A BOUNDARY FOR THE ALGEBRAS OF BOUNDED HOLOMORPHIC FUNCTIONS

Dong S. Kim

Let (X, A) be a ringed space and let D be a domain in X. Let $B = B(D) = \{f \in A(D); ||f||_D < \infty\}$. A minimal boundary for B is defined as a unique smallest subset of \overline{D} such that every function in B attains its supremum near the set. The followings are shown: If X is locally compact, D is relatively compact, and B separates the points of D then there exists a minimal boundary. Under the same assumptions, the natural projection of the Silov boundary $\partial_{\hat{B}}$ into X is the minimal boundary. If A is a maximum modulus algebra and the set of frontier points for A is the minimal boundary, then any holomorphic function which is bounded near the minimal boundary must be bounded. Finally, if D is the spectrum of B (with the compact open topology), then the topological boundary of D is the set of frontier points for B.

Introduction. Let (X, A) be a ringed space; a subsheaf of rings with identity of the sheaf of germs of continuous functions on a Hausdorff space X. Let $\Gamma(U, A)$ be the set of all sections of A over U, U is an open subset of X. Let $A(U) = \{f \in C(U): f(x) = \phi(x)(x) = xf(x), x \in U\}$, where $\phi \in \Gamma(U, A)$ and xf is the germ of f at x. A function f in A(U) is called A-holomorphic or holomorphic. Let B(U) = $\{f \in A(U): f$ is bounded on U}. Then B(U) is an algebra (over C) with identity.

Let D be an open subset of X and let \overline{D} be the closure of D in X. For $\Delta \subset \overline{D}$ let $N(\Delta)$ be the filter base of open neighborhoods of Δ in X and denote $N_0(\Delta)$ be the trace of $N(\Delta)$ on D.

DEFINITION. For $f \in A(D)$, define $\operatorname{cl} t_f(\varDelta) = \{\bigcap \operatorname{cl} f(W) \colon W \in N_0(\varDelta)\}$, where $\operatorname{cl} f(W)$ is the closure of f(W) in the Riemann sphere $C \cup (\infty)$, the cluster set of f at \varDelta , and write $\operatorname{cl} t_f(x)$ for $\operatorname{cl} t_f(\{x\})$. Define $M_f(\varDelta) = \sup |\operatorname{cl} t_f(\varDelta)| \in [0, \infty]$, and write $M_f(x)$ for $M_f(\{x\})$.

Let B = B(D). Denote B_s for B with the topology of supremum norm on D and B_c for B with the topology of uniform convergence on compact subsets of D (c.o. topology). Then B_s is a Banach algebra. Let $S(B_s)$ be the space of nonzero complex homomorphisms of B_s onto C and $S(B_c)$ be the space of nonzero continuous complex homomorphisms of B_c onto C. Then $S(B_s) \supset S(B_c)$, for, if $h \in S(B_c)$ then there exists a compact subset K_h of D such that $|h(f)| \leq ||f||_{k_h}$ for all $f \in B$, which implies $|h(f)| \leq ||f||_D$ for all $f \in B$, so that $h \in S(B_s)$. Endow $S(B_s)$ with the weakest topology for which each \hat{f} is continuous, where \hat{f} is the Gelfand representation of f on $S(B_s)$ such that $\hat{f}(h) = h(f)$ for all $h \in S(B_s)$. Then $S(B_s)$ is compact. Equip $S(B_c)$ with the relative topology of $S(B_s)$. For $x \in D$ define $h_x(f) = f(x)$ for all $f \in B$ then $h_x \in S(B_s)$, moreover $h_x \in S(B_c)$, since $|h_x(f)| = |f(x)| \leq ||f||_{\mathcal{K}}$ for all $f \in B$, where K is a compact subset containing $\{x\}$. Now if B separates the points of D then it separates strongly the points of D (in the sense of [8]), since B contains constant functions. If D is locally compact and B separates the points then the natural embedding ρ of D into $S(B_s)$ is a homeomorphism (See Cor. 3.2.5 of Rickart [8]). Henceforth, we denote ρ for this homeomorphism. Let π be a continuous mapping from $S(B_s)$ into X such that $\pi \mid \rho D$ is the inverse mapping of ρ , so that $\pi \mid \rho D$ is a homeomorphism of ρD onto D.

The prototype of these phenomena is the following: Let D be a relatively compact domain in \mathbb{C}^n and B = B(D). Set $S = S(B_s)$. With the coordinate function z_1, z_2, \dots, z_n in B, define $\pi: S \to \mathbb{C}^n$ by $\pi(h) = (\hat{z}_1(h), \dots, \hat{z}_n(h)), h \in S(\pi(S) \text{ is the joint spectrum of } z_1, z_2, \dots, z_n$. Then π is continuous and it is a homeomorphism on ρD . Moreover $\pi s({}_{c}B) \subset D$ and $\pi S \supset \overline{D}$.

A minimal boundary.

PROPOSITION 1.

(i) $M_f(\varDelta) = \lim_{N_0(\varDelta)} \sup \{ |f(W)| : W \in N_0(\varDelta) \}, \text{ where } \varDelta \subset \overline{D}.$ For $x \in D, M_f(x) = f(x).$ $||f|| = \sup_{x \in D} |f(x)| = M_f(D) = M_f(\overline{D}).$

(ii) The function $M_f(\cdot): \overline{D} \to [0, \infty]$ is upper semi-continuous.

(iii) For a closed subset $\varDelta \subset \overline{D}$, there exists a point $p \in \varDelta$ such that $M_f(\varDelta) = M_f(p)$.

(iv) $M_{fg}(\varDelta) \leq M_f(\varDelta) \cdot M_g(\varDelta), \text{ where } \varDelta \subset \overline{D}.$

Proof. For (i), (ii), and (iii), see Quigley [5]. (iv) is trivial.

DEFINITION 2. Let $H \subset A(D)$. We call a subset Γ of \overline{D} an H-set if Γ is closed in \overline{D} and $||f|| = M_f(D) = M_f(\Gamma)$ for all $f \in H$. An H-set is minimal if it properly contains no H-set. Denote Γ_H for a minimal H-set.

If H = B = B(D), Γ_B is a minimal B-set.

PROPOSITION 2. If D is relatively compact then a minimal H-set exists for every $H \subset A(D)$.

Proof. See Quigley [5].

PROPOSITION 3. Let X be locally compact and B separate the points of D. Let π be a continuous mapping from $S(B_s)$ into X such that $\pi \circ \rho$ is the identity mapping on D. Let $\operatorname{cl} \rho D$ be the closure of ρD in $S(B_s)$. Then $\pi(\operatorname{cl} \rho D) = \overline{D}$ and $\pi(\operatorname{cl} \rho D - \rho D) = \overline{D} - D$.

Proof. Since cl ρD is compact and $\pi(\operatorname{cl} \rho D) \supseteq D$, $\pi(\operatorname{cl} \rho D) \supseteq \overline{D}$. Let $h \in \operatorname{cl} \rho D$ then for any net $\{h_n\} \subset \rho D$ which converges to h, $\{\pi(h_n)\}$ converges to $\pi(h)$, since π is continuous. Since $\{\pi(h_n)\} \subset D$, $\pi(h) \in \overline{D}$. So $\pi(\operatorname{cl} \rho D) \subseteq \overline{D}$. Hence $\pi(\operatorname{cl} \rho D) = \overline{D}$.

Let $h \in \operatorname{cl} \rho D - \rho D$ and assume that $\pi(h) \in D$. Take any $f \in B$. Since f is continuous, we may choose, for arbitrary $\varepsilon' > 0$, a neighborhood U of $\pi(h)$; $U = \{x \in D: |f_i(x) - f_i(\pi(h))| < \varepsilon, i = 1, 2, \dots, n\}$, such that $y \in U$ implies $|f(y) - f(\pi(h))| < \varepsilon'$. Again, since \hat{f} is continuous on $S(B_s)$ and $h \in \operatorname{cl} \rho D$, there is $y_0 \in D$ with $\rho(y_0) \in N = \{\varphi \in S(B_s): |\hat{f}_i(\varphi) - \hat{f}_i(h)| < \varepsilon, i = 1, 2, \dots, n\}$ such that $|\hat{f}(h) - \hat{f}(\rho(y_0))| < \varepsilon'$. Note that $y_0 \in U = \pi |\rho D(N)$, so $|f(y_0) - f(\pi(h))| < \varepsilon'$. Also $f(y_0) = \hat{f}(\rho(y_0))$ and $f(\pi(h)) = \hat{f}(\rho(\pi(h)))$, so it follows that $|\hat{f}(h) - \hat{f}(\rho(\pi(h)))| < 2\varepsilon'$. Since ε' is arbitrary, we have $\hat{f}(h) = \hat{f}(\rho(\pi(h)))$ foy every $f \in B$. Hence $h = \rho(\pi(h)) \in \rho D$, which is absurd. Hence $\pi(\operatorname{cl} \rho D - \rho D) = \overline{D} - D$.

THEOREM 1. Let X be locally compact and D be relatively compact in X. If B(D) separates the points of D, then the minimal Bset Γ_B is unique.

Proof. Let Γ_1 and Γ_2 be minimal *B*-sets, and let $p \in \Gamma_1$ be an arbitrary point of Γ_1 . We will show that every neighborhood of p intersects Γ_2 so that $p \in \Gamma_2$. So $\Gamma_1 \subset \Gamma_2$. The same argument shows that $\Gamma_2 \subset \Gamma_1$.

Let $p \in \Gamma_1$. Let W be any neighborhood of p in \overline{D} and let $\varphi \in$ cl ρD such that $\pi(\varphi) = p$. Take a neighborhood N of φ in $S(B_i) = S$ such that $N \subset \pi^{-1}(W)$; $N = \{h \in S: |\hat{f}_i(h) - \hat{f}_i(\varphi)| < \varepsilon, i = 1, 2, \dots, n\}$. Put $U = \{x \in D: |f_i(x) - a_i| < \varepsilon, i = 1, 2, \dots, n\}$, where $a_i = \hat{f}_i(\varphi)$. Then $U = \pi(N) \cap D \subset \pi(N)$. Let $V = \{x \in \overline{D}: M_{f_i - a_i}(x) < \varepsilon/2, i = 1, 2, \dots, n\}$. Since $M_{f_i - a_i}(x) = |f_i(x) - a_i|$ for $x \in D$, $V \cap D = U$. And, since $M_{f_i - a_i}$ is upper semicontinuous, V is open in \overline{D} and it is easy to see that $M_{f_i - a_i}(p) = 0$, so V is an open neighborhood of p. Note that $M_{f_i}(p) =$ $|a_i|$. Now, since $M_{f_i - a_i}(x) < \varepsilon/2$ in V, we may choose a neighborhood G of p in \overline{D} such that $|(f_i - a_i)(x)| < \varepsilon$ for all $x \in G \cap D$ and $G \subset \pi N$. Then $V \subset G \subseteq \pi N \subset W$.

Since $\Gamma_1 - V$ is closed in \overline{D} and it is a proper subset of Γ_1 , it is not a B-set. Hence there exists $g \in B(D)$ such that $M_g(\Gamma_1 - V) < M_g(\Gamma_1) = ||g||$. So $M_g(\Gamma_1 - V) ||g||^{-1} < 1$. Choose *m* large enough such that $\{M_g(\Gamma_1 - V) ||g||^{-1}\}^m < \varepsilon(1 + \sum_1^n ||f_i - a_i||)^{-1} = \delta$, and set $f = g^m$. Then $M_f(\Gamma_1 - V) = M_{g^m}(\Gamma - V) \leq \{M_g(\Gamma - V)\}^m < \delta ||g||^m = \delta ||f||$. If $x \in V$ then $M_{f_i-a_i}(x) < \varepsilon/2$ so that

$$M_{f_{i}-2}M_{f}(x) = M_{f_{i}-a_{i}}(x)M_{f}(x) < rac{arepsilon}{2}M_{f}(ar{D}) = rac{arepsilon}{2}||f|| \;.$$

If $x \in \Gamma_1 - V$ then $M_f(x) \leq M_f(\Gamma_1 - V) < \delta ||f||$, so that again

DONG S. KIM

$$M_{{}^{f_i-a_i}}M_{{}^{f}}(x) < rac{arepsilon}{2} \, ||\, f\,||$$
 .

Since Γ_1 is a *B*-set it follows that $M_{f_i-a_i}M_f(\bar{D}) < (\varepsilon/2)M_f(\bar{D}) = (\varepsilon/2)||f||$. Let q be any point of Γ_2 with $M_f(q) = M_f(\bar{D}) = M_f(D) = ||f||$. Then $M_{f_i-a_i}(q)M_f(q) < (\varepsilon/2)||f||$. Hence $M_{f_i-a_i}(q) < \varepsilon/2$ and this is true for all $i = 1, 2, \dots, n$. Thus $q \in V$, so $V \cap \Gamma_2 \neq \emptyset$. Hence $W \cap \Gamma_2 \neq \phi$. Since Γ_2 is closed, $p \in \Gamma_2$. The proof is complete.

We call the unique minimal B-set the minimal boundary for B.

Note. Let Γ_B be a minimal boundary for B then $x \in \Gamma_B$ if and only if for every neighborhood U of x there exists $f \in B$ such that $||f|| = M_f(U) > M_f(\bar{D} - U).$

THEOREM 2. Let X be locally compact and D be relatively compact in X. We assume that B separates the points of D. Then $\pi \partial \hat{B}$ is a minimal boundary.

Proof. Since $M_f(\overline{D}) = ||f||_D = ||\widehat{f}||_{\rho_D} = ||\widehat{f}||_s$ for all $f \in B$, we have $\partial_{\widehat{B}} \subset \operatorname{cl} \rho D$. Let $x \in \pi \partial_{\widehat{B}}$ then there exists $h \in \partial_{\widehat{B}}$ such that $x = \pi h$. Now, $h \in \partial_{\widehat{B}}$ implies that for arbitrary neighborhood N of h in $S = S(B_s)$ there exists $\widehat{f} \in \widehat{B}$ such that $||\widehat{f}||_s = ||\widehat{f}||_N > ||\widehat{f}||_{s-N}$. Since $S - N \supset \rho D - N \cap \rho D$, we have $||\widehat{f}||_{s-N} \ge ||\widehat{f}||_{\rho D-N \cap \rho D}$. So $||\widehat{f}||_{\rho D} = ||\widehat{f}||_s >$ $||\widehat{f}||_{\rho D-N \cap \rho D}$. Hence it follows that $||\widehat{f}||_{\rho D} = ||\widehat{f}||_{S-\rho} \ge ||\widehat{f}||_{\rho D-N \cap \rho D}$. This is equivalent to $||f||_D = ||f||_{\pi(N \cap \rho D)} > ||f||_{D-\pi(N \cap \rho D)}$. Since $\pi(N \cap \rho D)$ is a trace of a neighborhood of $x = \pi h$ on D and a trace of any neighborhood of x on D can be written as such a form, $x = \pi h$ belongs to a minimal boundary Γ_B . So $\pi \partial_{\widehat{B}} \subset \Gamma_B$. On the other hand, if W is any open set containing $\pi \partial_{\widehat{B}}$, then by the continuity of π , there exists an open set G in S containing $\partial_{\widehat{B}}$ such that $\pi(G) \subseteq W$ and hence $\pi(G \cap \rho D) \subseteq W \cap D$. For any $f \in B$, we have

$$\| f \|_{W \cap D} \geq \| \widehat{f} \|_{G \cap \rho D} = \| \widehat{f} \|_{G \cap \mathfrak{olp} D} = \| \widehat{f} \|_{\partial \widehat{B}} = \| f \|_{D}$$
 .

If follows that $M_f(\pi \partial_{\hat{B}}) = ||f||_D$ for all $f \in B$. Since $\pi \partial_{\hat{B}}$ is closed, it is a *B*-set. Thus $\pi \partial_{\hat{B}}$ is a minimal boundary.

For instance: Let D be the unit open disc in C and let $B(D) = H^{\infty}$. Define a natural continuous mapping π of S into the closed unit disc \overline{D} by $\pi(h) = h(z), h \in S$ and z is the coordinate function. Then the minimal boundary Γ_B is the unit circle and the Šilov boundary $\partial_{\hat{B}}$ on S is a proper closed subset of cl $\rho D - \rho D$ which is totally disconnected. The image of $\partial_{\hat{B}}$ under π is the unit circle.

Next, we have a question that whether a function f with $M_f(\Gamma_B) < \infty$ is bounded.

PROPOSITION 4. Suppose A = A(D) and B = B(D) have the unique minimal boundaries Γ_A and Γ_B respectively. If $\Gamma_A \neq \Gamma_B$ then there exists a function $f \in A$ which is bounded near Γ_B (i.e., $M_f(\Gamma_B) < \infty$), but not in B.

Proof. In general, $\Gamma_A \supset \Gamma_B$. Take $x \in \Gamma_A - \Gamma_B$ and choose a neighborhood U of x in \overline{D} such that $M_f(U) = ||f|| > M_f(\overline{D} - U)$ and $U \cap \Gamma_B = \phi$. Then $M_f(\Gamma_B) < \infty$ but $f \notin B$.

DEFINITION. A point $x \in \overline{D}$ is a frontier point of D for $H \subset A(D)$ if for each compact subset K of D with $x \in K$ there exists $f \in H$ such that $M_f(x) > ||f||_{\kappa}$. Let F_H be the set of all frontier points of D for H. Denote F_A for A(D) and F_B for B(D) respectively.

We introduce a generalized form of a theorem in Bochner and Martin [2] (see Theorem 1, Ch. V) as follows:

PROPOSITION 5. Let X be locally compact, D be a subset of X which is countable at ∞ , and let $\overline{D} - D$ be first countable. Let A = A(D) be a maximum modulus algebra and c.o. complete. Then $x \in F_A$ if and only if there is a function $f \in A$ such that $M_f(x) = \infty$. In fact, there is a single function f such that $M_f(x) = \infty$ for all $x \in F_A$.

Proof. Use the analogous argument as in Bochner and Martin [2].

THEOREM 3. Let X be locally compact, D be countable at ∞ , and $\overline{D} - D$ be first countable. Let A be a maximum modulus algebra and c.o. complete. Suppose Γ_B is a minimal boundary and $F_A = \Gamma_B$ then every function $f \in A$ with $M_f(\Gamma_B) < \infty$ belongs to B.

Proof. Assume that f is unbounded then there exists a sequence $\{x_n\} \subset D$ such that $|f(x_n)| \to \infty$ and $n \to \infty$. Let $x_n \to x$ then by Proposition 5, $x \in F_A$ and so $x \in \Gamma_B$. Thus $\infty = M_f(x) \leq M_f(\Gamma_B) < \infty$, which is absurd. Hence $f \in B$.

We observe that $h \in S(B_s) - S(B_c)$ if and only if for any compact subset K of D there exists $f \in B$ (f may depend on K) such that $|h(f)| > ||f||_{\kappa}$.

THEOREM 4. Let X be locally compact and B separate the points of D. Let F_B be the set of all frontier points for B. If $\rho D = S(B_c)$ then $\overline{D} - D = F_B$.

Proof. Let bdry $S(B_c) = \operatorname{cl} S(B_c) - S(B_c)$. By Proposition 3, $\pi(\operatorname{bdry} S(B_c)) = \operatorname{bdry} D$. Now if $h \in \operatorname{bdry} S(B_c)$, then for any com-

pact subset K of D, there exists $f \in B$ such that $|h(f)| > ||f||_{\kappa}$. We claim $M_f(\pi(h)) > ||f||_{\kappa}$: Suppose $M_f(\pi(h)) = ||f||_{\kappa} = r$, then there exists a net $\{x_n\} \subset D$ such that $||f(x_n)| - r| < 1/n$ as $x_n \to \pi(h)$. So $|f(x_n)| \to r$. Now, let $h_{x_n} \to h$. Since \hat{f} is continuous, $\hat{f}(h_{x_n}) \to \hat{f}(h)$. So $f(x_n) \to h(f)$. In particular, $|f(x_n)| \to |h(f)|$. Then it follows that $|h(f)| = r = ||f||_{\kappa}$. This is absurd. Hence $M_f(\pi(h)) > ||f||_{\kappa}$. So bdry $D = F_{\kappa}$.

Note. If D is a Stein manifold of bounded type then $\rho D = S(B_o)$ (see Kim [3]).

References

1. F. Birtel, Uniform Algebras with Unbounded Functions, Rice studies, (1968), 1-13.

2. S. Bochner and W. Martin, Several Complex Variables, Princeton (1948).

- Kim, Boundedly holomorphic convex domains, (to appear) Pacific J. Math., 45 (1973).
 K. Hoffman, Bounded analytic functions and Gleason parts, Annals of Math., 86 (1967), 74-111.
- 5. F. Quigley, *Generalized Phragmén-Lindelöf Theorems*, Function algebras, the proceedings of the international conference on function algebras at Tulane, edited by F. Birtel (1966), 36-41.

6. ____, Lectures on Several Complex Variables, Tulane Univ., 1963-1966.

7. C. Rickart, Boundary properties of sets relative to function algebras, Studia Math., **31** (1968), 253-261.

8. ____, General Theory of Banach Algebras, Princeton (1960).

Received November 10, 1971.

UNIVERSITY OF FLORIDA