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A BOUNDARY FOR THE ALGEBRAS
OF BOUNDED HOLOMORPHIC FUNCTIONS

DONG S. KIM

Let (X, A) be a ringed space and let D be a domain in X. Let
B = B(D) = {/€ A(D); ||/||z> < «>}. A minimal boundary for
B is defined as a unique smallest subset of D such that every
function in B attains its supremum near the set. The fol-
lowings are shown: If X is locally compact, D is relatively
compact, and B separates the points of D then there exists
a minimal boundary. Under the same assumptions, the natural
projection of the Silov boundary d£ into X is the minimal
boundary. If A is a maximum modulus algebra and the set
of frontier points for A is the minimal boundary, then any
holomorphic function which is bounded near the minimal
boundary must be bounded. Finally, if Ό is the spectrum of
B (with the compact open topology), then the topological
boundary of D is the set of frontier points for B.

Introduction* Let (X, A) be a ringed space; a subsheaf of rings
with identity of the sheaf of germs of continuous functions on a
Hausdorff space X. Let Γ{ U, A) be the set of all sections of A over
U, U is an open subset of X. Let A(U) = {fe C(U):f(x) = Φ(x)(x) =

xf(x), x e U}, where φeΓ(U, A) and xf is the germ of / at x. A func-
tion / in -4.(17) is called A-holomorphic or holomorphic. Let B(U) =
{feA(U):f is bounded on U}. Then B(U) is an algebra (over C)
with identity.

Let D be an open subset of X and let D be the closure of D in
X. For A c D let N(Δ) be the filter base of open neighborhoods of Δ
in X and denote N0(J) be the trace of N(Δ) on D.

DEFINITION. For fe A(D), define cl tf(Δ) = {Π clf(W): WeN0(Λ)},
where cl f(W) is the closure of f(W) in the Riemann sphere C (J (°°}>
the cluster set of / at Δ, and write cltf(x) for cltf({x}). Define
Mf(Δ) = sup I eltf(Δ) \ e [0, oo], and write Mf(x) for Mf({x}).

Let B = B(D). Denote B8 for B with the topology of supremum
norm on D and Bc for B with the topology of uniform convergence
on compact subsets of D (c.o. topology). Then Bs is a Banach algebra.
Let S{BS) be the space of nonzero complex homomorphisms of Bs onto
C and S(BC) be the space of nonzero continuous complex homomor-
phisms of Bc onto C. Then S(Bs)i) S(BC), for, if heS(Bc) then there
exists a compact subset Kh of D such that \h(f)\ ^ | |/ | |* A for all
feB, which implies \h(f)\ ^ \\f\\D for all feB, so t h a t heS(B8).

Endow S(BS) with the weakest topology for which each / is continuous,
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where / is the Gelfand representation of / on S(BS) such that f(h) =
h(f) for all heS(Bs). Then S(BS) is compact. Equip S(BC) with the
relative topology of S(BS). For xeD define hx(f) = f(x) for all feB
then hxeS(Bs), moreover hxeS(Bc), since |ΛS(/) | = |/(») I ̂  II/IU for
all feB, where K is a compact subset containing {x}. Now if B
separates the points of D then it separates strongly the points of D
(in the sense of [8]), since B contains constant functions. If D is
locally compact and B separates the points then the natural embedd-
ing p of D into S(BS) is a homeomorphism (See Cor. 3.2.5 of Rickart
[8]). Henceforth, we denote p for this homeomorphism. Let π be
a continuous mapping from S(BS) into X such that π | pD is the in-
verse mapping of p, so that it \ pD is a homeomorphism of pD onto D.

The prototype of these phenomena is the following: Let D be
a relatively compact domain in Cn and B = J5(D). Set $ = S(BS).
With the coordinate function zu z2, , zn in B, define π: S—>Cn by
π(h) = («i(A), , zn{h)),h e S(π(S) is the joint spectrum of sx, z2, ,z n .
Then π is continuous and it is a homeomorphism on /λD. Moreover
πs(cB) c Z> and πS ZD D.

A minimal boundary.

PROPOSITION 1.

( i ) Mf{A) = lim^(J> sup {\f(W) |: TΓG iSro(J)}, where_z^ c D. For
xeD, Mf{x) = f(x). H/ll - sup.1 2 ) |/(a?) | = Mf{D) = Mf{D).

(ii) The function Mf( ): D—+ [0, oo] is upper semi-continuous.
(iii) jPor α closed subset J a D, there exists a point p e A such

that Mf{A) = Λf/(z>).

(iv) ikf/,(̂ ) ^ Mf(Δ)-Mg{Δ), where AczD.

Proof. For (i), (ii), and (iii), see Quigley [5]. (iv) is trivial.

DEFINITION 2. Let Ha A(D). We call a subset Γ of D an iί-set
if Γ is closed in D and | | / | | = Mf(D) = Jlί>(Γ) for all / e fl". An fF-set
is minimal if it properly contains no iϊ-set. Denote ΓH for a minimal
iί-set.

If H = B = Bφ), Γ s is a minimal 5-set.

PROPOSITION 2. // Z) is relatively compact then a minimal H-set
exists for every HaA(D).

Proof. See Quigley [5].

PROPOSITION 3. Let X be locally compact and B separate the
points of D. Let π be a continuous mapping from S(BS) into X such
that πop is the identity mapping on D. Let cl pD be the closure of
pD in S(BS). Then ττ(cl pD) = D and 7r(cl pD - pD) = D - D.
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Proof. Since cl pD is compact and τr(cl pD) Ξ2 D, 7r(cl pD) 5 5 .
Let & e cl />£) then for any net {hn} c |θD which converges to h, {π(hn)}
converges to π(h), since π is continuous. Since {π(hn)}(Z D,π(h) eD.
So τr(cl ^D) S 5 . Hence τr(cl Ẑ?) = 5 .

Let A e cl ̂ J? — pD and assume that 7τ(/z) 6 D. Take any / e B.
Since / is continuous, we may choose, for arbitrary ε' > 0, a neigh-
borhood U of π(ft); U= {xeD: |/«(α?) - /4(τr(A)) | < e, i = 1, 2, , n},
such that i/e Z7 implies |/(τ/) — f(π(h))\ < e\ Again, since / is con-
tinuous on S(B8) and Ae cl pD, there is y0 e D with >̂(y0) eN = {φe
S(BS): \Uφ) - Uh) | < e,i = 1,2, , w} such that |/(Λ) - / ( ^ 0 ) ) I < e\
Note that y0 e U = π \ pD(N), so \f(y0) - f(π(h)) \ < e\ Also f(y0) =
f(ρ(Vo)) and/(ττ(A)) = ?(ρ(π(h)),ao it foΠows that |/(A) —/(̂ (ττ(A))) | < 2e\
Since s' is arbitrary, we have f(h) = f(p(π(h))) toy every / e ί . Hence
ft = p(π(h)) e pD, which is absurd. Hence π(cl />£> — <σD) = D — D.

THEOREM 1. Let X be locally compact and D be relatively com-
pact in X. If B(D) separates the points of D9 then the minimal J5-
set ΓB is unique.

Proof. Let Γ1 and Γ2 be minimal i?-sets, and let p e Γx be an
arbitrary point of Γx. We will show that every neighborhood of p
intersects Γ2 so that peΓ2. So Λ c Γ 2 . The same argument shows
that Λ c A .

Let p e A Let W be any neighborhood of p in D and let φ e
cl pD such that π(φ) = p. Take a neighborhood N of 9 in S(BS) = S
such that Nd π~\W)) N={heS:\h{h) - faφ) \ < ε, i = 1, 2, . , n).
Put C7 = {x e D: |/4(a?) - α* | < ε, i = 1,2, , w}, where α, = Λ(^) Then
17 - π(i\0 Π ΰ c π(iSΓ). Let V = {x e D: ilf,._..(») < e/2, i = 1,2, ,%}.
Since Mf._a.(x) = |/4(a?) — α41 for a? e D, F Π J5 = U. And, since M/._α.
is upper semicontinuous, V is open in D iand it is easy to see that
Mf.-ai{p) = 0, s o F i s an open neighborhood of p. Note that Mf.{p) —
I α<|. Now, since Mf.__a.(x) < e/2 in F, we may choose a neighborhood
G of p in D such that* | (/, - at)(x) \ < ε for all x e G Π D and G c πN.
Then F c G e π i N Γ c T F

Since A — F is closed in D and it is a proper subset of Γ19 it is
not a jB-set. Hence there exists g e -B(Z>) such that Mg(Γ1 — F) <
M,(A) = \\g\\. So, ikίff(A - F) H0IΓ1 < 1. Choose m large enough
such that {ΛΓ,(Λ - F) Hffll"1}" < e ( l + ΣΓ IIΛ - ^l l)" 1 = δ, and set
/ - fiΓ. Then ΛfXΛ - F) = M ^ ( Γ - F) ̂  {Λfy(Γ - F)} < δ
δ\\f\\. lί xeV then Mf^x) < e/2 so that

Λf^^AΓXaj) - Mf4rmi(x)Mf(x) < ^ M f φ ) = ± \\f\\ .
Δ Δ

If xeΓ,- V then Λf/(a?) ^ Λf/(A - F) < δ | | / | | , so that again
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Since A is a .B-set it follows that Mf._a.Mf0) < (e/2)Mf(D) = (e/2) | | / | | .
L e t q b e a n y p o i n t of Γ2 w i t h %Mf(q) = Mf(D) = Mf(D) = \\f\\.
Then Mfi_a.(q)Mf(q) < (e/2) | | / | | . Hence % , . ( ? ) < e/2 and this is
true for all i = 1, 2, , n. Thus g e F, so F ί l Γ 2 ^ 0 . Hence
W V[ Γ2Φ φ. Since JΓ2 is closed, p e Γ2. The proof is complete.

We call the unique minimal l?-set the minimal boundary for B.

Note. Let ΓB be a minimal boundary for B then xeΓB if and
only if for every neighborhood U of x there exists feB such that

= M,(U)>M,φ- U).

THEOREM 2. Let X be locally compact and D be relatively com-
pact in X. We assume that B separates the points of D. Then
πdB is a minimal boundary.

Proof. Since Mfφ) = | | / |U - ||/l|ft> = II/IU for all feB, we
have d% c cl pD. Let x e πdB then there exists h e dB such that x — πh.
Now, hed% implies that for arbitrary neighborhood N of h in S = S(J5S)
there exists / e ΰ such that | | / | U = II/IU > | |/|U_i.. Since S - NZD
pD-NΠpD, we have | | / | | ^ ^ | | / | | , ^ n , z > . SoJf\\pD=J\f\\s>
WfJ\s-N ^ 11/ll^-Λrn^ Hence it follows that | | / | U = 11/IUn^ >
WfWpD-NnpD- This is equivalent to \\f\\D = ϋ / | | ^ n ^ ) > ll/IU-^npi».
Since π(N Π /λD) is a trace of a neighborhood of α? = πh on D and
a trace of any neighborhood of x on D can be written as such a form,
x — πh belongs to a minimal boundary ΓB. So πd% a ΓB. On the
other hand, if W is any open set containing πd%, then by the con-
tinuity of 7Γ, there exists an open set G in S containing d% such that
π(G) ^W and hence π(G f] pD) ̂ W f] D. For any feB, we have

- WfWn .^ II/IU*

If follows that Mf(πd%) = ||/||z? for all / e ΰ . Since τr3^ is closed, it
is a J5-set. Thus πd% is a minimal boundary.

For instance: Let D be the unit open disc in C and let B{D) = H™.
Define a natural continuous mapping π of S into the closed unit disc
D by π(h) — h(z), heS and z is the coordinate function. Then the
minimal boundary ΓB is the unit circle and the Silov boundary 3̂  on
S is a proper closed subset of cl pD — pD which is totally disconnect-
ed. The image of dB under π is the unit circle.

Next, we have a question that whether a function / with
Mf(ΓB) < oo is bounded.
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PROPOSITION 4. Suppose A = A(D) and B = B{D) have the unique
minimal boundaries ΓA and ΓB respectively. If ΓA Φ ΓB then there
exists a function feA which is bounded near ΓB (i.e., Mf{ΓB) < oo),
but not in B.

Proof. In general, ΓA D ΓB. Take xeΓA — ΓB and choose a
neighborhood U of x in D such that Mf(U) = \\f\\ > Mf(D - U) and
Uf] ΓB = φ. Then Mf{ΓB) < oo but /$ 5.

DEFINITION. A point xeD is a frontier point of D for i ϊ c A(£>)
if for each compact subset K of D with #$ iΓ there exists feH such
that M/(#) > H/IU Let i*V be the set of all frontier points of D for
H. Denote FA for A(D) and i*7* for B(D) respectively.

We introduce a generalized form of a theorem in Bochner and
Martin [2] (see Theorem 1, Ch. V) as follows:

PROPOSITION 5. Let X be locally compact, D be a subset of X
which is countable at oo, and let D — D be first countable. Let
A = A{D) be a maximum modulus algebra and c.o. complete. Then
x € FA if and only if there is a function feA such that Mf(x) = oo.
In fact, there is a single function f such that Mf(x) = oo for all
xeFA.

Proof. Use the analogous argument as in Bochner and Martin [2].

THEOREM 3. Let X be locally compact, D be countable at oo, and
D — D be first countable. Let A be a maximum modulus algebra
and c.o. complete. Suppose ΓB is a minimal boundary and FA = ΓB

then every function feA with Mf{ΓB) < oo belongs to B.

Proof. Assume that / is unbounded then there exists a sequence
{xn} c D such that \f(xn) I —• °° and n —> oo. Let xn —> x then by Pro-
position 5, xeFA and so xeΓB. Thus oo = Mf(x) 5g Mf{ΓB) < oo,
which is absurd. Hence feB.

We observe that h e S(B8) — S(BC) if and only if for any compact
subset K of D there exists feB (f may depend on K) such that
\W)\>\\f\\κ.

THEOREM 4. Let X be locally compact and B separate the points
of D. Let FB be the set of all frontier points for B. If pD = S(BC)
then D - D = FB.

Proof. Let bdry S(BC) = c\S(Bc) - S(BC). By Proposition 3,
7r(bdry S(BC)) = bdry D. Now if Λebdry S{BC), then for any com-
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pact subset K of D, there exists feB such that \h(f) \ > \\f\\κ. We
claim Mf(π(h)) > \\f\\κ: Suppose Mf(π(h)) = \\f\\κ = r , t h e n t h e r e
exists a net W c ΰ such that \\f(xn) I — τ\ < 1/w as α?n—*ττ(A) So
|/(#J|—>r. Now, let hZn~+h. Since / is continuous, f(hXn)-+f(h).
So /(αθ -> /*,(/). In particular, \f(xn) | -- | h(f) |. Then it follows that

= r = | | / | | x . This is absurd. Hence Mf(π(h)) > \\f\\κ. So bdry

Note. If D is a Stein manifold of bounded type then /θD = S(BC)
(see Kim [3]).
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