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THREE REMARKS ON SYMMETRIC PRODUCTS
AND SYMMETRIC MAPS

V. P. SNAITH AND J J. UCCI

The first remark establishes that the homotopy type of a
certain space related to the m-fold symmetric product SPmSn

of the w-sphere is that of an nth suspension space. Remark
two generalizes a well-known adjunction formula for SP2Sn

due to Steenrod to a filtration of length m of SPmSn. The
final remark provides a group-theoretic construction of G-
maps / : (Sn)m -» Sn where G c S(m) acts on (Sn)m by permu-
tation of its factors.

l Joins* The join X * Y of X and Y is the quotient space
X x Y x 11 — where (x, y, 0) ~ (x, y', 0) and (x, y, 1) ~ (x'9 y, 1) for
all x, %' e X and all y, y' e Y. Let (D, S) denote the unit disc and
sphere in euclidean w-space Rn with its usual inner product

<α, y) = 2 ^ .

For any decomposition Rn — WX@W2 of JB% into the direct sum of a
^-dimensional subspace WΊ and its orthogonal complement W2=W^,
let A = D Π TΓ< and St = S Π W<, i = 1, 2, be the associated discs
and spheres. As well known the map / : Dx* S2—>D given by

/ [sx, y, t] = si/1 - t x + VTy

defines a homeomorphism of pairs

( 1 ) (A*&, S^S2)^(DyS).

Give Vi = i2w, i = 1, , n9 its usual inner product < , ><# Then
the formula <a?, i/> = Σ (xi9 y^ for x = (xl9 ., α?n), y = (^, •••,!/») in
F = Fi x ••• x F m = Rnm coincides with the usual inner product on
Rnm. So we may apply the preceding remarks to the diagonal sub-
space Wι = {v e VI vγ = v2 = = ̂ m} and its orthogonal complement
W2 — {veV\ ΣVi = 0} — TFi1. The full symmetric group S(m) acts
on V by permutation of its factors V4. For any subgroup £Γ of S(m)
Di and S< are ff-spaces and / an iϊ-map inducing another homeomor-
phism of pairs

( 2 ) (DJH * SJH, SJH * S2/H) = (D/H, S/H) .

As H acts trivially on Wu DJH = Όλ and SJH = S1 are again the
disc and sphere. Moreover, for subgroups flic .Hi of S(m) it is
easily checked that the quotient map p: ΏjH^ —> D/H2 corresponds via
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(2) to the join map

id * p2: A * (SJH,) > A * (S2/H2) .

Recall from [7] the definition of the spaces XZ,ι which appear in
the geometry of the symmetric product SPmSn. Let hτ\ (Dn)m->(Dn)m

be the permutation homeomorphism defined by τeS(m), and set

Altl = (Dn)m~ι x (Sn~1)1 for 0 < I < m .

Then

XZ,ι = U K{Al,ι)

is an S(m)-subspace of (Dn)m and so Xza = XzjS(m) is well defined.
To identify the pairs (D/S(m), S/S(m)) and (X£,o, JE£,i) we make the
following change of norms: let V — F a s sets but set

where || vt ||< = ζv€ ^>I /2. Then α;—• (|| α; ||/|| a; ]|') x defines a norm
preserving (non-linear) S(m)-homeomorphism V—> V establishing the
desired result (D/S(m), S/S(m)) ^ (Xj,0, XlΛ). Thus

( 3) (A * (SJS(m)), S, * (SJS(m))) and (X*,θ9 XlΛ)

are homeomorphic pairs. Moreover the canonical map Dn x I ; _ 1 ) 0 —*
X^,o is the quotient map (Dn)m/S(m - 1) -> (Dn)m/S(m) induced by the
inclusion homomorphism S(m — 1) —>S(m) sending S(m — 1) onto the
subgroup {e} x S ( m - l ) o f S(m) which acts on {Dn)m - Dn x (D-)— ι

by the identity on the first factor and by the usual symmetric action
on the second factor. Combining the remark of the preceding para-
graph with the above S(m)-homeomorphism V—>V we see that the
canonical map Dn x Z ; _ 1 ) 0 ~ > I ; 0 corresponds to the join map

A * (S2/S(m - 1)) > A * (S2/S(m)) .

Our first remark establishes a conjecture stated in [7].

PROPOSITION 1.1. X^,w_1/Xi_1,m_2 has the homotopy type of a
space of the form Sn"1*K for K a suitable finite CW complex.
Hence Xl>m-JXm-ι>m-2 has the homotopy type of an ntli suspension.

Proof. Proposition 2.6 of [7] asserts the existence of a homotopy
equivalence

Z7 \JCiEiXl\T1 * XZziJ)
Eψ
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where ψ is given by the canonical maps

X n-l v VΛ-1 yn~l Vn-l v V»-l . Vn-1

1,1 A -Λ m—1,0 * -Λ-w.l > -Λ-1,0 A -Λ wi—1,1 * -Λ-m.l

τ/r is just the restriction of the canonical map

ψ . Λ.UQ X A m _ 1 ) 0

)0

which, as we have already noted, can be identified with the join map
id * ψ: A * (S2/S(m-1)) > ΐ)ι * (SJS(m)). Under this identification

the subspaces X^T1 x XZ~\,o U -XΊV1 x ΐ - w ^ n ( i ^mΓi1 correspond to
S1 * (S2/S(m — 1)) and Sλ * (S2/S(m)), and so the map ψ corresponds
to the join map id * f: S± * (S2/S(m~ 1)) -+ Sλ * (SJS(m)) which is the
restriction of id * ψ. Hence there is a homotopy equivalence

XZ,m-JXZ-Um-2 - E((En-\SJS(m))) \J

and the result is proved.
For p-fold cyclic products (p any prime) there is an analogous

result to 1.1 whose proof differs only slightly from the preceding.
For this let now hτ: (Dn)p —> (Dn)p be the (cyclic) permutation homeo-
morphism defined by τeZpczS(p) and set A$tl = (D*)*'1 x (S*-1)1.
Then as before

Xli - U K(A;fl)
τeZp

is a Zp-space and X;Λ = X;JZV is well defined. Let WΓι c {Sn~y
be the subspace {xe {S^1)1 \ xt = basepoint for some ί}, Zp}l=(Dn)p~ι x
Wΐ~ι and ZpΛ the image of Z%yl under the canonical projection

(Dny~ι x (Sn~ιy • X;9l .

Then Z^p-! c Xp,v-ι and formula (3.3) of [8] asserts the existence of
a homeomorphism

(4) xi^jz;,^ ~ EX;? u β^-^+1.

The top cell enp~p+1 arises from the product Dn x (ΰ51"1)2'"1 and the
attaching map of (4) Sn~ι x (D^-1)^1 u Dn x 3 [(Z}*-1)^1] -> SX^Γ1

sends the contractible subspace

A - S^"1 x 3 [(D*-1)*-1] U point x (Dn~y~l

to the basepoint of EX^1 and so factors as (Eψ) o p, where p is the
collapsing homotopy equivalence
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Sn~ι * 3 [(D -1)'-1] > S^1 * 9

and ψ the canonical projections

sn~2 x (z?-1)*-1 — > x*τι , D«~ι x

(see the proof of Prop. 2.6 of [7] with Zp replacing S(m)). By the
above Xp^

1 is homeomorphic to the join Si * (S2/Zp) — V is now Rnp—
and the map ψ can be identified via this homeomorphism with the
join map id * p: Si * S2 —> Si * (S2/Zp). Thus we obtain the analogous
result to 1.1.

PROPOSITION 1.2. For the p-fold cyclic product of spheres the
space XptP^jZptP^Ί has the homotopy type of a space of the form
S*1"1 * K for K a suitable finite CW complex. Hence X^JZ^p^
has the homotopy type of an nth suspension.

Application of 1.2 was made in [8].

Consider again the symmetric product situation. Lemma 2.5 (iii)
of [7] provides a homeomorphism

Xm,llX m-Ul-l == {Xmyl+llXm-Ul) U C (XZ-l,l * Xίlϊ'1)

For I = m and I — m — 1 the spaces XZ,ι/Xm~i,ι-i have now been
shown to have the homotopy type of a space of the form S^"1 * K.
It seems reasonable to expect the same to be true for the remaining
values of I, 2 < I < m — 2.

2* Geometry of SPmEX. Our second remark extends the
Steenrod adjunction formula [3]

SP2Sn = EiSP'S^-1) U e2n

to higher symmetric products SPmEX of suspension spaces. Let

In = {a e J2% I 0 < Xi < 1}

Γw = {x e I w I α?! > α;2 >

For i = 1, 2, , *& - 1 define /,: J-~>7^ by /<&, ••-,«.) = (ίί, •••,«:)
where ίj = ί̂  if j**i and ίί = ίi+1 + U{1 — t i + 1 ) . One shows easily
that the composite gn = fof2

o ° /»-i defines a relative homeo-
morphism (I%, A») = (Tn, p). The map ^% is useful in studying the
quotients Ai+1/A< arising from a filtration
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(5) SPmEX= i ^ i ^ D - o i ^ E{SPmX)

which we define as follows. For x' = [x, t] e EX call t the height of
α?\ As each element [x[, •• , x'm] eSPmEX has a representative with
heights ί i > ί 2 > ••• >*» we can set Ai to be the subset of SPmEX
of all elements having representatives with at most ί distinct heights.
The Ai define a filtration (5) of SPmEX.

For any partition π = [v i2: : iq] of m let Aqπ c Aq be the set
of all points having representatives with heights tx > t2 > > ίff, ii
of the m coordinates at height ί1? ί2 of them at height t2i etc. Set
Yi = C(SP*iX), Γy - (SP^'X) x I for 2 < i < q, Yq = C(SP^X) and
Y = Y1 x . . . x Yg where

C(Z) = Z x J / ^ x {1} and C(Z) = Z x I/Z x {0} .

Set

dC(Z) = {[z, £] G C(Z) I ί = 0}, 3C(Z) = {[z, t] e C(Z) | ί = 1}

and

^/CfDi Y" v/ Γ\ Q P f c y v/ /Λ 1\
C/\ΰΓ -Λ. ?\ A J — Ox -Λ. A \V7, ±j .

This defines 3 Yt for i = 1, , q. Finally set

dY = \J Y1 x ••• x3Y;X . . . xY g .

Clearly 3 is just a kind of boundary operator for cones and related
spaces.

PROPOSITION 2.1. The map Y-+SPmEX given by

an* f I |/y» •/• i • |Λ* /• \ ΓΛ* "t W

^U °l\i K bZf V2/i 9 V ̂ g—1> ^q—l/9 lJUq9 ^qϊ)

where t'/ is the j t h coordinate of gq(t1} , tq), induces a relative homeo-
morphism (Y, 3 Y) = (Aqπ, Aq^) for each 2 < q < m and each partition
it = [iχi •••'•%] of m.

The proof is straighforward.

To obtain an expression for AJAq-x first observe that

Ag/Ag^ = V (Agπ/Ag^) ,

the wedge taken over all partitions of m. Thus by 2.1 it suffices to
consider for each π the corresponding quotient Y/dY.
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PROPOSITION 2.2. For π = [ v •••:%] and Y = Γi x x F g as

aδcwe £/&β space Y/3 Y has the same homotopy type as the space

E'(SP'iX A SP'<X) V E"(SP^XA Π SP'*X Λ

Proof. Let B be a space with dB = 0. Then the obvious
quotient map Q = CA x £ x I*"2 x GA! -> P = EA x B x S«~2 x
induces a relative homeomorphism (Q, 3Q) = (P, P') where

P' = EA x B x S9-2 V ^ i x ί x J5A' V 5 x S?"2 x

So P/P' = J5 x (EA Λ S H Λ #A')/J5 X point and the latter quotient
has the homotopy type of the wedge Eq{A/\A*)\f Eq{A/\B/\Ar) [5].
Therefore 2.2 is obtained by setting A = SP^X, B = ttfzl SP**'X
and A ' - SP'«X

As an illustration of the preceding analysis let us return to the
Steenrod formula for the symmetric square of a sphere. The space
Y is just CX x CX and the map CX x CX-+SP2EX is

The subspace X x CX U CX x X (given by tx — 0 or ίa = 1) is mapped
to ESP2X. It is well known that there are homeomorphisms

Xx CXΌCXx X^X^X

and

CXx CX^ C(X x CX U CX x X) .

Hence we obtain the adjunction formula SP2EX ~ ESP2Xl) C(X*X)
extending the Steenrod result from spheres to suspensions.

REMARK. For X = S1""1 2.2 can be used to recompute Nakaoka's
results [4] on the integral cohomology of SPmSn for low values of
m.

3* Group theoretic construction of symmetric maps* Let
HcGaS{m) be subgroups of the symmetric group S(m) and let
S(G/H) be the symmetric group on the set of right cosets G/H.
Define a homomorphism a: G-+S(G/H) by a(g)(Hg1) —Hg^K Kernel
of a is just the normal subgroup B = f\gBGgHg~ι and so there is an
injection G/B—+S(G/H). Let A denote the image of a and |G/J5Γ|
the cardinality of G/H.

PROPOSITION 3.1. // v: XlGIHl—>X and w: Xm-+X are A and
H-maps respectively, then F: Xm —> X given by



THREE REMARKS ON SYMMETRIC PRODUCTS AND SYMMETRIC MAPS 375

F(x) = v(w(gι x), w(gz a?), , w(#, a?))

/or gl9 •••, gι a complete set of coset representatives in G/H, is a
G-map.

Proof. As w is an ίf-map we have for any g e G and any

l < i ^ l = \G/H\

the existence of an h e H and a unique 1 < j < Z such that

where /& arises from the coset equality Hgtg = jHjgr,-. Hence there
exists an element σeS(G/H) in A = image (a) satisfying

F(g x) = ^ ( ^ ( ^

X), '•-,

' , w(gt

w(Qι

gam

Mffi

•X))

• (9

x))

• x)))

= F

x)))

a;),

The result follows.

To compute the James number of F when X = Sn note that the
Δ F

degree of the composite Sn > (Sn)m > Sn {A the diagonal map)
equals the product deg (v ° Δ) deg(^ © J), since F o j ^ i i o j o ^ o j
as maps. Therefore the James number of F is easily computed from
those of v and w via the Kϋnneth formula.

Applications. Let n = 2t + 1 in the following four applications.

1. Let H= {id, (123), (132)} s Z3 so JBΓ< S(3) = G. Choose

v : (S ) | G ' ^ - * S Λ to be an S(2)-map with Jv - 2^(2ί) [2] and w: (Sn)3~>Sn

to be an iί-map with Jw = & [8]. Then JF = 2^2t)+1 . 3*. However
obstruction theory can improve this result as follows. From [7] we
know that there exists a map SPmSn —> Sn of James number N if

and only if the composite XZ,m-i — -̂+ Sn —^-> Sn, is nullhomotopic
where deg fN = N. Here φ arises from the geometry of SPmSn

given in [7, §2]. As ^ c ^ the obstructions to extending an
S(2)-mapfir1: (Sn)2-+Sn to an S(3)-map g: (Sn)3-* Sn lie in the groups
H'iX^y X£» KiSn), which by Nakaoka [4] (see also [1], Lemma (4.3))
are 3-primary. Hence there exists an S(3)-map G: (SnY—>Sn with
JG = 2φ{U) 3 r for some r. As the set of all possible James numbers
of S(m)-maps forms an ideal [1], there must also exist an S(3)-map
Qf. (β*γ-+s« w i t h JG, = 2^{2t) 3* and so we recover the main result
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Of [ 7 ] .

2. Let HcS(4) be the subgroup generated by {(12), (34), (13)(24)},
so \H\ = 8, H<f\ G and

B = Π gHg~ι = {id, (14)(23), (13)(24), (12)(34)} s Z2 x Z, .

Hence | B | = 4 and A = S(3). Apply 3.1 with v an S(3)-map with

Jv = 2^{2i) 3* and w the #-map (S*)4 — S* where A: (Sn)2-+Sn is
an S(2)-map with Λ = 2^(2ί). Clearly Jw = 22?5(2ί) and so we obtain an
S(4)-map F:(Sny~^Sn with JV = 23^(2ί) 3 ί+1. Now an exactly
analogous argument to that of (1) shows that the obstructions to
extending an S(3)-map (Sn)3-+Sn to an S(4)-map (SnY->Sn lie in
the groups H*(X*tS, X*,2; 7tiSn), which again by Nakaoka are 2-primary
Thus there is an S(4)-map of James number J— 2r 2ί*(2ί) 3< for some
r. This as above implies the existence of an S(4)-map with James
number 2sφ{2t) 3*. Note it is not difficult using iΓ-theory to show
that the James number of any S(4)-map (SnY —>Sn must be a multiple
of 22ί 34 (the first named author has improved this bound to 2ί*(2ί) 2* 3t

via ad hoc considerations).

3* For G — Gr the Sylow ^-subgroup of S(pr) given by the r-
fold Wreath product of G1 s Zp with itself and H= Π2=i Gr"' <G = Gr

(see [8, § 2]) we have GJH = Zp. Let w be the composite

(S*)* -^-> (Sw)pr~L ~ ^ > Sn

where w1 is a (?r~1-map with James number JWl and πγ is projection
onto the first p^1 factors of (Sn)pr; let v: (Sn)p -+ Sn be a Zp-map
with James number Jυ. Then JF = JW l JΌ where JP is given by 3.1.
From a ϋΓp-map A with JA = pι [2], this result plus induction on r
provides a Gr-map A' with JA, = prt. This iteration of 3 1 applied to
the G -̂map A gives precisely the composite Gr-map A © Ap o . . . o A

3"7""1:

4. For G = Zmn and fί = T̂O <] G we have A = Zm. In this
situation 3.1 provides a G-map J?7 with JF — Jw Jυ where w = w1oπι

is the composite of a i^-map ^ and projection πγ\ Xm —• X \ Thus
3.1 provides the construction of the "best" cyclic map of order m
from the "best" cyclic maps of prime-power orders occurring in the
prime decomposition of m. The latter are studied in [6].

In conclusion we remark that if B is the trivial subgroup, 3.1
provides no useful information at all e.g. G — S(m) for m > 5. Also
the appearance of obstruction theory in applications 1 and 2 above
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indicate the limitations of 3.1. It would appear now from the results
of [9] that the most natural approach to constructing S(m)-maps of
minimal James number is via obstruction theory using [8] and
Nakaoka's results relating the cohomology of SPmSn to that of
iterated cyclic products of spheres.
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