairs. Moreover the canonical map $D^n \times X^n_{m-1,0} \to X^n_{m,0}$ is the quotient map $(D^n)^m/S(m-1) \to (D^n)^m/S(m)$ induced by the inclusion homomorphism $S(m-1) \to S(m)$ sending S(m-1) onto the subgroup $\{e\} \times S(m-1)$ of S(m) which acts on $(D^n)^m = D^n \times (D^n)^{m-1}$ by the identity on the first factor and by the usual symmetric action on the second factor. Combining the remark of the preceding paragraph with the above S(m)-homeomorphism $V \to V'$ we see that the canonical map $D^n \times X^n_{m-1,0} \to X^n_{m,0}$ corresponds to the join map

$$ar{D_{\scriptscriptstyle 1}}*(S_{\scriptscriptstyle 2}/S(m-1)) \longrightarrow ar{D_{\scriptscriptstyle 1}}*(S_{\scriptscriptstyle 2}/S(m))$$
 .

Our first remark establishes a conjecture stated in [7].

PROPOSITION 1.1. $X_{m,m-1}^{n}/X_{m-1,m-2}^{n}$ has the homotopy type of a space of the form $S^{n-1} * K$ for K a suitable finite CW complex. Hence $X_{m,m-1}^{n}/X_{m-1,m-2}^{n}$ has the homotopy type of an n^{th} suspension.

Proof. Proposition 2.6 of [7] asserts the existence of a homotopy equivalence

$$X_{m,m-1}^{n}/X_{m-1,m-2}^{n} \sim EX_{m,1}^{n-1} \bigcup_{E_{\mathcal{V}}} C(E(X_{1,1}^{n-1} * X_{m-1,1}^{n-1}))$$

370

where ψ is given by the canonical maps

$$X^{n-1}_{1,1} imes X^{n-1}_{m-1,0} \longrightarrow X^{n-1}_{m,1}, \quad X^{n-1}_{1,0} imes X^{n-1}_{m-1,1} \longrightarrow X^{n-1}_{m,1}$$

 ψ is just the restriction of the canonical map

$$\psi' : X_{\scriptscriptstyle 1,0}^{\scriptscriptstyle n-1} imes X_{\scriptscriptstyle m-1,0}^{\scriptscriptstyle n-1} \longrightarrow X_{\scriptscriptstyle m,0}^{\scriptscriptstyle n-1}$$

which, as we have already noted, can be identified with the join map $id * \bar{\psi}': \bar{D}_1 * (S_2/S(m-1)) \longrightarrow \bar{D}_1 * (S_2/S(m))$. Under this identification the subspaces $X_{1,1}^{n-1} \times X_{m-1,0}^{n-1} \bigcup X_{1,0}^{n-1} \times X_{m-1,1}^{n-1}$ and $X_{m,1}^{n-1}$ correspond to $\bar{S}_1 * (S_2/S(m-1))$ and $\bar{S}_1 * (S_2/S(m))$, and so the map ψ corresponds to the join map $id * \bar{\psi}: \bar{S}_1 * (S_2/S(m-1)) \to \bar{S}_1 * (S_2/S(m))$ which is the restriction of $id * \bar{\psi}'$. Hence there is a homotopy equivalence

$$egin{aligned} X_{m,m-1}^n/X_{m-1,m-2}^n &\sim E((E^{n-1}(S_2/S(m)))igcup_{E^{n-1}\overline{\psi}}C(E^{n-1}X_{m-1,1}^{n-1}))\ &\sim E^n((S_2/S(m))igcup_{\overline{\psi}}CX_{m-1,1}^{n-1}) \end{aligned}$$

and the result is proved.

For *p*-fold cyclic products (p any prime) there is an analogous result to 1.1 whose proof differs only slightly from the preceding. For this let now $h_{\tau}: (D^n)^p \to (D^n)^p$ be the (cyclic) permutation homeomorphism defined by $\tau \in Z_p \subset S(p)$ and set $A_{p,l}^n = (D^n)^{p-l} \times (S^{n-1})^l$. Then as before

$$\widetilde{X}_{p,l}^n = \bigcup_{\tau \in \mathbb{Z}_p} h_{\tau}(A_{p,l}^n)$$

is a Z_p -space and $X_{p,l}^n = \widetilde{X}_{p,l}^n/Z_p$ is well defined. Let $W_l^{n-1} \subset (S^{n-1})^l$ be the subspace $\{x \in (S^{n-1})^l \mid x_i = \text{basepoint for some } i\}, \ \widetilde{Z}_{p,l}^n = (D^n)^{p-l} \times W_l^{n-1} \text{ and } Z_{p,l}^n$ the image of $\widetilde{Z}_{p,l}^n$ under the canonical projection

$$(D^n)^{p-l} imes (S^{n-1})^l \longrightarrow X^n_{p,l}$$
 .

Then $Z_{p,p-1}^n \subset X_{p,p-1}^n$ and formula (3.3) of [8] asserts the existence of a homeomorphism

$$(\,4\,) \hspace{1.5cm} X_{p,\,p-1}^{n}/Z_{p,\,p-1}^{n}\cong EX_{p,1}^{n-1}\cup e^{n\,p-p+1}$$

The top cell e^{np-p+1} arises from the product $D^n \times (D^{n-1})^{p-1}$ and the attaching map of (4) $S^{n-1} \times (D^{n-1})^{p-1} \cup D^n \times \partial [(D^{n-1})^{p-1}] \longrightarrow EX_{p,1}^{n-1}$ sends the contractible subspace

$$A=S^{{\scriptstyle n-1}} imes \partial \left[(D^{{\scriptstyle n-1}})^{{\scriptstyle p-1}}
ight] \,\cup\, {
m point} imes (D^{{\scriptstyle n-1}})^{{\scriptstyle p-1}}$$

to the basepoint of $EX_{p,1}^{n-1}$ and so factors as $(E\psi) \circ p$, where p is the collapsing homotopy equivalence

$$S^{{\scriptstyle n-1}}\ast \partial \; [(D^{{\scriptstyle n-1}})^{{\scriptstyle p-1}}] \longrightarrow S^{{\scriptstyle n-1}}\ast \partial \; [(D^{{\scriptstyle n-1}})^{{\scriptstyle p-1}}]/A$$

and ψ the canonical projections

 $S^{n-2} imes (D^{n-1})^{p-1} \longrightarrow X^{n-1}_{p,1}$, $D^{n-1} imes \partial \left[(D^{n-1})^{p-1}
ight] \longrightarrow X^{n-1}_{p,1}$

(see the proof of Prop. 2.6 of [7] with Z_p replacing S(m)). By the above $X_{p,1}^{n-1}$ is homeomorphic to the join $S_1 * (S_2/Z_p) - V$ is now R^{np} —and the map ψ can be identified via this homeomorphism with the join map $id * p: S_1 * S_2 \rightarrow S_1 * (S_2/Z_p)$. Thus we obtain the analogous result to 1.1.

PROPOSITION 1.2. For the p-fold cyclic product of spheres the space $X_{p,p-1}^n/Z_{p,p-1}^n$ has the homotopy type of a space of the form $S^{n-1} * K$ for K a suitable finite CW complex. Hence $X_{p,p-1}^n/Z_{p,p-1}^n$ has the homotopy type of an n^{th} suspension.

Application of 1.2 was made in [8].

Consider again the symmetric product situation. Lemma 2.5 (iii) of [7] provides a homeomorphism

$$X_{m,l}^n/X_{m-1,l-1}^n\cong (X_{m,l+1}^n/X_{m-1,l}^n)\cup C(X_{m-l,1}^n*X_{l,1}^{n-1})$$
 .

For l = m and l = m - 1 the spaces $X_{m,l}^n/X_{m-1,l-1}^n$ have now been shown to have the homotopy type of a space of the form $S^{n-1} * K$. It seems reasonable to expect the same to be true for the remaining values of l, $2 \leq l \leq m - 2$.

2. Geometry of $SP^m EX$. Our second remark extends the Steenrod adjunction formula [3]

$$SP^2S^n \cong E(SP^2S^{n-1}) \cup e^{2n}$$

to higher symmetric products $SP^{m}EX$ of suspension spaces. Let

$$egin{aligned} I^n &= \{x \in R^n \,|\, 0 \leqslant x_i \leqslant 1\}\ A_n &= \{x \in I^n \,|\, x_n = 1\}\ T_n &= \{x \in I^n \,|\, x_1 \geqslant x_2 \geqslant \cdots \geqslant x_n\}\ p &= \{(1,\,1,\,\cdots,\,1)\} \subset I^n \ . \end{aligned}$$

For $i = 1, 2, \dots, n-1$ define $f_i: I^n \to I^n$ by $f_i(t_1, \dots, t_n) = (t'_1, \dots, t'_n)$ where $t'_j = t_j$ if $j \approx i$ and $t'_i = t_{i+1} + t_i(1 - t_{i+1})$. One shows easily that the composite $g_n = f_1 \circ f_2 \circ \cdots \circ f_{n-1}$ defines a relative homeomorphism $(I^n, A_n) \cong (T_n, p)$. The map g_n is useful in studying the quotients A_{i+1}/A_i arising from a filtration

372

$$(5) SP^m EX = A_m \supset A_{m-1} \supset \cdots \supset A_1 = E(SP^m X)$$

which we define as follows. For $x' = [x, t] \in EX$ call t the height of x'. As each element $[x'_1, \dots, x'_m] \in SP^m EX$ has a representative with heights $t_1 \ge t_2 \ge \dots \ge t_m$ we can set A_i to be the subset of $SP^m EX$ of all elements having representatives with at most *i* distinct heights. The A_i define a filtration (5) of $SP^m EX$.

For any partition $\pi = [i_1: i_2: \dots: i_q]$ of m let $A_{q\pi} \subset A_q$ be the set of all points having representatives with heights $t_1 \ge t_2 \ge \dots \ge t_q$, i_1 of the m coordinates at height t_1 , i_2 of them at height t_2 , etc. Set $Y_1 = C(SP^{i_1}X), \ Y_j = (SP^{i_j}X) \times I$ for $2 \le j < q$, $Y_q = \widetilde{C}(SP^{i_q}X)$ and $Y = Y_1 \times \dots \times Y_q$ where

$$C(Z) = Z imes I/Z imes \{1\}$$
 and $\widetilde{C}(Z) = Z imes I/Z imes \{0\}$.

Set

$$\partial C(Z) = \{[z, t] \in C(Z) \mid t = 0\}, \ \partial \widetilde{C}(Z) = \{[z, t] \in \widetilde{C}(Z) \mid t = 1\}$$

and

$$\partial(SP^kX imes I)=SP^kX imes$$
 $\{0,1\}$.

This defines ∂Y_i for $i = 1, \dots, q$. Finally set

$$\partial Y = \bigcup_{i=1}^{q} Y_{i} \times \cdots \times \partial Y_{i} \times \cdots \times Y_{q}$$
.

Clearly ∂ is just a kind of boundary operator for cones and related spaces.

PROPOSITION 2.1. The map $Y \rightarrow SP^m EX$ given by

 $([x_1, t_1], (x_2, t_2), \cdots, (x_{q-1}, t_{q-1}), [x_q, t_q]) \longrightarrow [[x_1, t_1''], [x_2, t_2''], \cdots, [x_q, t_q'']]$

where t''_j is the jth coordinate of $g_q(t_1, \dots, t_q)$, induces a relative homeomorphism $(Y, \partial Y) \cong (A_{q\pi}, A_{q-1})$ for each $2 \leq q < m$ and each partition $\pi = [i_1: \dots: i_q]$ of m.

The proof is straighforward.

To obtain an expression for A_q/A_{q-1} first observe that

$$A_{q}/A_{q-1} = \bigvee_{\pi} (A_{q\pi}/A_{q-1})$$
,

the wedge taken over all partitions of m. Thus by 2.1 it suffices to consider for each π the corresponding quotient $Y/\partial Y$.

PROPOSITION 2.2. For $\pi = [i_1: \cdots: i_q]$ and $Y = Y_1 \times \cdots \times Y_q$ as above the space $Y/\partial Y$ has the same homotopy type as the space

$$E^{\,q}(SP^{\,i_1}X\wedge\,SP^{\,i_q}X)\,ee\,E^{\,q}\!\left(SP^{\,i_1}X\wedge\prod_{j=2}^{q-1}\,SP^{\,i_j}X\wedge\,SP^{\,i_q}X
ight)$$
 .

Proof. Let B be a space with $\partial B = \phi$. Then the obvious quotient map $Q = CA \times B \times I^{q-2} \times CA' \rightarrow P = EA \times B \times S^{q-2} \times EA'$ induces a relative homeomorphism $(Q, \partial Q) = (P, P')$ where

$$P' = EA imes B imes S^{q-2} \vee EA imes B imes EA' \vee B imes S^{q-2} imes EA'$$
.

So $P/P' = B \times (EA \wedge S^{q-2} \wedge EA')/B \times$ point and the latter quotient has the homotopy type of the wedge $E^{q}(A \wedge A') \bigvee E^{q}(A \wedge B \wedge A')$ [5]. Therefore 2.2 is obtained by setting $A = SP^{i_1}X$, $B = \prod_{j=2}^{q-1} SP^{i_j}X$ and $A' = SP^{i_q}X$.

As an illustration of the preceding analysis let us return to the Steenrod formula for the symmetric square of a sphere. The space Y is just $CX \times \tilde{C}X$ and the map $CX \times \tilde{C}X \rightarrow SP^2EX$ is

$$([x_1, t_1], [x_2, t_2]) \longmapsto [[x_1, t_2 + t_1(1 - t_2)], [x_2, t_2]]$$

The subspace $X \times \widetilde{C}X \cup CX \times X$ (given by $t_1 = 0$ or $t_2 = 1$) is mapped to ESP^2X . It is well known that there are homeomorphisms

$$X imes \widetilde{C} X\cup CX imes X\cong Xst X$$

and

$$CX imes \widetilde{C}X\cong C(X imes \widetilde{C}X\cup CX imes X)$$
 .

Hence we obtain the adjunction formula $SP^2EX \cong ESP^2X \cup C(X * X)$ extending the Steenrod result from spheres to suspensions.

REMARK. For $X = S^{n-1}$ 2.2 can be used to recompute Nakaoka's results [4] on the integral cohomology of SP^mS^n for low values of m.

3. Group theoretic construction of symmetric maps. Let $H \subset G \subset S(m)$ be subgroups of the symmetric group S(m) and let S(G/H) be the symmetric group on the set of right cosets G/H. Define a homomorphism $\alpha: G \to S(G/H)$ by $\alpha(g)(Hg_1) = Hg_1g^{-1}$. Kernel of α is just the normal subgroup $B = \bigcap_{g \in G} gHg^{-1}$ and so there is an injection $G/B \to S(G/H)$. Let A denote the image of α and |G/H| the cardinality of G/H.

PROPOSITION 3.1. If $v: X^{|G|H|} \to X$ and $w: X^m \to X$ are A and H-maps respectively, then $F: X^m \to X$ given by

$$F(x) = v(w(g_1 \cdot x), w(g_2 \cdot x), \cdots, w(g_l \cdot x))$$

for g_1, \dots, g_l a complete set of coset representatives in G/H, is a G-map.

Proof. As w is an H-map we have for any $g \in G$ and any

 $1\leqslant i\leqslant l=\mid G/H\mid$

the existence of an $h \in H$ and a unique $1 \leq j \leq l$ such that

$$w(g_i \cdot (g \cdot x)) = w(h \cdot (g_j \cdot x)) = w(g_j \cdot x)$$
,

where h arises from the coset equality $Hg_ig = Hg_j$. Hence there exists an element $\sigma \in S(G/H)$ in $A = \text{image } (\alpha)$ satisfying

$$egin{aligned} F(g \cdot x) &= v(w(g_1 \cdot (g \cdot x)), \, \cdots, \, w(g_l \cdot (g \cdot x))) \ &= v(w(g_{\sigma^{(1)}} \cdot x), \, \cdots, \, w(g_{\sigma^{(l)}} \cdot x)) \ &= v(\sigma \cdot (w(g_1 \cdot x), \, \cdots, \, w(g_l \cdot x))) \ &= v(w(g_1 \cdot x), \, \cdots, \, w(g_l \cdot x)) = F(x) \;. \end{aligned}$$

The result follows.

To compute the James number of F when $X = S^n$ note that the degree of the composite $S^n \xrightarrow{\mathcal{A}} (S^n)^m \xrightarrow{F} S^n$ (\mathcal{A} the diagonal map) equals the product deg $(v \circ \mathcal{A}) \cdot \deg(w \circ \mathcal{A})$, since $F \circ \mathcal{A} = v \circ \mathcal{A} \circ w \circ \mathcal{A}$ as maps. Therefore the James number of F is easily computed from those of v and w via the Künneth formula.

Applications. Let n = 2t + 1 in the following four applications.

1. Let $H = \{id, (123), (132)\} \cong Z_3$ so $H \triangleleft S(3) = G$. Choose $v: (S^n)^{|G|H|} \to S^n$ to be an S(2)-map with $J_v = 2^{\phi^{(2t)}}$ [2] and $w: (S^n)^3 \to S^n$ to be an *H*-map with $J_w = 3^t$ [8]. Then $J_F = 2^{\phi^{(2t)+1}} \cdot 3^t$. However obstruction theory can improve this result as follows. From [7] we know that there exists a map $SP^mS^n \to S^n$ of James number N if and only if the composite $X_{m,m-1}^n \xrightarrow{\phi} S^n \xrightarrow{f_N} S^n$, is nullhomotopic where deg $f_N = N$. Here ϕ arises from the geometry of SP^mS^n given in [7, § 2]. As $X_{2,1}^n \subset X_{3,2}^n$ the obstructions to extending an S(2)-map $g_1: (S^n)^2 \to S^n$ to an S(3)-map $g: (S^n)^3 \to S^n$ lie in the groups $H^i(X_{3,2}^n, X_{2,1}^n; \pi_i S^n)$, which by Nakaoka [4] (see also [1], Lemma (4.3)) are 3-primary. Hence there exists an S(3)-map $G: (S^n)^3 \to S^n$ with $J_G = 2^{\phi^{(2t)}} \cdot 3^r$ for some r. As the set of all possible James numbers of S(m)-maps forms an ideal [1], there must also exist an S(3)-map $G': (S^n)^3 \to S^n$ with $J_{G'} = 2^{\phi^{(2t)}} \cdot 3^r$ with $J_{G'} = 2^{\phi^{(2t)}} \cdot 3^r$ muth $J_{G'} = 2^{\phi^{(2t)}} \cdot 3^r$ so S^n with $S^n \to S^n$ so S^n so $S^$

of [7].

2. Let $H \subset S(4)$ be the subgroup generated by $\{(12), (34), (13)(24)\}$, so |H| = 8, $H \not \subset G$ and

$$B = \bigcap_{g \in G} g H g^{-1} = \{ id, \, (14)(23), \, (13)(24), \, (12)(34) \} \cong Z_2 \times Z_2$$
 .

Hence |B| = 4 and A = S(3). Apply 3.1 with v an S(3)-map with $J_v = 2^{\phi^{(2t)}} \cdot 3^t$ and w the H-map $(S^n)^4 \xrightarrow{h \circ h^2} S^n$ where $h: (S^n)^2 \to S^n$ is an S(2)-map with $J_h = 2^{\phi^{(2t)}}$. Clearly $J_w = 2^{2 \cdot \phi^{(2t)}}$ and so we obtain an S(4)-map $F: (S^n)^4 \to S^n$ with $J_F = 2^{3\phi^{(2t)}} \cdot 3^{t+1}$. Now an exactly analogous argument to that of (1) shows that the obstructions to extending an S(3)-map $(S^n)^3 \to S^n$ to an S(4)-map $(S^n)^4 \to S^n$ lie in the groups $H^i(X^n_{4,3}, X^n_{3,2}; \pi_i S^n)$, which again by Nakaoka are 2-primary. Thus there is an S(4)-map of James number $J = 2^r \cdot 2^{\phi^{(2t)}} \cdot 3^t$ for some r. This as above implies the existence of an S(4)-map with James number $2^{3\phi^{(2t)}} \cdot 3^t$. Note it is not difficult using K-theory to show that the James number of any S(4)-map $(S^n)^4 \to S^n$ must be a multiple of $2^{2t} \cdot 3^t$ (the first named author has improved this bound to $2^{\phi^{(2t)}} \cdot 2^t \cdot 3^t$ via ad hoc considerations).

3. For $G = G^r$ the Sylow *p*-subgroup of $S(p^r)$ given by the *r*-fold Wreath product of $G^1 \cong Z_p$ with itself and $H = \prod_{k=1}^p G^{r-1} \triangleleft G = G^r$ (see [8, §2]) we have $G/H \cong Z_p$. Let *w* be the composite

$$(S^n)^{p^r} \xrightarrow{\pi_1} (S^n)^{p^{r-1}} \xrightarrow{w_1} S^n$$

where w_1 is a G^{r-1} -map with James number J_{w_1} and π_1 is projection onto the first p^{r-1} factors of $(S^n)^{p^r}$; let $v: (S^n)^p \to S^n$ be a Z_p -map with James number J_v . Then $J_F = J_{w_1} \cdot J_v$ where F is given by 3.1. From a Z_p -map h with $J_h = p^t$ [2], this result plus induction on rprovides a G^r -map h' with $J_{h'} = p^{rt}$. This iteration of 3.1 applied to the G^1 -map h gives precisely the composite G^r -map $h \circ h^p \circ \cdots \circ h^{p^{r-1}}$: $(S^n)^{p^r} \to S^n$.

4. For $G = Z_{mn}$ and $H = Z_n \triangleleft G$ we have $A = Z_m$. In this situation 3.1 provides a G-map F with $J_F = J_w \cdot J_v$ where $w = w_1 \circ \pi_1$ is the composite of a Z_n -map w_1 and projection $\pi_1: X^m \to X^n$. Thus 3.1 provides the construction of the "best" cyclic map of order m from the "best" cyclic maps of prime-power orders occurring in the prime decomposition of m. The latter are studied in [6].

In conclusion we remark that if B is the trivial subgroup, 3.1 provides no useful information at all e.g. G = S(m) for $m \ge 5$. Also the appearance of obstruction theory in applications 1 and 2 above

indicate the limitations of 3.1. It would appear now from the results of [9] that the most natural approach to constructing S(m)-maps of minimal James number is via obstruction theory using [8] and Nakaoka's results relating the cohomology of SP^mS^n to that of iterated cyclic products of spheres.

References

1. I. M. James, Symmetric function of several variables whose range and domain is a sphere, Bol. Soc. Mat. Maxicana, 1 (1956), 85-88.

2. I. M. James, E. Thomas, H. Toda and G. W. Whitehead, On the symmetric square of a sphere, J. Math. and Mech., 12 (1963), 771-776.

3. S. D. Liao, On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954), 520-551.

4. M. Nakaoka, Cohomology theory of a complex with a transformation of prime period and its applications, J. Inst. Polytech. Osaka City Univ. Ser., A7 (1956), 51-102.

5. G. P. Porter, The homotopy groups of wedges of suspensions, Amer. J. Math., 88 (1966), 655-663.

6. V. P. Snaith, On cyclic maps, Proc. Camb. Phil. Soc., (to appear)

7. J. J. Ucci, On the symmetric cube of a sphere, Trans. Amer. Math. Soc., 151(1970), 527-549.

8. _____, On cyclic and iterated cyclic products of spheres, Osaka J. Math., 8(1971), 393-404.

9. _____, Symmetric maps of least positive James number, Indiana University Math. J., 21 (1972), 709-714.

Received October 7, 1971.

EMMANUEL COLLEGE, CAMBRIDGE AND SYRACUSE UNIVERSITY