ENUMERATION OF UP-DOWN PERMUTATIONS BY NUMBER OF RISES

L. Carlitz

It is well known that $A(n)$, the number of up-down permutations of $\{1,2, \cdots, n\}$ satisfies

$$
\begin{aligned}
& \sum_{n=0}^{\in} A(2 n) \frac{z^{2 n}}{(2 n)!}=\sec z \\
& \sum_{n=0}^{\infty} A(2 n+1) \frac{z^{2 n+1}}{(2 n+1)!}=\tan z
\end{aligned}
$$

In the present paper generating functions are obtained for the number of up-down permutations counting the number of rises among the "peaks".

1. If $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ denotes an arbitrary up-down permutation, then $\left(b_{1}, b_{2}, \cdots, b_{n}\right)$, where

$$
b_{i}=n-a_{i}+1 \quad(i=1,2, \cdots, n)
$$

is a down-up permutation and vice versa.

Figure 1
Thus, for $n>1$, there is a one-to-one correspondence between up-down and down-up permutations so that it suffices to consider the former.

Let $A(n, r)$ denote the number of up-down permutations of $\boldsymbol{Z}_{n}=$ $\{1,2, \cdots, n\}$ with r rises on the top line.

Let $C(n, r)$ denote the number of down-up permutations with r rises on the top line.

A rise is a pair of consecutive elements a, b with $a<b$. Also we agree to count a conventional rise on the left. For example

$$
132546,426153
$$

have 3 and 2 rises, respectively.
It will be instructive first to derive the generating functions for $A(2 n+1)$ and $A(2 n)$. We have $A(1)=1$ and

$$
\begin{equation*}
A(2 n+1)=\sum_{k=0}^{n-1}\binom{2 n}{2 k+1} A(2 k+1) A(2 n-2 k-1) \quad(n>0) \tag{1.1}
\end{equation*}
$$

Hence if we put

$$
F(z)=\sum_{n=0}^{\infty} A(2 n+1) \frac{z^{2 n+1}}{(2 n+1)!}
$$

it follows from (1.1) that

$$
F^{\prime}(z)=1+F^{2}(z) .
$$

Since $F(0)=0$, we get $F(z)=\tan z$.
Next

$$
\begin{equation*}
A(2 n)=\sum_{k=0}^{n-1}\binom{2 n-1}{2 k+1} A(2 k+1) A(2 n-2 k-2), \tag{1.2}
\end{equation*}
$$

where $A(0)=1$. Hence if

$$
G(z)=\sum_{n=0}^{\infty} A(2 n) \frac{z^{2 n}}{(2 n)!},
$$

it follows from (1.2) that

$$
G^{\prime}(z)=F(z) G(z)
$$

Since $G(0)=1$, this gives $G(z)=\sec z$. Thus we have proved that [1], [2, pp. 105-112]

$$
\begin{equation*}
\sum_{n=0}^{\infty} A(n) \frac{z^{n}}{n!}=\sec z+\tan z \tag{1.3}
\end{equation*}
$$

2. Turning next to $A(2 n+1, r)$ we take

$$
A(1,0)=1, A(1, r)=0 \quad(r>0)
$$

Corresponding to (1.1) we have the recurrence
(2.1) $A(2 n+1, r)=\sum_{k=0}^{n-1} \sum_{s=0}^{r}\binom{2 k+1}{2 n} A(2 k+1, s) A^{*}(2 n-2 k-1, r-s)$, where

$$
A^{*}(2 n+1, r)=A(2 n+1, r) \quad(n>0)
$$

but

$$
A^{*}(1,0)=0, A^{*}(1,1)=1
$$

Put

$$
\begin{aligned}
& A_{2 n+1}(x)=\sum_{r} A(2 n+1, r) x^{r}, A_{1}(x)=1 \\
& \quad A_{2 n+1}^{*}(x)=A_{2 n+1}(x) \quad(n>0), A_{1}^{*}(x)=x .
\end{aligned}
$$

Then (2.1) gives

$$
\begin{equation*}
A_{2 n+1}(x)=\sum_{k=0}^{n-1}\binom{2 k+1}{2 n} A_{2 k+1}(x) A_{2 n-2 k-1}^{*}(x) \quad(n>0) \tag{2.2}
\end{equation*}
$$

Hence if

$$
\begin{equation*}
A(z)=A(x, z)=\sum_{n=0}^{\infty} A_{2 n+1}(x) \frac{z^{2 n+1}}{(2 n+1)!}, \tag{2.3}
\end{equation*}
$$

it follows from (2.2) that

$$
\begin{aligned}
A^{\prime}(z) & =\sum_{n=0}^{\infty} A_{2 n+1}(x) \frac{z^{2 n}}{(2 n)!} \\
& =1+\sum_{k=0}^{\infty} A_{2 k+1}(x) \frac{z^{2 k+1}}{(2 k+1)!} \sum_{n=1}^{\infty} A_{2 n-1}^{*}(x) \frac{z^{2 n-1}}{(2 n-1)!},
\end{aligned}
$$

so that

$$
\begin{align*}
A^{\prime}(z) & =1+A(z)(A(z)-(1-x) z) \tag{2.4}\\
& =1-(1-x) z A(z)+A^{2}(z) .
\end{align*}
$$

If we put

$$
A(z)=\frac{1}{U} \frac{d U}{d z}, \frac{d A}{d z}=\frac{1}{U^{2}}\left(\frac{d U}{d z}\right)^{2}-\frac{1}{U} \frac{d^{2} U}{d z^{2}}
$$

(2.4) becomes

$$
\begin{equation*}
\frac{d^{2} U}{d z^{2}}+(1-x) z \frac{d U}{d z}+U=0 \tag{2.5}
\end{equation*}
$$

It is clear that U is an even function of z. We accordingly put

$$
U=\sum_{n=0}^{\infty}(-1)^{n} a_{n}(x) \frac{z^{2 n}}{(2 n)!} \quad\left(a_{0}(x)=1\right)
$$

Substituting in (2.5) we get

$$
-a_{n+1}(x)+2 n(1-x) a_{n}(x)+a_{n}(x)=0
$$

so that

$$
\begin{equation*}
a_{n+1}(x)=(1+2 n(1-x)) a_{n}(x) . \tag{2.6}
\end{equation*}
$$

It follows at once from (2.6) that

$$
a_{n}(x)=\prod_{k=0}^{n-1}(1+2 k(1-x)) .
$$

Hence

$$
\begin{equation*}
U=\sum_{n=0}^{\infty}(-1)^{n} \prod_{k=0}^{n=1}(1+2 k(1-x)) \cdot \frac{z^{2 n}}{(2 n)!}, \tag{2.7}
\end{equation*}
$$

and
(2.8) $\quad A(z)=\frac{\sum_{n=0}^{\infty}(-1)^{n} \prod_{k=0}^{n}(1+2 k(1-x)) \cdot \frac{z^{2 n+1}}{(2 n+1)!}}{\sum_{n=0}^{\infty}(-1)^{n} \prod_{k=0}^{n-1}(1+2 k(1-x)) \cdot \frac{z^{2 n}}{(2 n)!}}$.

The first few coefficients are given by

$$
A_{1}(x)=1, A_{3}(x)=2 x, A_{5}(x)=8 x+8 x^{2}, A_{7}(x)=48 x+176 x^{2}+48 x^{3} .
$$

It follows by induction from

$$
A_{2 n+1}(x)=\sum_{k=1}^{n-2}\binom{2 n+1}{2 k} A_{2 k+1}(x) A_{2 n-2 k-1}(x)+2 n(1+x) A_{2 n-1}(x) \quad(n>1)
$$

that

$$
\begin{equation*}
x^{n+1} A_{2 n+1}\left(\frac{1}{x}\right)=A_{2 n+1}(x) . \tag{2.9}
\end{equation*}
$$

This implies

$$
\begin{equation*}
A(2 n+1, r)=A(2 n+1, n-r+1) \quad(1 \leqq r \leqq n) \tag{2.10}
\end{equation*}
$$

Also, using the fuller notation $A(x, z)$, we have

$$
\begin{equation*}
x^{1 / 2} A\left(\frac{1}{x}, x^{1 / 2} z\right)=(x-1) z+A(z, x) . \tag{2.11}
\end{equation*}
$$

3. Now we consider the case $A(2 n, r)$. We take

$$
A(0,0)=1, A(0, r)=0 \quad(r>0)
$$

Corresponding to (1.2) we have the recurrence

$$
\begin{array}{r}
A(2 n+2, r)=\sum_{k=0}^{n} \sum_{s}\binom{2 n+1}{2 k+1} A(2 k+1, s) A^{*}(2 n-2 k, r-s) \tag{3.1}\\
(n \geqq 0)
\end{array}
$$

where

$$
A^{*}(2 n, r)=A(2 n, r) \quad(n>0)
$$

but

$$
A^{*}(0,0)=0, A^{*}(0,1)=1
$$

Now put

$$
\begin{aligned}
& A_{2 n}(x)=\sum_{r} A(2 n, r) x^{r}, A_{0}(x)=1, \\
& A_{2 n}^{*}(x)=A_{2 n}(x)(n>0), A_{0}^{*}(x)=x
\end{aligned}
$$

Then (3.1) gives

$$
\begin{equation*}
A_{2 n+2}(x)=\sum_{k=0}^{n}\binom{2 n+1}{2 k+1} A_{2 k+1}(x) A_{2 n-2 k}^{*}(x) \quad(n \geqq 0) . \tag{3.2}
\end{equation*}
$$

Hence if

$$
\begin{equation*}
B(z)=B(x, z)=\sum_{n=0}^{\infty} A_{2 n}(x) \frac{z^{2 n}}{(2 n)!}, \tag{3.3}
\end{equation*}
$$

we have

$$
B^{\prime}(z)=A(z)(B(z)-1+x)
$$

Replacing $A(z)$ by U^{\prime} / U, we get

$$
\begin{equation*}
U B^{\prime}+U^{\prime} B=(1-x) U^{\prime} \tag{3.4}
\end{equation*}
$$

Since $B(0)=1, U(0)=1$, it follows from (3.4) that

$$
U B=x+(1-x) U
$$

Therefore

$$
\begin{equation*}
B(z)=1-x+\frac{x}{U} \tag{3.5}
\end{equation*}
$$

The first few coefficients are
$A_{0}(x)=A_{2}(x)=x, A_{4}(x)=3 x+2 x^{2}, A_{6}(x)=15 x+38 x^{2}+8 x^{3}$.
4. We turn now to $C(2 n, r)$. We take

$$
C(0,0)=1, C(0, r)=0 \quad(r>0)
$$

We have the recurrence
(4.1) $\quad C(2 n+2, r)=\sum_{k=0}^{n} \sum_{s}\binom{2 n+1}{2 k} C(2 k, s) A^{*}(2 n-2 k+1, r-s)$,
where $A^{*}(2 k+1, s)$ has the same meaning as in $\S 2$.
Thus, if

$$
C_{2 n}(x)=\sum_{r} C(2 n, r) x^{r}
$$

we get

$$
\begin{equation*}
C_{2 n+2}(x)=\sum_{k=0}^{n}\binom{2 n+1}{2 k} C_{2 k}(x) A_{2 n-2 k+1}^{*}(x) . \tag{4.2}
\end{equation*}
$$

Put

$$
\begin{equation*}
C(z)=C(x, z)=\sum_{n=0}^{\infty} C_{2 n}(x) \frac{z^{2 n}}{(2 n)!} \tag{4.3}
\end{equation*}
$$

Then it follows from (4.2) that

$$
\begin{equation*}
C^{\prime}(z)=C(z)(A(z)-(1-x) z) \tag{4.4}
\end{equation*}
$$

so that

$$
\frac{C^{\prime}(z)}{C(z)}=\frac{U^{\prime}}{U}-(1-x) z
$$

Since $C(0)=1$, this yields

$$
\begin{equation*}
C(z)=\frac{1}{U} e^{-1 / 2(1-x) z^{2}} \tag{4.5}
\end{equation*}
$$

The first few coefficients are

$$
C_{0}(x)=1, C_{2}(x)=x, C_{4}(x)=2 x+3 x^{2}, C_{6}(x)=8 x+38 x^{2}+15 x^{3} .
$$

We shall now show that $U=U(x, z)$ satisfies the functional equation

$$
\begin{equation*}
U\left(\frac{1}{x}, x^{1 / 2} z\right) e^{-1 / 2(1-x) z^{2}}=U(x, z) \tag{4.6}
\end{equation*}
$$

or

$$
\sum_{0}^{\infty}(-1)^{n} a_{n}\left(\frac{1}{x}\right) \frac{x^{n} z^{2 n}}{(2 n)!} \sum_{0}^{\infty}(-1)^{k} \frac{(1-x)^{k} z^{2 k}}{2^{k} \cdot k!}=\sum_{0}^{\infty}(-1)^{n} a_{n}(x) \frac{z^{2 n}}{(2 n)!}
$$

This is equivalent to

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(2 n)!}{(2 k)!(n-k)!}\left(\frac{1-x}{2}\right)^{n-k} a_{k}\left(\frac{1}{x}\right)=a_{n}(x) . \tag{4.7}
\end{equation*}
$$

The left hand side of (4.7) is equal to

$$
\begin{aligned}
& \frac{(2 n)!}{n!}\left(\frac{1-x}{2}\right)^{n} \sum_{k=0}^{n}(-1)^{k} \frac{(-n)_{k}}{k!\left(\frac{1}{2}\right)_{k}}\left(\frac{x}{2(1-x)}\right)^{k} \prod_{j=0}^{k-1}\left(1+2 j\left(1-\frac{1}{x}\right)\right) \\
& \quad=\frac{(2 n)!}{n!}\left(\frac{1-x}{2}\right)^{n} \sum_{k=0}^{n} \frac{(-n)_{k}}{k!\left(\frac{1}{2}\right)_{k}}\left(\frac{x}{2(k-1)}\right)_{k} \\
& \quad=\frac{(2 n)!}{n!}\left(\frac{1-x}{2}\right)^{n} \frac{\left(\frac{1}{2(1-x)}\right)_{n}}{\left(\frac{1}{2}\right)_{n}}=2^{n}(1-x)^{n}\left(\frac{1}{2(1-x)}\right)_{n}=a_{n}(x),
\end{aligned}
$$

by Vandermonde's theorem.
It evidently follows from (3.5), (4.5), and (4.6) that

$$
\begin{equation*}
C_{2 n}(x)=x^{n+1} A_{2 n}\left(\frac{1}{x}\right) \tag{4.8}
\end{equation*}
$$

$$
(n>0)
$$

and therefore

$$
\begin{equation*}
C(2 n, r)=A(2 n, n-r+1) \quad(1 \leqq r \leqq n) \tag{4.9}
\end{equation*}
$$

5. Finally we consider $C(2 n+1, r)$. We now take

$$
C(1,1)=1, C(1, r)=0 \quad(r \neq 1)
$$

We have the recurrence

$$
\begin{equation*}
C(2 n+1, r)=\sum_{k=0}^{n} \sum_{s}\binom{2 n}{2 k} C(2 k) A^{*}(2 n-2 k, r-s) \tag{5.1}
\end{equation*}
$$

Thus, if

$$
C_{2 n+1}(x)=\sum_{r} C(2 n+1, r) x^{r}
$$

it follows that

$$
\begin{equation*}
C_{2 n+1}(x)=\sum_{k=0}^{n}\binom{2 n}{2 k} C_{2 k}(x) A_{2 n-2 k}^{*}(x) \tag{5.2}
\end{equation*}
$$

Put

$$
D(z)=D(x, z)=\sum_{n=0}^{\infty} C_{2 n+1}(x) \frac{z^{2 n+1}}{(2 n+1)!}
$$

Then, by (5.2),

$$
\begin{equation*}
D^{\prime}(z)=C(z)(B(z)-1+x) \tag{5.3}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
D^{\prime}(z) & =\frac{x}{U^{2}(x, z)} e^{-1 / 2(1-x) z^{2}} \\
& =\frac{x}{U(x, z) U\left(x^{-1}, x^{1 / 2} z\right)} \\
& =x C(x, z) C\left(x^{-1}, x^{12} z\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
C_{2 n+1}(x)=\sum_{k=0}^{n}\binom{2 n}{2 k} x^{n-k+1} C_{2 k}(x) C_{2 n-2 k}\left(x^{-1}\right) . \tag{5.4}
\end{equation*}
$$

It follows from (5.4) that

$$
x^{n+2} C_{2 n+1}\left(x^{-1}\right)=C_{2 n+1}(x)
$$

so that

$$
\begin{equation*}
C(2 n+1, r)=C(2 n+1, n-r+2) \quad(1 \leqq r \leqq n+1) \tag{5.5}
\end{equation*}
$$

The first few values of $C_{2 n+1}+(x)$ are given by

$$
\begin{aligned}
C_{1}(x) & =x, C_{3}(x)=x+x^{2}, C_{5}(x)=3 x+10 x^{2}+3 x^{3}, C_{7}(x) \\
& =15 x+121 x^{2}+121 x^{3}+15 x^{4} .
\end{aligned}
$$

Note that $C_{2 n+1}(x)$ is of degree $n+1$.
6. A number of special values can be obtained. It follows first from

$$
A_{2 n+1}(x)=\sum_{k=1}^{n-2}\binom{2 n}{2 k+1} A_{2 k+1}(x)+2 n(1+x) A_{2 n-1}(x) \quad(n>1)
$$

and

$$
x \mid A_{2 k+1}(x) \quad(k>0)
$$

that

$$
A_{2 n+1}^{\prime}(0)=2 n A_{2 n-1}^{\prime}(0)
$$

This yields

$$
\begin{equation*}
A(2 n+1,1)=2 n A(2 n-1,1)=2^{n} n! \tag{6.1}
\end{equation*}
$$

Next, it follows from

$$
A_{2 n+2}(x)=(2 n+1) A_{2 n}(x)+\sum_{k=1}^{n-1}\binom{2 n+1}{2 k+1} A_{2 k+1}(x) A_{2 n-2 k}(x)+x A_{2 n+1}(x)
$$

and

$$
x \mid A_{2 k}(x) \quad(k>0)
$$

that

$$
A_{2 n+2}^{\prime}(0)=(2 n+1) A_{2 n}^{\prime}(0)
$$

This gives

$$
\begin{equation*}
A(2 n, 1)=(2 n-1)(2 n-3) \cdots 3.1 \tag{6.2}
\end{equation*}
$$

It follows from

$$
\begin{aligned}
C_{2 n+2}(x)= & A_{2 n+1}(x)+\sum_{k=1}^{n-1}\binom{2 n+1}{2 k} C_{2 k}(x) A_{2 n-2 k+1}(x) \\
& +(2 n+1) x C_{2 n}(x)
\end{aligned}
$$

and

$$
x \mid C_{2 k}(x) \quad(k>0)
$$

that

$$
C_{2 n+2}^{\prime}(x)=A_{2 n+1}^{\prime}(0) \quad(n>0)
$$

Hence

$$
\begin{equation*}
C(2 n+2,1)=2^{n} n! \tag{6.3}
\end{equation*}
$$

Finally, from

$$
C_{2 n+1}(x)=A_{2 n}(x)+\sum_{k=1}^{n-1}\binom{2 n}{2 k} C_{2 k}(x) A_{2 n-2 k}(x)+x C_{2 n}(x)
$$

and

$$
x \mid C_{2 k+1}(x) \quad(k \geqq 0)
$$

we get

$$
C_{2 n+1}^{\prime}(0)=A_{2 n}^{\prime}(0),
$$

so that

$$
\begin{equation*}
C(2 n+1,1)=(2 n-1)(2 n-3) \cdots 3.1 \tag{6.4}
\end{equation*}
$$

In view of (4.9),

$$
C(2 n, r)=A(2 n, n-r+1) \quad(1 \leqq r \leqq n)
$$

we have also

$$
\begin{equation*}
A(2 n+2, n+1)=2^{n} n! \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
C(2 n, n)=(2 n-1)(2 n-3) \cdots 3.1 \tag{6.6}
\end{equation*}
$$

7. We remark that the differential equation

$$
\begin{equation*}
U^{\prime \prime}+(1-x) z U^{\prime}+U=0 \tag{7.1}
\end{equation*}
$$

has the second solution $W=U V$, where

$$
\begin{equation*}
V^{\prime}=e^{-1 / 2(1-x) z^{2}} U^{-2} \tag{7.2}
\end{equation*}
$$

Thus, by (5.3), we have

$$
D^{\prime}(z)=x V^{\prime}(z)
$$

so that

$$
\begin{equation*}
D(z)=x V(z) \tag{7.3}
\end{equation*}
$$

Since W is an odd function of z we may put

$$
W(z)==\sum_{0}^{\infty}(-1)^{n} b_{n}(x) \frac{z^{2 n+1}}{(2 n+1)!} .
$$

It follows from the differential equation that

$$
b_{n+1}(x)=(1+(2 n+1)(1-x)) b_{n}(x),
$$

so that

$$
\begin{equation*}
b_{n}(x)=\prod_{k=0}^{n-1}(1+(2 k+1)(1-x)) . \tag{7.4}
\end{equation*}
$$

Finally we have

$$
\begin{equation*}
D(z)=x \frac{\sum_{n=0}^{\infty}(-1)^{n} \prod_{k=0}^{n-1}(1+(2 k+1)(1-x)) \cdot \frac{z^{2 n+1}}{(2 n+1)!}}{\sum_{n=0}^{\infty}(-1)^{n} \sum_{k=0}^{n-1}(1+2 k(1-x)) \cdot \frac{z^{2 n}}{(2 n)!}} \tag{7.5}
\end{equation*}
$$

We may, if we prefer, express both U and V as hypergeometric functions of the type ${ }_{1} F_{1}$.

References

1. R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde (3), 14 (1966), 241-246.
2. E. Netto, Lehrbuch der Combinatorik, Teubner, Leipzig and Berlin, 1927.

Received November 17, 1971. Supported in part by NSF grant GP-17031.
DUKe University

