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S(a) SPACES AND REGULAR HAUSDORFF EXTENSIONS

JACK R. PORTER AND CHARLES VOTAW

A class of separation axioms Si a), one for each ordinal
a > 0, is introduced. Axiom S(l) is the Hausdorff property,
S(2) is Urysohn and regular implies S(wo)9 where w0 is the
first infinite ordinal. Minimal S(a) and S(α)-closed spaces are
characterized, and many of the known results for minimal
S(ϊ) and S(Ό-closed are extended, i — 1, 2. For a limit ordinal
a > 0, minimal S(a) spaces are shown to be regular. A new
approach to the study of minimal regular spaces is provided
by showing that the properties of minimal regular and mini-
mal S(WQ) are equivalent even though the concepts of regu-
larity and S(WQ) are not equivalent.

A new subclass of regular spaces-called OCl£-regular
spaces-is introduced and used to develop an extension theory
for regular spaces, which subsumes the regular-closed exten-
sion theory developed by Harris. It is proven that every
regular space can be densely embedded in an OCE'-regular
space and that the set of OCϋv-regular extensions of a regular
space is in a one-to-one correspondence with a set of gen-
eralized Smirnov proximities compatible with the regular
space.

l Introduction* It is well-known that the properties of regu-
larity (includes TO and complete Hausdorff (every pair of distinct
points can be separated by a real-valued continuous function) are
independent of each other and yet, are implied by completely regularity
(includes TΊ) and imply Urysohn (every pair of distinct points can be
separated by closed neighborhoods). In §2 a method of distinguishing
between regular and completely Hausdorff is developed by defining a
class of separation axioms S(a), one for each ordinal a > 0. This
class can be thought of as a measuring rod since it is linearly ordered
in the sense that an S(β) space is S(a) if β ^ a. In particular, if
wQ denotes the first infinite ordinal and wt the first uncountable ordinal,
we prove that a regular space is S(w0) but not necessarily S(w0 + 1)
whereas a completely Hausdorff space is S(a) for any ordinal a < wt

but not necessarily S(wJ
In §3 we study and characterize minimal S(cή and S(α)-closed

spaces. Known results about minimal topological spaces, cf. [8], are
extended, and a new approach to minimal regular spaces is provided.
Surprisingly, for a limit ordinal a > 0, a minimal S(ά) space is regular,
and a space is minimal regular if and only if it is minimal S(w0) even
though the concepts of regularity and S(w0) are not equivalent. A
space is shown to be regular-closed if and only if the space is regular
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and S(w0)-closed. S(w0) spaces are shown to be densely embeddable
in S(^0)-closed spaces even though the corresponding fact for regular
spaces is false. We conclude the section by proving that a space
that is the countable union of nowhere dense, compact sets is not
Katetov-S(^) for any finite ordinal n > 0; this theorem, for n — 1,
was recently proved, independently, by Mioduszewski [21].

The extension theories for regular spaces, like the extension theories
for completely regular spaces, are either completion theories [20]
or topological theories [14] One topological theory (the only one as
far as we know) is that of regular-closed extensions. Harris charac-
terizes the regular-closed extensions of a regular space by first gen-
eralizing Smirnov's proximities for completely regular spaces to a
proximity (called ί?-proximity) compatible with the topology of a
regular space. One of the liabilities of the regular-closed extension
theory for regular spaces, as observed by Harris, is that some regular
spaces have no regular-closed extensions. In §4, we prove that any
topological extension theory without this defect must have one of the
assets of the regular-closed extension theory as a liability. We
develop a topological extension theory for regular spaces which by-
passes the defect of the regular-closed extension theory by using a
mixture of i?-proximities of Harris [14] and a completion method by
Leader [20].

A subset A of a space {X, τ) is regular-open if A = int (cl A); the
set of regular-open sets form a basis for a topology [10, p. 138]
denoted as τs; τs is called the semiregularization of τ. A space (X, τ)
is semiregular if r = rβ, in particular, (X, τs) is semiregular.

An extension of X is a space Y in which X is a dense subspace;
for a topological property P, an extension Y of X is a P-extension if
Y possesses property P. In particular, a regular extension Y of X
is a regular (includes Hausdorff) space Y which is an extension of X.
Let Z and Y be extensions of X; Z is projectively larger than (resp.
injectively larger than, isomorphic to) Y if there is a continuous
surjection / : jj—* Y (resp. embedding / : Y—»Z, homeomorphism / : Z—+
Y) that leaves X pointwise fixed, i.e., f(x) = x for x e X. Let & be
a class of extensions of a space X. Then "isomorphism" is an equiva-
lence relation on If, and we consider isomorphic extensions as the
same extension. Also, "projectively larger" and "injectively larger"
are preorders on gf, and the terms protective maximums, injective
maximums, protective maximals, and injective maximals refer to
maximum and maximal elements relative to these preorders on g%

Let P be a topological property. A space X with property P is
called P-closed (resp. minimal P) if X is a closed subspace in every
P-space in which it is embedded (resp. has no strictly coarser P-
topologies). A space is Katetov-P if it has a coarser minimal P



S(a) SPACES AND REGULAR HAUSDORFF EXTENSIONS 329

topology. Much of the known results about P-closed, minimal P,
and Katetov-P spaces are presented in [8].

A filter on a space X is called open if it is generated by a filter
base of open sets. A regular filter on X is an open filter that is gener-
ated by a filter base of closed sets. A completely regular filter ^
on X is an open filter with the property that for each TJe^ there
is 7 e ^ and a real-valued continuous function / such that f(V) =
{0} and f(X\U) S {1}. The adherence of a filter j ^ ~ on a space X is
Γ\{clF: Fe^~] and denoted as a(^~). A filter with void adherence
is called free, otherwise it is called fixed. The neighborhood filter
of a point x in a space is denoted as ^Vl.

The symbols JV, Z, and R are used to denote, respectively, the
set of positive integers, and real numbers.

2* Basic properties of S(ά). Two filters ^ and & on a space
X are called R(a)-separated (respectively, U(ά)-separated) for an or-
dinal a > 0 if there are open subfamilies {Fβ: β < a] £ ^ * and
{G :̂ /9 < α} £ Sf such that FQnG0= 0 (resp. cl Fo n cl Go = 0} and
for 7 + 1 < a, cl Gr+1 £ Gr and cl F r + 1 g F r ; sometimes, we say that the
open subfamilies are JS(α)-separated (resp. ί7(α)-separated). Corre-
sponding to the definitions in [P], a space X is said to be R(a)
(respectively, U(a)) if for every pair of distinct points x, y e X, ^
and ^4^ are i?(α)-separated (resp. ?7(α)-separated). For a Ξg; w0, it is
easy to verify that R(ά) and U(a) are equivalent concepts; so, for
notational convenience, the symbols R{a) and U(ά) for a ^ w0 are
replaced by a single symbol S(α) and for ne N, R(n) is replaced by
S(2n — 1) and U(n) is replaced by S(2w). In particular, for neN,
our separation axiom S(n) corresponds to Tn defined in [V].

The following facts are straightforward to prove and left to the
reader.

(2.1) For each ordinal a > 0, an S(a + 1) space is S(a).

(2.2) A space is Hausdorff if and only if it is S(ΐ) and is Urysohn
if and only if it is S(2).

(2.3) A regular Hausdorff space is S(wQ) and a completely Haus-
dorff space is S(ά) for any ordinal a < wx.

(2.4) A space is S(a) for each ordinal a > 0 if and only if the
quasicomponents are singletons. In particular, such a space is com-
pletely Hausdorff.

(2.5) A subspace of an S(ά) space is S(a).

(2.6) A product of nonvoid spaces is S(a) if and only if each
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coordinate space is S(ά).
(2.7) The semiregularization of an S(ά) space is also S(ά).

(2.8) S(a) is an expansive property, i.e., a topology finer than
an S(a) topology is also S(a).

The results of (2.3) are the best possible as demonstrated by the
next theorem and examples. Recall that a space satisfies the ^-Suslin
condition, for a cardinal ^ , whenever every family of pairwise disjoint,
nonempty open sets has cardinality ^ ^ . For a cardinal ^ p , we let
wβ denote the least ordinal with cardinality \%β

THEOREM 2.9. Let X be a connected, S(cή space with more than
one point. If X satisfies the #β-Suslin condition, then a < wβ+1.

Proof. Let x and y be distinct points. There is an open sub-
family {Ur: 7 < a} £ Λ\ such that y <t Uo and cl Ur+1 £ Ur for 7 + 1 <
a. By y$rSuslin condition, {Ur\cl Ur+1: 7 + 1 <a} has cardinality ^ #β;
so, a < wβ+1.

It is trivial to verify that a space with weight ^ ^ or with a
dense subset of cardinality ^ V$ satisfies the ^-Suslin condition.
Thus, it follows from Theorem 2.9 that the space of real numbers with
the usual topology is S(a) for a < wι but is not £(Wi).

We now give an example of a regular space that is not S(w0 + 1)
and an example of a S(a) space that is not S(a + 1).

EXAMPLE 2.10. Let a, β be ordinals and Tr, for — a < 7 < β, be
a copy of the deleted Tychonoff plank (i.e., Tγ = (A% x A2\{(w0, w^}) x
{7} where A{ = {ordinals μ: 1 ̂  μ £ w^} with the order topology, for
i = 1, 2). Let Xa,β be the quotient space of the topological sum of
{T7: —a<Ί<β) with (n, wl9 7) identified to (n, wί9 7 + 1) for n < w0

and 7 even (limit ordinals are even) and with (w0, δ, 7) identified to
(w0, 8,7 + 1) for δ < w1 and 7 odd. Consider the coarser topology on
Xa,β by enlarging the neighborhoods at the points (m, δ, 7) of Tr,
where 7 is a limit ordinal, to include some {(p, ε,v):n<p^m,η<c
ε ^ δ, ξ < v ^ 7} for some n <m,r/ < δ, and ξ < 7. Similarly, the
neighborhoods at the points T_r, where 7 is a limit ordinal, are
enlarged. Let Ya,β denote the set Xatβ plus two additional points b
and a. When both a and β are not the immediate successor of limit
ordinals, a topology σ is defined on Ya,β by Ueσ if Uf] Xatβ is open
in Xa,β and 6 e Z7 (respectively, ae U) implies

( i ) Tr^U (resp. Γ_r £ Z7) for 7 > some f if β (resp. α) is a
limit ordinal,

(ii) {(p, e, β—l)e Tβ^: n< p < w0, η < e < wj £ ί7 for some w <
^0 and η < w1 it β is a nonlimit ordinal, and
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(iii) {(p, ε, -a + 1) e Γ_β+1: n< p < w0, η < ε < w,} g U for some
w < Wo and 27 < Wi if a is a nonlimit ordinal.
(a) If a = β — Wo, then Yatβ is the well-known deleted Tychonoff
spiral and such a space is regular [7] but not S(w0 + 1)
(b) If k is a positive integer, then Yktk+1 is an S(2k — 1) space which
is not S(2k) and Yk+Uk+1 is an S(2k) space which is not S(2k + 1).
(c) If a is a limit ordinal, Ya,a is an S(α) space which is not S(a + 1).
(d) If a is an infinite nonlimit ordinal, Ya+Ua+1 is an S(a) space
which is not S(a + 1).

3* Minimal S(α:) spaces* An open filter J^ on a space X is an
S(a)-filter if for α? ί α( .^) , ^ " and ̂ fς are S(α)-separated. The proofs
of 3.1 and 3.2 are similar to the Hausdorff and Urysohn cases, cf.
[16, 24].

(3.1) (a) An S(a) space is S(α)-closed if and only if every S(a)-
filter is fixed.

(b) An S(ά) space is minimal S(a) if and only if every S(a)-
filter with at most one adherent point is convergent.

(c) A minimal S(a) space is S(α)-closed.
(d) A compact S(a) space is minimal S(a); in particular, a compact

Hausdorff space is minimal S(a), for a < wγ.
(e) S(α)-closure is preserved by a continuous function onto an

S(a) space.
(f) A minimal S(a) space is semiregular.

(3.2) Every S(a) space can be densely embedded in an S(ά)-
closed space.

THEOREM 3.3 (a) A minimal S(ά) space, where a is a limit
ordinal, is regular.

(b) An S(a + 1), minimal S(a) space is regular.

Proof. The proof of (b) is similar to the proof of (a). To prove
(a), let X be a minimal S(a) space where a is a limit ordinal. Let
xeX and U be an open set containing x. For each y Φ x, there are
S(α)-separated open families {Uβ,y: β < a) £^Vy and {Vβty: β < a} £ ^Ϋl.
The filter ^ generated by {f\τ Vβ,y: T is finite subset of a x (X\{x})}
is [an S(α:)-filter converging to x. So, there is a finite subset T £
a x (X\{x}) such that fir Vβ,y S U. Let R = {(β + 1, »): (/5, y e Γ}.
Since α is a limit ordinal, Vγ,y is defined for (7,2/) e i?. Then x e
ΠE Vuy and cl (Γb Vr.») S U.

COROLLARY 3.4. A completely Hausdorff, minimal S(ά) space
for a ^ Wι is regular.
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A point p in a space X is a regular point if for each open set U
containing p, there is an open set V containing p such that cl V £ U.

LEMMA 3.5. Let (X, τ) be an S(w0) space and xe X. There is a
coarser S(w0) topology σ on X such that the regular points of (X, σ)
are the regular points of {X, τ) plus the point x.

Proof. Let ^ be the filter in the proof of Theorem 3.3 (a) where
the limit ordinal is w0. Define σ by Weσ if Wet and xe W implies

, for WQX. (X, σ) has the desired properties.

LEMMA 3.6 Let J?~ be an S(wo)-filter on a space X. The set of all
regular filters contained in j ^ ~ contains a maximum element (denoted
as J^r) when partially ordered by set inclusion, and a{J^r) —

Proof. Let £f = {2f £ Ĵ Π & is a regular filter}, and let J ^ = (J ^
Clearly, φ Φ j ^ £ ^ and ̂  is a regular filter if it is closed under
finite intersections. Let U, Vej^r. There are open families {Un: ne
N}y {Vn:neN}^^r such that ί/Qcl Uί9 F ^ c l Vly Un a cl Un+ί and
Vn a cl F n + 1 for n e N. The filter generated by {U f)V}U{Un Γ)Vn: ne
N} is a regular filter and an element of St Thus, U Π V e^"r. Since

^ ^ 7 then α ( / ) g α ( / ; ) . Suppose p g α ( . f ) . Then ^ " and
are S(tί;0)-separated, and there is an open family {Fn:neN}^
such that p & cl F1 and Fw a cl Fn+1 for % G N. The filter gener-

ated by {Fn: neN} is a regular filter, and p<£a{J?r

r).

THEOREM 3.7. (a) A space is regular-closed if and only if it is
S(w0)-closed and regular.

(b) A space is minimal S(w0) if and only if it is minimal regular.

Proof. The αonly if" part of (a) follows from Lemma 3.6 and
3.1(a). The "if" part of (a) follows from the fact that a regular
filter on a regular space is an S(wo)-filter. The "only if" part of (b)
follows from Theorem 3.3, 3.1(b), and the fact that a regular filter
on a regular space is an S(wo)-fi.lteγ. To show the "if" part of (b),
let (X, τ) be a minimal regular space and let σ be a coarser S(w0)
topology on X, By Lemma 3.5, for each point x e X, there is a
coarser S(w0) topology p on X such that ^K,P (^K relative to p) is
a regular filter on (X, p). Since p £ σ £ τ, then ^ΫltP is a regular
filter on (X, τ) and x is the unique τ-adherent point. By a theorem
in [3, 7], ̂ 1,9 converges to x in (X, τ). Since this is true for each
xe X, then τ = σ.

COROLLARY 3.8. A space is Katetov-S(wQ) if and only if it is
Katetov-regular.
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A useful characterization of S(n)-closed spaces, for neN, is in
terms of covers. Recall that a cover j y is a shrinkable refinement
of a cover έ% if for each A e Stf, cl A £ B for some B e έ%. An open
cover ^ of a space has an w-chain of shrinkable refinements if there
are open covers ^ = ̂ 0 , <&u •••, ̂ Λ such that ^ + 1 is a shrinkable
refinement of ^ for i = 0,1, , n — 1.

(3 9) (a) An S(n) space is S(w)-closed if and only if every open
cover with an n — 1 chain of shrinkable refinements has a finite sub-
family whose closures form a cover,

(b) An S(?ι)-closed space is compact if and only if it is regular.
(c) A minimal S(n) space is compact if and only if it is S(n + 1).

Proof. The proof of (a) is similar to the Urysohn case [16], (b)
follows immediately from (a), and (c) follows immediately from (b)
and Theorem 3.3(b).

The results of 3.9 extend theorems in [2, 16, 18, 9, 23]. Our
next theorem (the Hausdorff case was independently obtained by
Mioduszewski [21]) enables us to extend solutions of previous problems
in the Hausdorff and Urysohn cases.

THEOREM 3.10. A space which is the countable union of nowhere
dense, compact subsets is not S(k)~closed for any ke N.

Proof. Let X = (J {An: n e N}, where An is a nowhere dense,
compact subset. Assume X is S(&)-closed for some keN. For neN,
let Bn = A1 U U An. Each Bn is a nowhere dense, compact set,
and since each Bn Φ X, then {Bn: neN} is an infinite set. By re-
numbering if necessary, we can assume that Bn §Ξ Bn+1 for neN. Let
px e BJsβi. Using the compactness of Bu it follows that ^i^Pl and ^Ϋ^
(the set of all neighborhoods of BL) are S(k)-separated. So, there are
S(&)-separated open families {Vlti: 0^i<k}^^4\ and {Uui: 0^i<&}£Ξ
*yV]>^ Since B2 is nowhere dense, then Uuk^i §= B2. Let t be the first
integer greater than 1 such that Uuh^ Π (Bt+1\Bt) Φ 0 , and let p2e
ZΛ,*-iΠBt+1\Bt. There are S(&)-separated open families {V2,i. 0^i<k}Q
^4/'Bt and {U2Λ: 0 ̂  i < k) £ ~^ί2. By induction, we obtain a family
of open sets {Unti: 0^i<k, neN} with the finite intersection property.
The filter generated by {Z7%,fc_1: neN} is a free S(&)-filter, a contradic-
tion.

COROLLARY 3.11. A space that is the countable union of nowhere
dense compact sets is not Katetov-S(n), for all neN.

Proof. If X is a Katetov-S(w) space that is the countable union
of nowhere dense compact sets, then X has a coarser minimal S(n)
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topology which is S(w)-closed by 3 l(c). Since nowhere dense, com-
pact sets remain nowhere dense and compact in coarser Hausdorff
topologies, then X with the coarser S(w)-closed topology is the counta-
ble union of nowhere dense, compact sets—a contradiction to Theorem
3.10.

An immediate consequence of Corollary 3.11 is that a countable
space without isolated points is not Katetov-S(w), in particular, the
space of rational numbers. In response to a problem by Bourbaki [9],
Herrlich [16] shows that the space of rational numbers is not Katetov-
Hausdorff Herrlich also proves that the space of rational numbers is
not Katetov-regular. In light of Theorem 3.7, we can conclude that
the space of rational numbers is not Katetov-S(α:) for a ^ w0.

COROLLARY 3.12. // the set A of nonisolated points of an S(k)-
closed space is countable, then A is nowhere dense.

Proof. Let X be £(&)-closed and A = {xn: neN}. Suppose US
A is a nonempty open set. Let U Π A = {xMi): ieN}, and let Bm —
{Xii 1 <̂  i <: n(m)}. Proceed as in proof of Theorem 3.10 where px —
xni2), t is the first integer greater than 1 such that U Π £7i,fc_i Π
(Bt+1\Bt) Φ 0 , and p2 e U n Ultk^ Π (Bt+1\Bt). As in the proof of Theo-
rem 3.10, a free S(&)-filter is obtained which is a contradiction.

The Hausdorff case of Corollary 3.12 is an exercise in [10], and
the Urysohn case is a lemma in [26]. Using Corollary 3.12 and the
same argument as for the Urysohn case [26], the next corollary is
easily obtained.

COROLLARY 3.13. A countable, minimal S(n) space is compact for
n > 1.

The space in Example 2.10(a) is a noncompact, minimal S(w0)
space, and the semiregularizations of the spaces in Example 2.10(b)
are noncompact, minimal S(k) spaces. The authors are unaware of a
noncompact, minimal S(ά) space fo a > w0 but conjecture that such
exist. We now give examples (1) to show the converse of 3.1(c) is
false, (2) of an S(w0) space with a regular filter that is not an S(wQ)
filter, and (3) of an S(w0)-closed space that is not Katetov-S(w0)

EXAMPLE 3.14.

(a) [29]. Let X = {a} U {M U {cj where i, jeN. A set US X
is defined to be open if ae U implies {biά: jeN and i ^ n) S U for
some neN and c {e U implies {b^: j ^ n) SU for some neN. X is
S(α)-closed for all ordinals a > 0 but is not minimal S(a).

(b) [25]. Let τ denote the usual topology on unit interval /.
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Partition /into subsets X(n), for neN; such that each X(n) is dense
in 7. Let σ be the topology on I generated by τ U {X(2n — 1): n e N} U
{X(2n - 1) U X(2n) U X(2n + l):neN}. Stephenson [25] proved that
(/, σ) is completely Hausdorff-closed and contains a free regular filter
generated by {F(i, n): i, n e N) where F(i, n) = (x — 1/i, x + 1/i) Π
U {X(j): j ^ 2n — 1} and x e X(l). It is straightforward to show that
(I, σ) is S(α)-closed for w0 < a < wx. (/, σ) is not S(Wi)-closed since it
is not S(wi) by Theorem 2.9. The free regular filter defined by
Stephenson is not an S(wo)-filter. For k e N, let Gk= U {(1/n, l/(Λ+2)) Π
(X(2n + 4fc - 4) U X(2n + 4fc - 5)): n ^ A: + 3}; G* is open since for
n ^ fc + 3, (1/w, l/(Jfc + 2)) Π X(2n + 4k - 5) and (1/n, l/(jfc + 2)) Π
(X(2n + 4A; - 5) U X(2n + 4A: - 4) U X(2n + 4k- 3)) are open. It easily
follows that {Gk; keN} is a free S(wo)-filter base implying that (/, σ)
is not S(w0)-closeά.

(c) Partition /\{0} into sets X(n), for neZ, such that X(tι)
is dense in / and (1/n: neN} S X(0). For neZ\{0}, let Γ(w) =
(0, l/(\n\ + 1)) Π X(n)), and let Γ(0) - I\({0} U U {Y(n): n e Z\{0}}). Let
T be the usual topology on /\{0}), and let σ be the topology generated
by τU(Y(2n): neZ}l){Y(2n)U Y(2n + 1)U Γ(2^ + 2): n e Z } . Let Y
denote /\{0} plus two additional points a and b. A set ί/§ F is
defined as open if [/Π / e σ and ae U (respectively, be U) implies
Y(m) g ί7 (resp. Y{—m) £ ί7) for m > n for some neN. The space
F is S(^0)-closed and has no coarser regular topology. By Theorem
3.7, Y is not Katetov-S(w0).

4* An extension theory for regular spaces* Before we develop
an extension theory for regular spaces, it is necessary to investigate
theories in a general setting. Let ^ be a class of topological spaces
closed under homeomorphic images. An element of & is ^-closed
if it has no proper extension in ^ Using the usual extension theories
[5] as a guide, an extension theory of & is a class & of spaces
(closed under homeomorphic images) satisfying at least:

(El) gf s «*.
(E2) Each element of ^ has an gf-extension, i.e., each element

of ^ is densely embeddable in a space of g7.
The compact Hausdorff extension theory of completely regular

spaces also satisfies:
(E3) An element of g7 has no proper g^-extension.

THEOREM 4.1. Lei & and \g be classes of spaces satisfying El,
E2 and E3. Then g7 is precisely the class of ^-closed, elements of

Proof. Suppose l e g 7 , and assume X is not ^closed. Then X
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has a proper ^-extension, say Y. By E2, Y has an g'-extension
which is a proper ^-extension of X, contradicting E3. To show the
converse, let X be a ^-closed space. By E2, X has an ^-extension
Y. Since Ye^ by El, then X and Y are homeomorphic and l e g 7 .

Since the minimal Hausdorff extensions of semiregular Hausdorff
spaces satisfy El, E2, and E3 [4], then the following result is im-
mediate.

COROLLARY 4.2. [4] A space is semiregular Hausdorff-closed if
and only if it is minimal Hausdorff.

It is well-known [3, 6] that compact Hausdorff spaces are pre-
cisely the completely regular-closed spaces. Since there are non-
compact, realcompact spaces, then the realcompact extension theory
of completely regular spaces does not satisfy E3 although El and E2
are satisfied. It follows from the definition of ^closed, that the
class of ^-closed spaces satisfy El and E3. The class of ^-closed
spaces also satisfies E2 whenever ^ is the class of completely
Hausdorff spaces [27] or the class of S(a) spaces by 3.2, but does
not satisfy E2 when ^ is the class of regular spaces [16]. The
regular-closed extension theory for regular spaces has been charac-
terized in terms of proximities by Harris [14]. In the remainder of this
paper, we advance an extension theory for regular spaces satisfying El
and E2 and characterize the extension theory in terms of proximities.

The following useful result by Banaschewski [5] is frequently
needed in the sequel.

THEOREM 4.3. [5]. Let Y be a regular extension of X, and for
each y e Y, let J^y be the trace of the neighborhood filter Λ^ of the
point y in Y. Let Z = {&\\ yeY}, and for ASX, let 0(A) denote
\j^~y\ Aej^Γy). Then {0(?7): U open in X) forms an open basis for a
topology on Z and f: Y—+Z: y—^-ά^y is a homeomorphism.

In this paper, we frequently identify the spaces Y and Z and
for A g l , denote {ye Y:AejQ by 0(A). If W is a set of open
filters on a Hausdorff space X and W contains the set of neighbor-
hood filters on X, then the topology on W generated by {0(Z7): U open
in X}, where 0(U) = {^~e W: Ue^}, is called the strict extension
topology and W with this topology is an extension of X. It is easy
to verify the following properties for a regular extension Y of X.

(4.4) If V is regular open set in Γ, then 0 ( 7 ί l I ) = V.

(4.5) If V is an open set in Y, then 7 g θ ( 7 Π l ) and clΓ V =
i ( F x ) i ( o ( F x ) )
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A space X is open combinatorially embedded in a space 7 if 7
is an extension of X and for open subsets U, V of X, then o\x U Π
clx V = 0 implies clF U Π clF F = 0 . The definition of "open combi-
natorially embedded" is based on those of "combinatorially embedded"
[12] and "paracombinatorially embedded" [19]. A regular filter J?~
on a space X is a regular end if cl U Π cl F = 0 and ^ ~ meets U
(i.e., Ffl ί 7 ^ 0 for all Fe^~) imply X\cl VeJ^, where [/", F are
open subsets of X. It is easy to verify that the neighborhood filter
of a point in a regular space is a regular end and a regular end is
a maximal regular filter. Let wX denote the set of all regular ends
on a space X. For each set 4 g l , let 0(A) denote {&~ e wX: Ae^~}.
The set {0(U): U open in X} forms an open basis for a topology on wX.

Comments. In a normal (includes ϊ\) space, it is straightforward
to show that:

(a) every regular filter is a completely regular filter,
(b) every maximal regular filter is a regular end and a maximal

completely regular filter, and
(c) every maximal completely regular filter is a maximal regular

filter.
Alexandroff [1] has characterized βX, the Stone-Cech compactifi-

cation of a completely regular space X, as the set of all maximal
completely regular filters on X with the strict extension topology.
Thus, for a normal space X, wX = βX, i.e., wX and βX are isomor-
phic as extensions of X. However, there is a completely regular
space X for which wX Φ βX. Consider the completely regular space
X2)2 described in Example 2.10. An argument similar to the argument
used for the Tychonoίf plank [13, p. 123] shows that βX2i2 is the
one-point compactification of X2t2. So there is precisely one free
maximal completely regular filter, denoted as ^ , on X2,2, namely,
the trace on X2t2 of the neighborhood filter of the point of infinity of
βX2ti. But %S is not a regular end since the disjoint sets T_x and
Tx are closures of open sets and neither X2t2\T^ nor X2t2\T1 belong
to C2/. By using the "w-corner" argument of [7], it is straight-
forward to show that ^ is the only free maximal regular filter on
X2f2. Since ^ is not a regular end, then wX2f2 — X2y2 implying wX2f2 Φ

THEOREM 4.6. Let X be a regular space.
(a) wX is regular.
(b) X is open combinatorially embedded in wX by the function

e: X-+wX: x-+ΛZ.
(c) wX is the injective maximum in the set of regular extensions

in which X is open combinatorially embedded.
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(d) A filter of X is a regular end if and only if it is the trace
of a neighborhood filter on wX.

Proof.

Ad(a). Since regular ends are maximal regular filters, then it
easily follows that wX is Hausdorff. Suppose ^ is a regular end
and ^eO(U) for some open set USX Then Ue^~ and there
are regular-open sets V, Be JF such that aλx V£ B £ U. Now J^~ e
O(V). Suppose 3? eelwX(O(V)). Then gf meets F, so U^B =
X\oλx {X\cλx B)e%? implying c\wX (O(V)) £ O(U).

Ad(b). Since X is Hausdorff, then e is one-to-one. For an open
set U in X, e~\O{U)) = U and e(U) = O(U) f) {^K: x e X). So, e is
an embedding function; e(X) is dense in wX since O( Z7) Π e(X) —
{u^: £ 6 Z7}. Suppose £7 and V are open sets in X such that clx Ϊ7 Γ)
clx F = 0 . Let &~ G clwX ?7. Then &~ meets ί7 implying X\t\x Ve

So, ^ - e c l w X F a n d clwX U Π c\wX V = 0 .

Ad(c). Let IT be a regular space in which X is open combinatorially
embedded. Let yeY and ^ denote {An X: Ae <yΓy). Since F is
regular, then ^ y is a regular filter on X. To show JF'y is a regular
end on X, suppose clx U Π clx V = 0 where J7, F are open sets in X.
Suppose ^~y meets U. Then yec\γU implying y e Y\dγ V. Hence,
X \ c l x F = (Γ\clFF) Π I e ^ . Using Theorem 4.3, it is straight-
forward to show that the function Y —• wX: y —> ̂ J is an embedding.

) The proof follows immediately from the definition of the
topology for wX.

A regular space X is OCE-regular if X has no proper regular
extension in which X is open combinatorially embedded. In particular,
a regular-closed space is OC.β'-regular.

THEOREM 4.7. The following are equivalent for a regular space
X.

(a) X is OCE-regular.
(b) Every regular end converges.
(c) X = wX.

Proof. The proof is straightforward.

COROLLARY 4.8. If X is regular, then wwX = wX.

Our extension theory for the class of regular spaces is the class
of OC£r-regular spaces. We obtain a characterization of this extension
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theory by combining the methods of Harris [14] and Leader [20].
A relation δ on a set Xis called an R-proximίty [14, 28] if δ satisfies:

(PI) AδB implies BδA.
(P2) 0$A for all 4 g l ,
(P3) Aδ(B U C) if and only if AδB or AδC.
(P4) {x}δ{y} if and only if x = y.
(P5) If {<c}M, then for some B £ X, {a}ί-XV3 and £$A.
For notational convenience, we will write A < J3 for A$X\B, xδA

for {#}<5A, and x < A for {#} < A. An iu-proximity ί on a set X
induces a regular topology on X defined in the usual way of clx A —
{xeX: xδA}. A filter / " on I is r<mτwZ if for each Fe^9 G < F
for some Ge<β^, and a round filter J?~ is a round end if, for open
J7, F ^ X, J^~ meets £7 and clx U$clx V imply X\clx Ve JK Some of
the following facts are from Harris's article [14]; the rest are easily
verified.
(4.9) [14] If A S B < C ^ Z>, then A < D and X\Z> < X\A.
(4.10) [14] If A < B and C < D, then 4 n C < δ n ΰ and A (J
C<5Uΰ.
(4.11) [14] If A < B, then clx A S B and A S int x B.
(4.12) A round end is a maximal round filter.
(4.13) The neighborhood filter of a point in X is a round end.
(4.14) [14] Let Y be a regular extension of X. The relation δγ on
X defined by AδγB if clF A Π clF B Φ 0 is an i?-proximity compatible
with the topology of X and a filter ^ on X is round if and only if
^ is the trace of a regular filter on Y.

A c-proximity δ on X is an ϋJ-proximity satisfying the property
that if clx Uδclχ V where U and V are open subsets of X, then some
round end meets both U and V.

LEMMA 4.15. Let Y be a regular extension of X and δ = δγ the
relation defined in 4.14.

(a) If Uand Vare open subsets in Xand U<V, then clΓ(0(?7))£
0(V).

(b) The trace on X of a regular end on Y is a round end; in
particular, δγ is a c-proximity.

(c) A round end on X is the trace of a unique regular end on Y.

Proof.

Ad(a). Suppose yeclγ{O(U)). Since U < V implies clF?7n
c l F ( X \ F ) = 0 and since clF U= cl r (O(U)), then yeY\dγ(X\V).
Now (Γ\clF(X\F))fΊ X=V, hence yeO(V).

Ad(b). Let 5? be a regular end on Y and J^ = {GO X: Ge %?}.
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By 4.14, j^~ is a round filter. Suppose clx U$clx V where U, V are
open subsets in X and J^~ meets U. Thus, gr meets O(U). Now
clz U$c\x V implies

0 = clF clx £7 n clF clx F - clF U Π clF F = clF O(U) Π clF

So, Γ\elF O(F) G gf implying X\clx 7 - I n (Γ\clF O(F)) G

Ad(c). Let ^~ be a round end on X and gf the filter generated
by the filter base {O(F):Fe^}. It follows from (a) that gf is a
regular filter. Suppose U and V are open subsets of Y such that
clFZ7ΠclFF = 0 and gf meets ί7. Thus, F n ί / ^ O for all f e
j ^ Now c\x (U Π X ) 4 clx (F n X) implies X\clx ( F n l ) e ^ ; so,
O(X\clx ( 7 n l ) ) e ^ . But Z\clx (V f] X) = X Π (F\clF ( 7 n X ) ) =
-XTl (Γ\clΓF), hence Γ \ C 1 F F G ^ , by 4.4. The uniqueness follows
from the fact that a regular end is a maximal regular filter.

Let d be an iϋ-proximity on a set X. Let cδX = {round ends on
X}, αraZ for 4 g l , Zeί O(A) = {ĵ ~ ec,X: i e ^ " ) . The set {0(17): *7
open in X) forms an open basis for a topology on cδX. cδX is a
regular extension of X (the proof is similar to the proof of Theorem
4.6). Define the relation Δ on X by AAB if clc A Π clc B Φ 0 where
clc A is the closure of A in cδX By Lemma 4.15 Δ is a c-proximity
on X, and by repeating the previous construction, we obtain the space
CjX which is denoted as wδX.

THEOREM 4.16. Let d be an R-proximity on X.
(a) cδX is a subspace of wδX.
(b) wcδX and wδX are isomorphic extensions of X; in particular,

cδX is open combinatorially embedded in wδX.
(c) If δ is a c-proximity, then cδX — wδX.

Proof.

Ad(a). The neighborhood filter of a point in cδX is a regular
end and its trace on X is a z/-round end by Lemma 4.15; hence, as
sets cδXξΞ:WδX. Using Theorem 4.3, it is easy to check that the
topology of cδX is the relative subspace topology of wδX.

Ad(b). Since wcδX and wδX are regular extensions of X, then
by Theorem 4.3, it suffices to show that the set of traces on X of
neighborhood filters on wcδX is the set of all zf-round ends, which
follows from Lemma 4.15 (b, c) and Theorem 4.6 (d).

Ad(c). By (a) it suffices to show that a J-round end ^ on X is a
δ-round end. To show ^ is a δ-round filter, let F e ^ There are
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open sets G and He ^~ such that clx G -<j intΓ clx H « „ is the < cor-
responding to the proximity A) and c\xH^F. So, clc G Π clc (X\clx H) =
0 implying clx G$ oλx (X\clx H) since δ is a c-proximity. This shows
that G -<.δ i*

7. To show J ^ is a δ-round end, suppose clx U$ clΓ V
where U and F are open sets in X. Then clc clΓ U ΓΊ clc clx V = 0
implying clx U4 clx V. If j ^ ~ meets Ϊ7, then X\clx V e ^ completing
the proof that ^ is a δ-round end.

COROLLARY 4.17. Let Y be a regular extension of X, Let δ =
δγ as defined in 4.14. Then cδX = wδX and wδX and wY are isomor-
phic extensions of X.

COROLLARY 4.18. Let X be a regular space, &(X) denote the
set of R-proximities on X compatible with the topology of X, and c<£ (X)
denote the set of OCE-regular extensions of X. Then the function
Ψ: &(X) -> if (X): δ -> wδX is onto.

If λ is a relation on X defined by AxB if clw A Π clw B Φ 0
where cl^ A is the closure of A in wδX, then using Theorem 4.16 (c)
and the fact (by Lemma 4.15) that Δ is a c-proximity, it follows that
cλX = wδX and, hence, λ = Δ. This shows that more than two itera-
tions of the extension construction method yields nothing new. By
Corollary 4.18, the set of iϋ-proximities generate, via the function W,
all the OC£7-regular extensions. By using Corollary 4.17 and Theorem
4.16, this result can be sharpened as follows:

COROLLARY 4.19. Let X be a regular space and &C{X) denote
the set of c-proximities on X compatible with the topology on X. Then
Ψ: &e(X) -> &(X): δ — wδX is onto.

We now characterize those c-proximities that induce the same
OC£7-regular extension.

THEOREM 4.20. Let X be a regular space. Suppose λ, δ e
A necessary and sufficient condition for Ψ(X) = Ψ(δ) is that δ and X
agree on regular closed sets, i.e., for every pair of open sets U, V in
X, o\x Uδ c\x V if and only if clx Ux c\x V.

Proof. Suppose ^(λ) — Ψ(δ), then a filter is a δ-round end if
and only if it is a λ-round end. Suppose clΓ Uδ clx V. Since δ is a
c-proximity, there is a δ-round end ^ (and hence a λ-round end) that
meets both U and V. It follows that clx Ux clx V. Similarly,
clx ί7λ clx V implies clx Uδ clx V. To show the converse, it suffices
to prove that a δ-round end j ^ ~ is a λ-round end. Let F e ^ T There
are open sets G, He ^ such that clx G<,δ int x clx H and clx H <Ξ F.
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So, dx G$ c\x (X\c\x H) implying clx Gλclx (X\clx H). So, eϊzG<λ

intx clx H implying G <^ F. To show ^~ is a λ-round end, suppose
clx UK clx V and ^ meets £7. Then clx U$ c\x V implying X\clx Ve
J?~. This completes the proof that j^~ is a λ-round end.

For the OCi7-regular extensions to be characterized, in contrast
to simply being generated as done in Corollaries 4.18 and 4.19, we
must produce a subset of &e(X) on which Ψ is one-to-one and
onto if (X). To accomplish this, we define an ϋί-proximity S on I
to be an OCER-proximity if for A, B g X, AδB is equivalent to the
existence of a round end meeting both A and B. Certainly, an OCER-
proximity is a c-proximity. For a regular space X, let &0(X) denote
the set of OCi7i?-proximities on X compatible with the topology on X.

THEOREM 4.21. Let X be a regular space. Then Ψ: &Q(X) —>
is a bίjection.

Proof. To show Ψ is onto, let Yetf(X) and δ - δγ. By Corol-
lary 4.17, Y — cδX = wδX. It is straightforward to show that δγ is
an OC2£R-proximity. To show Ψ is one-to-one, suppose δ and λ are
OCEΉ-proximities such that Ψ(δ) = Ψ(X) = Y. Now Aδ5 if and only
if clF A Π clF B Φ 0 . Similarly, λ = <5F. So, δ = λ.

Let i?r(X) denote the set of regular extensions of a regular space
X. Now, i?r(X) is partitioned by the equivalence relation R defined
by YRZ if w Y and wZ are isomorphic extensions of X. Each equiva-
lence class of &r(X) contains precisely one OCJ^-regular space which
is characterized in the next theorem (the proof follows from Corollary
4.17 and Theorem 4.16).

THEOREM 4.22. Let Y be an OCE-regular extension of a space
X. Then Y is the injective maximum among all the regular exten-
sions Z of X such that δγ = δz.

It is natural to inquire if &(X) for a regular space X has a
protective maximum-wX seems to be a likely candidate. The following
lemma and theorems answer this question.

LEMMA 4.23. Let X be a regular space and Y, Ze g"(X). // Y
is protectively larger than Z, then δγ S δz.

Proof. There is a continuous function f: Y—+ Z which leaves X
pointwise fixed. Suppose A, B £ X and A$ZB. Then cl^ A Γ) clz B —
0 . Since f~ι{cλz A) 3 clF A, then clF A Π clF B = 0 implying A$rB.

Recall that the Wallman proximity δw [14, 11] on a regular space
X is defined by AδwB if clx A Π clx B Φ 0 . δw is a c-proximity com-
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patible with the topology of X. Also, wδwX = wX. Let δQ — δwX.
Now δw s <?o> but δw ~ δ0 is false as illustrated when X is the deleted
Tychonoff plank. Thus, in this case, δw is a c-proximity but not an
OCi£β-proximity. We now show that if §?(X) has a protective maxi-
mum, it is wX.

THEOREM 4.24. Let X be a regular space. Then wX is a pro-
jectίve maximal in

Proof. Let Ye& (X) be protectively larger than wX. By Lemma
4.23, δγ s δ0. However, δw <ϋ δγ. By Theorem 4.6, if U and V are
open sets in X, then clx Uδ0 clx U implies clx Uδw clx V. By Theorem
4.20, Ψ(δ0) = Ψ{δγ) and by Theorem 4.21, Y and wX are isomorphic
extensions of X.

We now give a necessary condition for wX to be a projective
maximum in £?(JS"). For a regular space X, Alexandroff [1] con-
structed an extension aX which is the set of all maximal regular
filters on X with the strict extension topology, i.e., the topology
generated by the open basis {O(U): U open in X).

THEOREM 4.25. // X is a regular space and wX is a projective
maximum in i?(X), then

(a) wX and aX are isomorphic extensions of X,
(b) wX is regular-closed, and
(c) if U and V are open sets in X and clx U Π clx V = 0 , then

no maximal regular filter meets both U and V.

Proof. Both (b) and (c) follow readily from (a). To prove (a),
we need to show that a maximal regular filter ^~ on X is a regular
end. Let Y be the set X (j {J^} and define a set Z7ϋ Y to be open
if U Π X is open in X and ^ e U implies F ξΞ= U for some F e ^~.
Y is a regular extension of X, and wY is an OCi?-regular extension
of X. There is a continuous function / : wX-+wY which leaves X
pointwise fixed. Thus, a regular end contains ^ 7 and by 4.12, ^
is a regular end.

An example of a locally compact, Hausdorff space X in which
there is no projective maximum in ^(X) is the space X2,2 used in
the comment preceeding Theorem 4.6. So, wX2f2 — X2,2 is not pro-
jectively larger than βX2f2 which is an OCi?-regular extension. This
also shows that the mapping X—>wX is not an epi-reflection [17]
from the category of regular spaces and continuous functions to the
full subcategory of OC.E'-regular spaces.

&(X), for a regular space X, contains all the regular-closed exten-
sions of X. So, this extension theory subsumes the regular-closed
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extension theory by Harris [14]. In particular, an i?C-proximity is
an OC-Biϊ-proximity; even more, every maximal round filter relative
to an i?C-proximity is a round end. Also, a WE-proximitj as defined
by Harris [15] is a c-proximity.

Leader [20] introduced the term regulator. For our purposes a
regulator [20, Cor. 2(a)] compatible with a regular space X is a pair
(^, <) where & is a basis of regular-open sets of X and " < " is a
binary relation on & satisfying

(1) i < ΰ g C implies A < C,
(2) A < B implies clx A g 5 , and
( 3) for x e X, &x = {Be &\ x e B} is a round filter basis. For

each regulator (.^, <) compatible with X, Leader constructs a regular
extension (denoted as c^X) which is the set of all ^-round ends (a
^-round end is a round filter J^ in ^ with the additional property
that if A < B where A, Be ^ and ^~ meets A, then Be ^) with
the strict extension topology.

Suppose (0, <) is compatible with X. Define AδB if cl F A Π
cl^ J5 ̂  0 where cl^ A denotes the closure of A in c^ X (i.e., AδB
means some ^-round end meets both A and B). By Lemma 4.15,
δ is a c-proximity, and by Corollary 4.17, Z S c ^ J £ c 3 J = wgX. On
the other hand, if δ is an lϋ-proximity on a set Xand & is a basis
of regular-open sets, then the " < " induced by δ and restricted to
& is a regulator. So, there are three regular extensions cδX, wδX,
and c^X of X. If ^ ' is the set of all regular-open sets of X, then
every ^'-round end is a filter base for a δ-round end and every
(5-round end is generated by some ^'-round end; thus, cδX and c^,X
are isomorphic extensions of X. In particular, if δ is a c-proximity,
then wδX and c^,X are isomorphic extensions of X. Thus, the set
of regular completions induced by regulators compatible with X con-
tains the set of OCE-regular extensions.

We express our thanks to the referee for valuable comments.
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