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ASYMPTOTIC RELATIONS BETWEEN PERTURBED
LINEAR SYSTEMS OF ORDINARY

DIFFERENTIAL EQUATIONS

THOMAS G. HALL AM AND NELSON ONUCHIC

A generalization of the concept of asymptotic equivalence
of two systems of ordinary differential equations is investigated.
This extension of asymptotic equivalence is novel in two ways.
First, the dimensions of the linear asymptotic subspaces of
the differential equations are utilized. Secondly, the two
Banach spaces L°° and LΓ> that are implicitly used in the usual
definition of asymptotic equivalence, are replaced by two (arbi-
trary) Banach spaces that are stronger that L(X). The main
theorem establishes a functional asymptotic relationship be-
tween the solutions of two perturbed linear differential equa-
tions that utilizes the above modifications.

Consider the systems of ordinary differential equations

(1) v'

(2) x'

where x and y are vectors in an %-dimensional vector space X, A(t)
is an n x n matrix defined on J — [0, ©o), and fλ{t, y) and f2(t, x) are
^-dimensional vector functions defined on J x X.

The equations (1) and (2) are said to be asymptotically equivalent
if for each bounded solution y — y(t) of (1) there exists a bounded
solution x = x(t) of (2) such that

(3) lim[x(t) -y(t)] = 0;
t—*°°

and, conversely, for each bounded solution x = x(t) of (2) there exists
a bounded solution y = y(t) of (1) such that (3) holds. If two nonlinear
systems are just known to be asymptotically equivalent then very
little information can be obtained about the dimensions of the corres-
ponding asymptotic subspaces of solutions. To remedy this situation,
we formulate in §2, a definition that takes advantage of the dimensions
of certain linear asymptotic manifolds of solutions of equations (1)
and (2). A general Banach space setting for the equivalence is exploited
in this new definition.

The principal tool used in this work is a result of P. Hartman
and N. Onuchic [6] on the asymptotic integration of ordinary differen-
tial equations.

As corollaries to our main theorem, several recent results on the
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asymptotic equivalence of perturbed linear systems are obtained. In
particular, we obtain extensions of results in the articles by F. Brauer
and J. S. W Wong [1] and T. G. Hallam [4]. Applications in new
directions are also given. Results related to this problem that are
found by using the same methods may be found in the papers [8]
and [9] by N. Onuchic.

2* Preliminary material and definitions* In this section we
state definitions, indicate notation, and summarize the results needed
in our development of this problem. Additional details may be found
in [6].

The symbol || || will denote a norm on X. The symbol β = β(J,
R) denotes a Banach space of real-valued functions defined on J with
the norm of ψ e β denoted by l ^ . By B = β(J, X) we represent the
space of measurable functions x — x(t) defined on J with values in X
s u c h t h a t \ \ x ( t ) \ \ e β , a n d w i t h \x{t)\B = \ \\x(t)\\ \β. W e l e t L = L ( J ,
R) denote the space of locally Lebesgue integrable real-valued functions
defined on J, with the topology of convergence in the mean of order
one on bounded subintervals of J, and let L(X) = L(J, X) represent
the space of measurable functions x from J to X such that ||£c(ί))| e
L{J, R). A Banach space B is stronger than L{X) if B is algebraically
contained in L(X) and convergence in B implies convergence in L(X).
Every Banach space of measurable functions from J to X used below
will be tacitly assumed to be stronger than L(X).

The class H = H{R) consists of all Banach spaces β = β(J, R) of
measurable functions from J to R with the four properties

( i ) β is stronger than L{J, R);
(ii) if φ e β, ψ is measurable, and [ ̂ r(t) | <̂  | φ(t) |, then ψ e β and

\ Ψ \ β ^ \Φ\β;
(iii) if hτ is the characteristic function of the interval /, then

hjββ for all intervals I = [0, T], for T> 0;
(iv) β is lean at infinity; that is, if φ e β, then hίQtT}φ —> φ as

Γ->oo.

For example, the spaces LV(J, R), 1 ^ p < °o, are contained in
H(R). The same is true of Lr(J, R), the subspace of L°°(J, R) whose
elements x satisfy the condition ess l i m ^ x(t) = 0. However, L°°(J, R)
itself is not contained in H(R).

Another useful class of Banach spaces in H(R) consists of spaces
β defined in the following manner. Let ψ — ψ(t) > 0 be a measurable
function on J such that ψ and 1/ψ are locally bounded on J. The
space β = Lir,Q(J, R) contains all measurable functions φ = φ(t) such
t h a t φ/ψ£L~(J, R) wi th \φ\β = \Φlf\L~.

We represent by H{X) the class of all Banach spaces B — β(J,
X) where β(J, R) is in H(R).
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( 4 )

( 5 )

In the equations

w'

z' = A{t)z

= A(t)w +

>

b(t),

A(t) is a locally Lebesgue integrable n x n matrix defined on J, and
beL(X).

We assume that the Banach spaces in the sequel consist of meas-
urable functions from J to X unless the contrary is specified. For
such a Banach space D, let XQD denote the set of initial points x(0) e
X of solutions x = x(t) of equation (4) which are in D. Let X1D be
any subspace of X complementary to X0D and P0D the projection of
X onto X0D which annihilates X1D. A pair of Banach spaces (B, D)
is called admissible for A(t) if for every b e B, (5) has at least one
solution w = w(t) in D. A function x — x(t) from [T, oo) to X, T}>
0, is asymptotically in the Banach space B if there is. a function x =
x(t) from J to X which is in B and such that x(t) — x(t) for t ^ T.
Whenever the function x is asymptotically in B and x is also a solution
of a differential equation then we will say that x is an asymptotic
B solution of the differential equation.

Let p and q be integers that satisfy the inequalities 0 ̂  p ^ n,
0 ^ q ̂  n. Equations (1) and (2) are (p, (^-asymptotically related with
respect to the ordered pair {Dlf D2) of Banach spaces if the following
two conditions hold:

( i ) There exists a family Fp of asymptotic Dx solutions of (1)
which depends upon at least p parameters.

(ii) For each solution y = y(t) of (1) in Fp, there corresponds a
family Fq of solutions x = x(t) of (2), which depends upon at least q
parameters, such that y — x is asymptotically in D2 for each x e Fq.

We adopt the convention that a family which depends upon 0
parameters must consist of at least one member.

If the family of all bounded solutions of (1) is a p-parameter
family and the family of all bounded solutions of (2) is a ̂ -parameter
family then the concept of asymptotic equivalence may be formulated
as follows: Equations (1) and (2) are (p, 0)-asymptotically related with
respect to {L°°, LΓ} and equations (2) and (1) are (q, 0)-asymptotically
related with respect to {L°°, L~}.

Let C = C(X) denote the space of continuous functions from J
to X with the compact open topology. Let ΣDtP be the closed ball
of radius p in D and let SDtP = ΣDtP Π C and SD,P be the closure of SD,P

in C(X).
A basic requirement imposed upon the functions / f of (1) and

(2) is
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(6) fiζt, x)(i — 1, 2) is a measurable function of t for fixed
xe X and a continuous function of x for fixed tej.
Furthermore, the continuity of f{ in x is uniform for t
in compact subintervals of J.

The matrix ^L(ί) will always satisfy the condition

(7) A(t) is locally Lebesgue integrable on J .

The next lemma is a consequence of Theorem 1.1 of [6].

LEMMA. Suppose that equation (1) has the following properties.
( i ) Condition (6) is satisfied for the function f1 and condition

(7) is satisfied.
(ii) The Banach space B = β(J, X) is in H{X) and the pair (B,

D) is admissible for A(t).
(iii) There exists a constant p > 0 and a function rp = rp(t) e

β(J, R) such that

(8) \\m,v(t))\\^rp{t)

for all tej and all y e SDyP.
Let ζ0 e X0D. Then, there exist positive constants Co, K depending only
upon A(t), B, D, X1D (but not on fί nor ξ0) such that whenever \\ζQ\\
is sufficiently small and T is sufficiently large so that

then (1) has an asymptotic D solution y = y{t) valid on [T, oo) with
the properties

(iv) PQDZ~ι{T)y{T) = ξ0, where Z{t) is the fundamental matrix of
(4) with Z(0) = In; and

(v) The solution y has an extension y which is valid on J and
is a solution of

( 9 ) V' = A(t)y + hiτ^(t)Ut, V)

such that y(T) = y(T) and \y(t)\D fg p.

Proof. The only hypotheses of Theorem 1.1 of [6] which are
not explicitly given aboven above are the conditions denoted by (b)
and (c) in [6]. For (9), condition (b) states that the transformation

y(t) -/ ( ί , y(t)) = hr-MUt, V(t))

is a continuous map of the subset SD,P of C(X) into B. This is a
consequence of the facts that B e H(X) and fx satisfies conditions (6)
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and (8). To establish this, let ε > 0 be given; then τ >̂ 0 can be
chosen sufficiently large so that \hίτ,oo)(t)rp(t)\β < e/A. By virtue of
(6), there exists a δ = δ(e, τ) > 0 such that if yu y2 eSD,p and ly^t) —
yz{t) I < δ for t e [0, τ] then

Therefore, if y1 and 2/2 are in SD,P with

|A[0,rj(ί)[l/l(ί) ~ V*(t)]\ <8 ,

then

<ε/2 + 2\hίτ,e)(t)rp(t)\β

< e .

This shows that (b) is satisfied.
For (9), condition (c) states that there exists a constant r > 0

such that \fι(t, x(t))\B g r for x(t)eSDtP. This follows by taking
r = \hLτ,oo)rp\β.

Theorem 1.1 of [6] may now be applied to system (9) to establish
the existence of a D solution y — y(t) of (9) which satisfies \y(t)\D ^
p and P0Dy(0) = ξQ. Since Λ(ί, y) - 0 for 0 ^ t < T, it follows that
27(Γ) = Z(T)y(0) and hence

Po^(O) - P,DZ-\T)y{T) = ξQ .

The function y(t) = y(t), t ;> Γ, is an asymptotic D solution such that
PsDZ~λ(T)y{T) = f0. This completes the proof of the lemma.

REMARK 1. If m — dim X0D, this lemma implies the existence of
a family of asymptotic D solutions of (1) which depends at least upon
m parameters.

REMARK 2. Condition (iii) of the Lemma is sometimes difficult
to establish. In the instance where D = L°° or D = LΓ, a simple
sufficient condition for (iii) is that there exists a Xp = Xp(t) in β(J, R)
such that \\f(t, x)\\ ^ Xp(t)(teJ; \\x\\ <ί p). A sufficient condition for
(iii), without specifying D, is that there exists a X = X(t) e β(J, R)
such that | | /( ί , a;) || ^ λ(ί)(ί eJ xeX). Theorem 4 below gives a suf-
ficient condition for inequality (8) to hold whenever B and D are
certain spaces of Lp type.
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3* Asymptotic relations* This section contains our main result
and some applications.

THEOREM 1. Suppose that equations (1) and (2) satisfy the following
conditions.

( i ) Assumptions (6) and (7) hold.
(ii) The space Bt = βζ(J, X) is in H{X) and the pair (Bi9 D^

is admissible, i = 1, 2.
(iii) There exist constants ft > 0 and functions

rPi = rPi(t) e βt(J, R)

such that

(10) \\M

for all teJ and all yeSDvPι; and

(11) |l/a(ί, u(t) + y(t)) - Mt, y(t)) || ^ rPi(t)

for all teJ, all ye SlDtPl, and all u e SD2,P2.
(iv) The dimensions of XQDί and X0Σ,2 are p and q respectively.

Then, under these hypotheses, equations (1) and (2) are (p, q)-asymp-
totically related with respect to {Dl7 D2}.

Proof. The existence of a family Fp of asymptotic A solutions
of (1), which depends upon at least p parameters, is an immediate
consequence of the Lemma. Let y = y(t) be a solution of (9) where
T and yeFp are as given by the Lemma. It follows that \y\Dί^pι.

The change of variable u = x — y(t) leads to the differential
equation

(12) v! = A(t)u + /(«, u) (t ̂  T ue X)

where

(13) f(t, u) = f2(t, u + y(t)) - Mt, y(t)) .

It is convenient to consider equation (12) as

v! - A{t)u + h[T}ΰO)(t)f(t, u) (teJ) .

From (11) it follows that for all ueSD2,P2,

t, u(t))\\ ^ hτ.-)(t)rPtf), (teJ) .

The lemma now implies that there exists a family Fq of asymptotic
D2 solutions of (12) that depends upon at least q parameters. For
each u e Fq, x(t) = u(t) + y(t) is a solution of equation (2); hence, there
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is a family Gg of solutions of (2), which depends at least upon q
parameters, such that x — y is asymptotically in A for each xeGq.
This completes the proof of Theorem 1.

COROLLARY 1. Suppose that conditions (i), (ii), and (iv) of Theorem
1 are satisfied for the spaces Bi — B = β(J, X) e H(X), i = 1, 2. I n
addition, suppose that there exists a λ = λ(£) e/Sί/, i2) ŝ cfe ίfeαί ||/<(ί,
a?) 11 ̂  λ(£) /or αZZ ̂ e j αraZ all xeX,i = 1,2. Tλew, equations (1)
αwd (2) are (p, qyasymptotically related with respect to {A, A} and
equations (2) and (1) are (q, pyasymptotically related with respect to
{A, A}.

Proof. Taking into account Remark 2, we have that (10) is
satisfied with rPi = λ and (11) is satisfied with rPz = 2λ. Since the
hypotheses are symmetric for both the cases i — 1,2, Theorem 1
yields the desired conclusion.

For the particular case in which A = L°° and A = L? we obtain
the following results.

THEOREM 2. Suppose that equations (1) and (2) satisfy the follow-
ing conditions

( i ) Assumption (i) of Theorem 1 holds.
(ii) The function V(t, r) is nonnegative for (t, r) ej x /, nonde-

creasing in r for fixed t, and

(14) WMt, x)\\ ^ V(t, \\x\\), (i = 1, 2;teJ;xeX) .

(iii) The space B = β{J, X) is in H(X); V(t, r) is in β{J, R) for
each fixed r > 0; and, (B, L~) is admissible for A{t).

(iv) The dimensions of X0L~ and X0L~ are p and q respectively.
Then, under these hypotheses, equations (1) and (2) are (p, qyasympto-

related with respect to {L°°, L™}.

Proof. Theorem 2 is a consequence of Theorem 1 provided we
show that the inequality (14) implies that the inequalities (10) and
(11) hold. Let ft > 0 (i = 1, 2) be given. For all y e SL-fPι,

therefore, (10) is satisfied because V(t, ft) is in β(J, R). To see that
(11) holds, we only need observe that for all u e SL~yP2 and all y e SL~,Pl

(t) + y(t)) - Λ(ί, y(t)) || ^ 2V(t, ft + ft) .

As Corollaries to the above theorem, we obtain extensions of
some results of Brauer and Wong [1, Theorem 1] and Hallam [4,
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Theorem 2].

COROLLARY 2. Suppose that equations (1) and (2) satisfy the
following conditions.

( i ) There exist supplementary projections Ply P2 and a constant
K > 0 such that

(

\\Z{t)P2Z-\s) \\^K,0£t^s.

(ii) The function fλ = 0, f2 satisfies (6) and

(16) \\Ut, x)\\ ^ V(t, \\x\\), (teJ xeX)

where V(t, r) satisfies hypothesis (ii) of Theorem 2.

(iii) [°V(t, r)dt < oo for all r > 0 .
Jo

(iv) Assumption (7) and condition (iv) of Theorem 2 hold. Then,
under these hypotheses, the equations (1) and (2) are (p, q)-asymptotically
related with respect to {L°*, L™}.

Proof. It is known [7, p. 331] that if (L\ L°°) is admissible for
A(t) then (L\ L~) is also admissible for A{t). It is also known that
(L\ L°°) is admissible if and only if (15) is satisfied. The corollary
now follows from Theorem 2 with B — L1.

COROLLARY 3 Suppose that the assumptions (ii) and (iv) of
Corollary 2 hold. Suppose that there exist sypplementary projections
Pu P2 and a constant K > 0 such that

p(t) =

(17) + (j J | Z{t)P2Z~\s) \γd8y
τ ^ K ,

(ίe/; 1 < r < oo) .

Let \ [V(t, r)]σdt < oo, for all r > 0, where σ~ι + τ" 1 = 1. Then,
Jo

equations (1) αmZ (2) are (p, q)-asymptotically related with respect to
{L?, L?).

Proof. Conti [2, Theorem 1] has shown that condition (17) is
necessary and sufficient for the pair {L% L°°) to be admissible for
A(t). However, condition (17) is equivalent to the stronger result
that {L°, Lt) is admissible for A(t). To verify this statement, we
note that (17), beLσ, and the Holder inequality imply that
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(18) w(t) = [tZ(t)P1Z-ί(s)b(s)ds - [~ Z{t)P2Z~\s)b{s)ds
JO Jί

is a solution of (5) with | |w(t)| | ^ K\b\L°,teJ.
It will now be shown that l i m ^ w(t) = 0. For a given ε > 0,

2\ = jΓi(s) can be chosen so that

(19) \hΪTl, ^ L * < e/2K .

Since l i m ^ WZtyP^l = 0 (see [4, p 359]), T2 ^ ϊ\ may be chosen so
that

(20) II W i l l < ε/2\Tl\\Z-\s)b(s)\\ds, t^T2.
Jo

Therefore, for t ^ T2 it follows from (19) and (20) that

This shows that the first term of w in (18) tends to zero as t approa-
ches infinity. The last term in (18) also tends to zero as t approaches
infinity since

I [°°Z(t)P2Z~1(s)b(s)ds\ ^ κ(j~\\b(s)\\°dsjίσ .

The corollary now follows from Theorem 2.

REMARK 4. The asymptotic equivalence result analogous to Corol-
lary 2 is Theorem 2 of [4J. It yields an (p, 0)-asymptotic relation
with respect to {Lr, I>Γ} It should be noted that we have taken the
weight functions ψ, φ of [4] as ψ = φ — 1. The proof that (17) implies
(Lσ, Lf) is admissible for A(t) is essentially contained in [4]

We point out that the statement—equations (1) and (2) are (p, q)-
asymptotically related with respect to {D, D)—yields only a natural
correspondence between the solutions of (1) and (2). Namely, that
correspondence given by y — x is asymptotically in D whenever
y G D. This means that x is asymptotically in D; hence, the above
statement says that (1) {(2)} has a family of asymptotic D solutions
depending upon at least p{q} parameters.

The above corollaries extend known results. The next results
are applications of Theorem 1 in a new direction. For this purpose
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consider the Banach space D = LηΠL~, 1 ̂  7} < °°, where xeD implies
xeLv and xeL~ with \x\D = max [|α?U*, |a?U~]; see [7, p . 336]. Later
in the paper we will utilize the Banach space D — Lη Π L°° which is
defined in an analogous manner.

THEOREM 3. Suppose that equations (1) and (2) satisfy the
following conditions.

( i ) Assumption (i) of Theorem 1 holds.
(ii) There exist supplementary projections Piy P 2 αmZ positive

constants a, K such that

\\Z(t)P2Z^(s) \\£K, O^t^s.

(iii) There exists a nonnegative function λ = \{t) measurable on
J such that

(22) \\fi(t,x)\\^X(t) (i = l,2;teJ;xeX) .

and

(23) \~tX(t)dt < oo .

(iv) The dimensions of XOL~, X*L*(r ̂  1)> o,nd XQ,D(D ~ L8 Γ\ L~,
s ^ 1) are p, g, and m respectively.
Then, under these hypotheses, equations (1) and (2) are (pf m)-asymp-
totically related with respect to {L°°, L8 Π L~} and equations (2) and
(1) are (qf m)-asymptotically related with respect to {Lr, L8 Π LΓ}

Proof. Let ^ — ?5(ί) be chosen so that ^ is a positive continuous
function satisfying

tX(t)φ(t)dt < oo
j

and

lim φ{t) — oo .

It will be shown that (Lf,0, L
k Π L£)(k ̂  1) is admissible for A(t)

where ψ = λ^.
If beLψ,0, then w(£), as defined by (18), is a solution of (5) since

(21) implies that there is a positive constant Kt such that

\\Z{t)P2Z~\s)b{s)\\ ̂ K\\b{s)\\ ^ KMs)Φ(s)

where
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\ X(s)φ(s)ds < oo .

Also, from (21), it follows that

(24) II w(ί)|| ^ KX e"a{t~s)X(s)φ(s)ds + K1[\(s)φ(s)ds .
Jo J<

We obtain from (24) that weL~ because

I X(s)φ(s)ds < oo

and

lim e~'at[teas\(s)φ(s)ds = 0
ί-oβ JO

(see [3], Lemma 1)
To see that w = w(t) is also in Lk, kϊ>l9 it is sufficient to show

that w is in L1 since we have established that w e L~. We note that
an integration in (24) leads to

w(r) || dτ ^ KXdτ['e~a{τ~8)X(s)φ(s)ds

+ KΛdτ\ X(s)φ(s)ds .
JO J r

S oo poo j oo

dτ \ X(s)φ(s)ds converges because I tX(t)φ(t)dt converges.
0 Jr J

An integration by parts gives
Γe-αf(Γeαsλ(s)^(s)ώsΊίίr = - a-ίe~at[tea8X(s)φ(s)ds

(26) J° ϋ o J J°
+ α"11 X(s)φ(s)ds .

Jo

The right side of (26) is bounded which implies that the first integral
in the right side of (25) converges as t —» °o. This implies that w e L1.

The corollary follows from Theorem 1 provided that X e Lf,0(J, R);
but, X/ψ = φ-1 and l i m ^ φ"ι{t) = 0 .

REMARK 5. A sufficient condition for (21) is that A be a constant
matrix where all eigenvalues of A with zero real part have linear
elementary divisors.

THEOREM 4. Suppose that equations (1) and (2) satisfy the following
conditions.

( i ) The function fx = 0; f2 satisfies (6); and (7) is satisfied.
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(ii) There exist positive functions a = a(t) and b — b(t) that are
continuous on J and a constant δ > 0 such that

(27) | |/ 2(ί, a) || ^ a(t)\\x\\s + b(t), (teJ xeX) .

(iii) The pair (L% D) is admissible for A{t), where 1 g σ < oo,
and D — Lη Π L°° with σδ ^ r] < oo,

(iv) Tfee function a e La(J, R) where a — 7]σ/(τj — σδ) and the
function b e Lσ(J, R).

(v) Let p = dimX 0 ^ and q = dimX0 I ).
Then, under these hypotheses, equations (1) and (2) are (p, q)-asymp-
totically related with respect to {Lη, D).

Proof. First, we observe that SD>P = SD,P. This equality is evident
if it is shown that x e SD>P implies that x e D and | x \D <; p. If x g D
then either x & Lη or x$ L°°. Since x e SDtP, there exists a sequence
{xn} with α;Λ € SD,P, n = 1, 2, such that {$„} converges uniformly to
x on compact subintervals of J.

Suppose that x £ Lη; then, corresponding to any ε > 0 there is a
T = T(ε) > 0 such that

' > p + ε .

Corresponding to the positive number 1/2 T, there exists an N such
that whenever n ^ AT then || a?Λ(ί) - a?(ί) || < ε/271^, t e [0, T] There-
fore, for n ^ N,

P + ε <

^ p + ε/2 .

This contradiction shows that xeLv. Because \xn\L«> ^ p, it is clear
that x e L°°; hence x e D = Lv Π L°°.

It remains to show that \x\D ^ p. It is immediate that \x\L°° g
/O. The argument given in the above paragraph shows that | x \Lv g
p . T h u s , \x\D ^ p .

For any two functions u, y, (27) implies that

(28) ll/2(£, u(t) + 1/(Q)II ^ ^(0[ii^(0 + ^(Qll]δ + &(Q

Let p1 > 0 and ft > 0 be given; then for u e SD,P2 and y e SLvtPι, we
assert that the right side of (28) is in L°. The Holder inequality and
the fact that D = Lη Π L°° implies that
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Since

u e S D t p 2 a n d y e S L y , P i t h e n \ u \ D <L p2 a n d \y\Lv <; ρ t .

The result now follows from Theorem 1.

REMARK 6. If / 2 satisfies the global Lipschitz condition

;6 X)

where aeLa and /2(ί, 0) e Lσ then / 2 satisfies condition (27) with
fl = 1, a = α(ί), and 6(ί) - /,(ί, 0) .

REMARK 7. A sufficient condition for (Lσ, Lv Π L°°) to be admissible
is that ρ(t) as defined in (17) be in Lη Π L°°. Indeed, for each 6 e L%
the solution w(ί) of (5) defined by (17) satisfies the estimate

\ \ w ( t ) \ \ ^ \ b \ L * p ( t ) ( t e J ) .

(Related as well as supplementary comments on this topic may be
found in [5].) Hence, if p e Lη{J, R) and (17) is satisfied, then (L% L71 Π
Lf) admissible for A(t).
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