# MULTIPLIERS OF TYPE ( $p, p$ ) AND MULTIPLIERS <br> OF THE GROUP $L_{p}$-ALGEBRAS 

Kelly McKennon

Let $G$ be a locally compact group with left Haar measure $\lambda$ and suppose $1 \leqq p<\infty$. The purpose of this paper is to exhibit an isometric isomorphism $\omega$ of the Banach algebra $M_{p}$ of all right multipliers on $L_{p}=L_{p}(G, \lambda)$ into the normed algebra $m_{p}$ of all right multipliers on the group $L_{p}$-algebra $L_{p}^{t}$. When $G$ is either commutative or compact, $\omega$ is surjective.

A function $f \in L_{p}$ is said to be $p$-temperate if

$$
\begin{gather*}
h * f(x)=\int_{G} f(t) h\left(t^{-1} x\right) d \lambda(t) \quad \text { exists for } \lambda \text {-almost all }  \tag{1}\\
x \in G \text { whenever } h \text { is in } L_{p} ; \\
h * f \text { is in } L_{p} \text { for all } h \in L_{p}  \tag{2}\\
\sup \left\{\|h * f\|_{p}: h \in L_{p},\|h\|_{p} \leqq 1\right\}<\infty \tag{3}
\end{gather*}
$$

It was shown in [6], Theorem 1 , that $f \in L_{p}$ is $p$-temperate if

$$
\begin{equation*}
\sup \left\{\|h * f\|_{p}: h \in C_{\infty},\|h\|_{p} \leqq 1\right\}<\infty \tag{4}
\end{equation*}
$$

where $C_{00}$ denotes the set of all continuous complex-valued functions on $G$ with compact support. The set of all $p$-temperate functions will be written as $L_{p}^{t}$. Each function $f \in C_{00}$ is in $L_{p}^{t}$ and so $L_{p}^{t}$ comprises a dense subspace of $L_{p}$. For $f \in L_{p}^{t}$, the number given by either (3) or (4) will be written as $\|f\|_{p}^{t}$. The function $\left\|\|_{p}^{t}\right.$ so defined is a norm under which $L_{p}^{t}$ is a normed algebra. This normed algebra will be referred to as the group $L_{p}$-algebra.

By a right multiplier on $L_{p}^{t}$ will be meant a bounded linear operator $T$ on $L_{p}^{t}$ such that

$$
\begin{equation*}
T(f * g)=f * T(g) \quad \text { for all } f \text { and } g \text { in } L_{p}^{t} \tag{5}
\end{equation*}
$$

The set of all such $T$, which constitutes a normed algebra under the usual operator norm, will be written as $\mathfrak{m}_{p}$. Write $\mathfrak{B} p$ for the Banach algebra of all bounded linear operators on $L_{p}$. An operator $T \in \mathfrak{B} p$ is said to be a right multiplier of type ( $p, p$ ) (see [3]) if

$$
\begin{equation*}
T\left({ }_{x} f\right)={ }_{x} T(f) \quad \text { for all } f \in L_{p} \tag{6}
\end{equation*}
$$

where ${ }_{x} h(y)=h(x y)$ for each function $h$ on $G$. The set of all such $T$ will be written as $M_{p}$. It is a complete sub-algebra of $\mathfrak{B}_{p}$.

The group $L_{p}$-algebra was utilized in [6] to study a related algebra $A_{p}$, of which the Banach algebra of left multipliers was found
to be isomorphic to $M_{p}$. The situation is reversed here. For $f \in L_{p}^{t}$, an operator $W_{f}$ in $\mathfrak{B}_{p}$ is defined by

$$
\begin{equation*}
W_{f}(g)=g * f \quad \text { for all } g \in L_{p} \tag{7}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
\left\|W_{f}\right\|=\|f\|_{p}^{t} \tag{8}
\end{equation*}
$$

The closure in $\mathfrak{B}_{p}$ of the linear span of the set $\left\{W_{f * g}: f \in L_{p}^{t}, g \in C_{\infty}\right\}$ will be written as $A_{p}$. It is a Banach algebra with a minimal left approximate identity ([6], Theorem 3). Concrete interpretations of both $A_{p}$ and $L_{p}^{t}$, in the cases where $G$ is either commutative or compact, may be found in [6]. It will be mentioned here only that $L_{1}^{t}$ is the group algebra $L_{1}$ and that $L_{2}^{t}$ is the group Hilbert algebra (see [1] and [2] for example).

Proposition 1. Let $T$ be in $M_{p}$ and $f$ and $g$ be in $L_{p}$. Then
(i) $T(f * g)=f * T(g) \quad$ if $f \in L_{1}$;
(ii) $T(g) \quad$ is in $L_{p}^{t}$ if $g$ is in $L_{p}^{t}$;
(iii) $T(f * g)=f * T(g) \quad$ if $g$ is in $L_{p}^{t}$.

Proof. Part (i) was proved in the corollary to Theorem 4 in [6]. Let $g$ be in $L_{p}^{t}$. By (i),

$$
\begin{gathered}
\sup \left\{\|h * T(g)\|_{p}: h \in C_{00},\|h\|_{p} \leqq 1\right\} \\
=\sup \left\{\|T(h * g)\|_{p}: h \in C_{00},\|h\|_{p} \leqq 1\right\} \leqq\|T\| \cdot\|g\|_{p}^{t} .
\end{gathered}
$$

By (4), this implies that $T(g)$ is in $L_{p}^{t}$.
Let again $g$ be in $L_{p}^{t}$ and choose a sequence $\left\{f_{n}\right\}$ in $C_{\infty}$ which converges to $f$ in $L_{p}$. Then

$$
\begin{aligned}
& \lim _{n}\left\|f_{n} * g-f * g\right\|_{p}=0 \text { and, in view of (ii) }, \\
& \lim _{n}\left\|f_{n} * T(g)-f * T(g)\right\|_{p}=0 . \text { Thus, by (i), } \\
& f * T(g)=\lim _{n} f_{n} * T(g)=\lim _{n} T\left(f_{n} * g\right)=T(f * g) .
\end{aligned}
$$

Lemma 1. For each nonzero $f \in L_{p}$, there exists $g \in C_{\infty}$ for which $g * f \neq 0$.

Proof. See [4] 20.15.
Lemma 2. For each $T \in m_{p}$ and $V \in A_{p}$,

$$
\sup \left\{\|T \circ V(h)\|_{p}: h \in L_{p}^{t},\|h\|_{p} \leqq 1\right\} \leqq\|T\| \cdot\|V\|
$$

Proof. Write $D$ for the set $\left\{W_{f}: f \in L_{p}^{t}, W_{f} \in A_{p}\right\}$. Then $D$ is a dense subspace of $A_{p}$ and, by (8), $\left\|W_{f}\right\|=\|f\|_{p}^{t}$ for all $W_{f} \in D$.

Hence, if $\rho^{\prime} \mid D \rightarrow \mathfrak{B} p$ is defined by $\rho^{\prime}\left(W_{f}\right)=W_{T(f)}$ for all $W_{f} \in D$, then $\rho^{\prime}$ is continuous. Let $\rho \mid A_{p} \rightarrow \mathfrak{B}_{p}$ be the unique continuous extension of $\rho$ to $A_{p}$. The immediate object is to show that $\rho(V)$ and $T \circ V$ coincide on $L_{p}^{t}$.

Let $h \in L_{p}^{t}$ be such that $\|h\|_{p} \leqq 1$ and let $\left\{f_{n}\right\}$ be a sequence in $L_{p}^{t}$ such the $W_{f_{n}}$ is in $D$ for each $n \in N$ and $\lim _{n}\left\|W_{f_{n}}-V\right\|=0$. Since $A_{p}$ is a subset of $M_{p}$, the operator $V$ is in $M_{p}$ and so, by Proposition 1.iii,

$$
V \circ W_{h}(g)=V(g * h)=g * V(h)=W_{V(h)}(g)
$$

for all $g \in L_{p}$; hence, $V \circ W_{h}=W_{V(h)}$. That $W_{W_{f_{n}}}(h)=W_{f_{n}} \circ W_{h}$ is easy to check. Thus, for each $n \in N$, (8) yields $\left\|W_{f_{n}}(h)-V(h)\right\|_{p}^{t}=$ $\left\|W_{f_{n}} \circ W_{h}-V \circ W_{h}\right\|$. Hence,

$$
\varlimsup_{n}\left\|W_{f_{n}}(h)-V(h)\right\|_{p}^{t} \leqq \varlimsup_{n}\left\|W_{f_{n}}-V\right\| \cdot\left\|W_{h}\right\|=0
$$

Consequently,

$$
\begin{equation*}
\lim _{n}\left\|T\left(W_{f_{n}}(h)\right)-T(V(h))\right\|_{p}^{t}=0 \tag{9}
\end{equation*}
$$

For each $n \in N$ and $g \in L_{p}^{t}, W_{T\left(f_{n}\right)}(g)=g * T\left(f_{n}\right)=T\left(g * f_{n}\right)=T \circ W_{f n}(g)$; hence, $\rho\left(W_{f_{n}}\right)=\rho^{\prime}\left(W_{f_{n}}\right)=W_{T\left(f_{n}\right)}=T \circ W_{f_{n}}$. Consequently

$$
\varlimsup_{n}\left\|T \circ W_{f_{n}}-\rho(V)\right\|=\lim _{n}\left\|\rho\left(W_{f_{n}}\right)-\rho(V)\right\|=0
$$

Thus

$$
\begin{aligned}
& \lim _{n}\left\|T \circ W_{f_{n}}(h)-[\rho(V)](h)\right\|_{p}=0 \quad \text { and so } \\
& \lim _{n}\left\|g *\left(T \circ W_{f_{n}}(h)\right)-g *[\rho(V)](h)\right\|_{p}=0
\end{aligned}
$$

for each $g \in C_{\infty}$. But, by (9),

$$
\lim _{n}\left\|g *\left(T \circ W_{f_{n}}(h)\right)-g *(T(V(h)))\right\|_{p}=0
$$

for all $g \in C_{\infty}$. It follows that $g *[\rho(V)](h)=g *(T(V(h)))$ for all $g \in C_{\infty}$. By Lemma 1, this yields that

$$
[\rho(V)](h)=T(V(h))
$$

Now

$$
\begin{aligned}
\|T \circ V(h)\|_{p}= & \|[\rho(V)](h)\|_{p}=\lim _{n}\left\|\left[\rho\left(W_{f_{n}}\right)\right](h)\right\|_{p} \\
= & \lim _{n}\left\|h * T\left(f_{n}\right)\right\|_{p} \leqq\|h\|_{p} \cdot \overline{\lim }_{n}\left\|T\left(f_{n}\right)\right\|_{p}^{t} \\
\leqq & \left(\text { since }\|h\|_{p} \leqq 1 \text { and because of }(8)\right) \\
& \|T\| \cdot \overline{\lim _{n}}\left\|f_{n}\right\|_{p}^{t}=\|T\| \cdot \overline{\lim _{n}}\left\|W_{f_{n}}\right\|=\|T\| \cdot\|V\|
\end{aligned}
$$

Proposition 2. For each $T \in m_{p}, V \in A_{p}$, and $f \in L_{p}^{t}$,

$$
\|T(V(f))\|_{p} \leqq\|T\| \cdot\|V(f)\|_{p}
$$

Proof. Let $\varepsilon$ be any positive number. Since $A_{p}$ is a Banach algebra with a minimal left approximate identity, Cohen's factorization theorem ([5] 32.26) implies that there exist $P$ and $S$ in $A_{p}$ such that $\|P\|=1,\|S-V\|<\varepsilon$, and $V=P S$. Thus, $\|S(f)\|_{p} \leqq\|V(f)\|_{p}+$ $\varepsilon \cdot\|f\|_{p}$ and, by Lemma 2,

$$
\begin{aligned}
\|T(V(f))\|_{p} & =\|T \circ P(S(f))\|_{p} \\
& \leqq\|T\| \cdot\|P\| \cdot\|S(f)\|_{p}=\|T\|\left(\|V(f)\|_{p}+\varepsilon\|f\|_{p}\right)
\end{aligned}
$$

It follows that $\|T(V(f))\|_{p} \leqq\|T\| \cdot\|V(f)\|_{p}$.
Lemma 3. The set $\left\{V(f): f \in L_{p}^{t}, V \in A_{p}\right\}$ is a dense subspace of $L_{p}$.
Proof. Let $\varepsilon$ be a positive number and $g$ be in $L_{p}$. Choose $f \in C_{00}$ such that $\|g-f\|_{p}<\varepsilon / 2$. If $\left\{V_{\alpha}\right\}$ is a minimal left approximate identity for $A_{p}$, it follows from [6], Lemma 3, that $\lim _{\alpha}\left\|V_{\alpha}(f)-f\right\|_{p}=0$. Thus, for some index $\alpha,\left\|V_{\alpha}(f)-f\right\|_{p}<\varepsilon / 2$ and so $\left\|V_{\alpha}(f)-g\right\|_{p}<\varepsilon$.

Lemma 4. Let $V$ be in $\mathfrak{B}_{p}$ and $D$ a dense subset of $L_{p}$ such that $V(h * f)=h * V(f)$ for all $h \in C_{00}$ and $f \in D$. Then $V$ is in $M_{p}$.

Proof. Let $x$ be in G. By [4] 20.15, there is a net $\left\{f_{\alpha}\right\}$ in $C_{00}$ such that $\lim _{\alpha}\left\|_{x} h-f_{\alpha^{*}} * h\right\|_{p}=0$ for all $h \in L_{p}$. It follows that $\lim _{\alpha} \| V\left({ }_{x} h\right)-$ $V\left(f_{\alpha} * h\right) \|_{p}=0$ and $\lim _{\alpha}\left\|_{x} V(h)-f_{\alpha^{*}} V(h)\right\|_{p}=0$. Hence, for $h \in D$

$$
\left\|V\left({ }_{x} h\right)-{ }_{x} V(h)\right\|_{p}=\lim _{\alpha}\left\|V\left(f_{\alpha} * h\right)-f_{\alpha^{*}} V(h)\right\|_{p}=\lim _{\alpha} 0
$$

by the hypothesis for $V$. Since $D$ is dense in $L_{p}, V$ is in $M_{p}$.
Theorem 1. Define $\omega \mid M_{p} \rightarrow m_{p}$ by letting $\omega_{T}(f)=T(f)$ for each $T \in M_{p}$ and $f \in L_{p}^{t}$. Then $\omega$ is an isometric isomorphism of $M_{p}$ into $\mathfrak{m}_{p}$. Furthermore, if $T$ is any operator in $\mathfrak{m}_{p}$, then there exists some $S \in M_{p}$ such that, for all $V \in A_{p}$ and $f \subset L_{p}^{t}, \omega_{S}(V(f))=T(V(f))$.

Proof. That $\omega$ is well-defined follows from Proposition 1. That $\omega$ is an isomorphism is evident when it is noted that $L_{p}^{t}$ is a dense subset of $L_{p}$.

Let $T$ be an arbitrary element of $\mathfrak{m}_{p}$. It follows from Proposition 2 and Lemma 3 that there exists a unique operator $S$ in $\mathfrak{B}_{p}$ such that $S(V(f))=T(V(f))$ for all $V \in A_{p}$ and $f \in L_{p}^{t}$. For $h \in C_{00}, V \in A_{p}$, and $f \in L_{p}^{t}$, Proposition 1 implies

$$
\begin{aligned}
S(h * V(f)) & =S(V(h * f))=T(V(h * f)) \\
& =T(h * V(f))=h * T(V(f))=h * S(V(f)) .
\end{aligned}
$$

By Lemmas 3 and 4, this implies that $S$ is in $M_{p}$. Consequently, $\omega_{S}(V(h))=S(V(h))=T(V(h))$ for all $h \in L_{p}^{t}$ and $V \in A_{p}$.

To complete this proof, it will now suffice to show that $\omega$ is an isometry. Let $T$ be in $M_{p}$. Let $f$ be in $L_{p}^{t}$ and $\varepsilon$ a positive number. Choose $g \in L_{p}^{t}$ for which $\|g\|_{p} \leqq 1$ and $\left\|\omega_{T}(f)\right\|_{p}^{t}<\left\|g * \omega_{T}(f)\right\|_{p}+\varepsilon$. By Proposition 1.iii, $T(g * f)=g * T(f)$; this means that $T \circ W_{f}(g)=$ $g * \omega_{T}(f)$. Hence,

$$
\left\|\omega_{T}(f)\right\|_{p}^{t}<\left\|T \circ W_{f}(g)\right\|+\varepsilon \leqq\|T\| \cdot\left\|W_{f}\right\|+\varepsilon .
$$

By (8), this implies $\left\|\omega_{T}(f)\right\|_{p}^{t} \leqq\|T\| \cdot\|f\|_{p}^{t}$. Hence

$$
\left\|\omega_{T}\right\| \leqq\|T\|
$$

On the other hand, Proposition 2 and Lemma 3 imply

$$
\begin{aligned}
\|T\| & =\sup \left\{\|T(V(h))\|_{p}: V \in A_{p}, h \in L_{p}^{t},\|V(h)\|_{p} \leqq 1\right\} \\
& =\sup \left\{\left\|\omega_{T}(V(h))\right\|_{p}: V \in A_{p}, h \in L_{p}^{t},\|V(h)\|_{p} \leqq 1\right\} \leqq\left\|\omega_{T}\right\|
\end{aligned}
$$

This proves that $\|T\|=\left\|\omega_{T}\right\|$.
Theorem 2. Let $\omega$ be as in Theorem 1 and $G$ be either commutative or compact. Then $\omega$ is surjective.

Proof. Let $T$ be any operator in $\mathfrak{m}_{p}$. By Theorem 1, there is an operator $S$ in $M_{p}$ for which $T(V(f))=\omega_{S}(V(f))$ for all $V \in A_{p}$ and $f \in L_{p}^{t}$.

If $G$ is compact, then $L_{p}^{t}=L_{p}$. It follows from the Hewitt-CurtisFiga Talamanca factorization theorem ([5] 32.22) that each $h \in L_{p}^{t}$ is of the form $V(f)$ for some $V \in A_{p}$ and $f \in L_{p}^{t}$. Hence, $T=\omega_{S}$.

Suppose now that $G$ is commutative (not necessarily compact). Assume that there existed $h \in L_{p}^{t}$ such that $\omega_{s}(h) \neq T(h)$. Then Lemma 1 implies that $g *\left(\omega_{S}-T\right)(h) \neq 0$ for some $g \in C_{00}$. Let $\left\{h_{n}\right\}$ be a sequence in $C_{00}$ for which $\lim _{n}\left\|h_{n}-h\right\|_{p}=0$. Then

$$
\begin{aligned}
& \left\|g *\left(\omega_{S}-T\right)(h)\right\|_{p} \\
& =\left\|\left(\omega_{S}-T\right)(g * h)\right\|_{p}=\left\|\left(\omega_{S}-T\right)(h * g)\right\|_{p} \\
& =\left\|h *\left(\omega_{S}-T\right)(g)\right\|_{p}=\lim _{n}\left\|h_{n} *\left(\omega_{S}-T\right)(g)\right\|_{p} \\
& =\left\|\lim _{n}\right\|\left(\omega_{S}-T\right)\left(h_{n} * g\right)\left\|_{p}=\lim _{n}\right\|\left(\omega_{S}-T\right)\left(W_{h_{n}}(g)\right) \|_{p}=0
\end{aligned}
$$

a contradiction. Thus, $\omega_{s}=T$.

## References

1. W. Ambrose, The $L^{2}$-system of a unimodular group $I$, Trans. Amer. Math. Soc., 65, (1949), 27-48.
2. J. Dixmier, Les $C^{*}$-Algebres et Leurs Representations, Paris: Gauthier-Villars \& C ${ }^{\mathrm{ie}}$ 1964.
3. A. Figa Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J., 32, (1965), 495-501.
4. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1. Berlin Springer Verlag, 1963.
5. $\qquad$ , Abstract Harmonic Analysis, Vol. 2. Berlin, Springer Verlag, 1970.
6. K. McKennon, Multipliers of type ( $p, p$ ), Pacific J. of Math., 43 (1972), 429-436.

Received November 15, 1971.
Washington State University

