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LEFT EUCLIDEAN RINGS

H. H. BRUNGS

It is easy to expand the definition of a commutative
Euclidean domain to non commutative rings with zero divisors.
Using such a generalized definition it is proved that matrix
rings over Euclidean domains are Euclidean, that left princi-
pal ideal domains with finitely many maximal left ideals only,
which are assumed to be two sided, are Euclidean and that
direct sums of Euclidean rings are Euclidean. It follows
from this that semi simple rings with d.c.c. are Euclidean.

P. Samuel in [10] calls a ring R Euclidean if there exists a map
φ from R into a well ordered set W such that the following property-
is satisfied:

E. For a, b in R, b Φ 0 there exist q and r in R such that
a = qb + r with φ(r) < φ(b).

This definition applies of course to non commutative rings as
well, not only to commutative rings as in [10]. If we want to be
precise we will say R is left Euclidean for φ. It will be assumed
throughout that every ring R has a unit element,

Non commutative Euclidean rings have been considered much
earlier. We have the well known examples by Ore [9] and one knows
that under additional conditions on the function φ Ore's examples
are essentially the only ones; see [3].

P. M. Cohn in [3] generalized the Euclidean algorithm to apply
it to free algebras and transfinite generalizations of the usual Euclidean
algorithm satisfying certain additional conditions where considered
by Jategaonkar in [6J; see [5] for a transfinite generalization of the
weak algorithm.

We will admit rings with zero divisors in this discussion and
show that direct sums of left Euclidean rings and n x n matrix
rings over left Euclidean domains are left Euclidean. From this it
follows that semi simple rings are both left and right Euclidean.
We prove further that a left principal ideal domain with only finitely
many maximal ideals which are assumed to be all two sided is left
Euclidean.

One concludes as in the commutative case that a left Euclidean
ring is a left principal ideal ring. Further it is obvious by con-
sidering examples that a left Euclidean ring is not necessarily right
noetherian and therefore not necessarily right Euclidean.

We list some results which carry over immediately from [10].
If R is left Euclidean, b Φ 0 in R then φ(b) > φ(0). Let R be any
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ring. We define:
Ro — {0} and Ra by transfinite induction as follows:

R« = U Rβ and Ra is the union of {0}
β<a

and the set of all elements b in R such that Rά—>R/Rb is an onto
mapping.

It is clear that if R is left Euclidean there will be an ordinal a
such that Ra = R.

If on the other hand R is reached by some Ra in the above
construction one can define a left algorithm ψ by setting

ψ(r) = β for r e Jfy/iî , .

This smallest algorithm will satisfy the following properties:
(1) ψ(x) = 0 ϋ x = 0
(2) ψ>(α?) = l iϊα? has a left inverse in jβ.
(3) α/r(αδ) ^ ψ(b) for α& ̂  0
(4) ψ(α) = inf f(b) for 6 ^ 0 in Ra Φ 0.

We will apply the above criterium to prove the following:

THEOREM 1. The ring Rnxn of n x n matrices over a left Euclid-
ean domain R is a left Euclidean ring.

Let R be a left Euclidean domain for φ. We may assume that
Φ satisfies the properties 1 — 4 listed above. Every left ideal in Rnxn

is a left principal ideal and is generated by an element M of the
following standard form: Only the first k rows of M are nonzero.
Let ric. be the first nonzero element in the ί th row for i = 1, ••, k.
Then we have 1 ^ cx < c2 < < ck ^ n, and the columns to the
left of the cxst column are zero, a column between the c^th and ci+1th
column has the last n — i elements equal to zero and the columns
to the right of the cfcth column have the last n — k elements equal to
zero.

The elements rjc. are zero for j > i and φ(rje.) < φ(rie.) for j < i.
If for a matrix N in Rnxn the left principal ideal generated by N is
generated by a matrix M in standard form as described above then
we will say NeArc ••• Tck with rie. = rCί; Ao = {zero matrix}.

The integers &, cx, , cfc are uniquely determined by the left
ideal I of Rnxn and the elements ric. are uniquely determined up to
units in R as left factors. One sees this when one recalls the proof
of the fact that Rnxn is a left principal ideal ring. Every left ideal
in / is generated by a matrix B in which the first i — 1 elements in
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the ith row are zero, and the element in the ii—position is a gen-
erator of the left ideal in R consisting of the elements appearing in
the ith column of matrices of I with zero ith column for j < i. If
this element is zero the whole row can be chosen to be zero. Inter-
changing rows leads then to the matrix in standard form as described
above.

We now order the sets Arc. rcfc, and we say that Aat atk is
earlier then Ahι bsk if either

( i ) h > k or
(ii) h = k and tt = slf , £< = sif but ίί+1 < s<+1 or
(iii) Λ = k, U = s< for i = 1, . . -, k, φ(at) = Φ(b8), , φ(at) = φ(bH),

but φ(au+ι) < Φ(b.i+ι).
To prove now that Rnxn is left Euclidean it is sufficient that for a
in ϋJΛXΛ, 0 ^ beRnxn an element g in i?%x?ι exists such that a — qb is
in a set Arci rβJfe which is earlier then the corresponding set of b.
This will guarantee that the transfinite construction described above
reaches eventually the ring Rnxn.

We denote by Rn the free R left module of rank n. If B is an
element in Rn and 1 ^ m ^ n we denote with Bm the element in i2w

whose components |are the first m components of B. As usual, we
will say that Au ••',AteRn are linearly independent if Σ ^ 4 ί = 0
implies r< = 0 for all i and rt elements in R.

We need a Lemma before we can prove the theorem.

LEMMA. Assume three sets {Bl9 , Bs}, {Ml9 , Mk}, {Al9 , Ak}
of elements in Rn are given such that {Blf , Bs, Mu * ,Mk} is a
linearly independent set. Then there exist eό = 0 or 1 for j —
1, 2, , & ŝ cΛ, ί/̂ αί {J5χ, , J5S, £ s + i , , Ss+fc} is linearly independent
for Bs+j = Ay + 6yΛfΛi.

Assume for a proof that ft, , Bs, Bs+1, , 5 s + i are constructed
and linearly independent for some 0 ^ j < k. If {ft, , Bs+j, Aj+1}
is a linearly independent set, let εJ+1 = 0 and Bs+3 +L — Aj+ι. Other-
wise we conclude that the rank of the left i2-module N generated by
ft, ••, Bs, Bs+1, ••, Bs+j, Aj+ί is equal to s + j . If we assume for
every i— 1, *••,& that elements r'j+ui Φ 0 and rtΛ in R exist for
t — 1, , s + j such that

then we conclude that the module iV contains a free submodule of
rank s + ά > s + j = rank JV generated by ft, , ft,
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with v Φ 0, a left common multiple of the r'j+lti for i = 1, •••,&.
This is impossible (as follows from earlier remarks or see [3]) and
proves the Lemma.

We are now ready to prove the theorem.

Let a be any matrix in Rnxn, b a nonzero matrix in Ar

Then there exists a matrix qr in Rnxn such that a — q'b = r ' is a
matrix in whose c^th column only elements with Rvalue smaller than
Φ(rH) appear. We may assume that b is already in standard form,
and we will show that by adding suitable rows of the matrix δ to
rows of r ' the resulting matrix appears in some earlier set A, ,
than δ.

The following can happen:

(a) r ' is the zero matrix and we are finished.

(b) The first nonzero column of r ' is not one of the cΓcolumns,
i — 1, •••, k. Then let Bx be a row of r ' with a nonzero element in
the first nonzero column of r\

Let Mu '",Mk be the rows of b and let Au •••, A* be any k
rows of r ' different from J5X. Then we can apply the lemma and
we obtain a matrix

r ' - q"b = r

which has rank at least k + 1.
(c) The first nonzero column of rr is the c^th column for some

1 ^ i <; k. Choose B^ as any row of r' with a nonzero element y in
the Cith spot. Let A2, , At be any i — 1 rows of r ' different from
5X and let Ml9 , ilί^i be the first i — 1 rows of 6. Set

£ e + 1 = Ae+ι + ikfe

for e = 1, , i — 1 to obtain a linearly independent set

We distinguish now two subcases:
( i ) ci+1 = c4 + 1, , c ί + e = c4 + e, but c ί + e + 1 > c< + e + 1.

We consider B?, , β^, M ^ , , Λfί+e, i.e. elements in Rw for n; =
Ci + e, where Λfy is the i t h row of δ.

Choose any β rows of r ' different from 5 ^ A2, , At and obtain
by the lemma Bl9 , j ^ , J?ί+1, , .Bi+e such that {β^, , B<+β} is a
linearly independent set.
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( i i ) Ci + 1 < c i + 1, c i + 2 = ci+1 + 1, , ci+h = ci+ι + h - 1, b u t

c ί + Λ + 1 > c i + ι + h.

In this case consider Bf, •••, B"f M"+l9 •••, Mi+h as in (i) b u t for

w = ci+k. Choose any h rows of r ' different from Bl9 A2, •••, i4< and

obtain by t h e lemma B^ , JS ,̂ l? ί + 1, , Bi+h such t h a t

is a linearly independent set
Repeating step c, (ii) we can build a matrix r with

r = r' - g"6

which is contained in an earlier set ASn Sn than 6. This proves
the theorem.

COROLLARY. If R is a division ring then Rnxn is left (and right)
Euclidean with φ(M) = n-rank (M) + 1 if Mφ 0 and (̂0) = 0.

The proof of the next result carries over from [10], Prop. 6 to
the non commutative case:

THEOREM 2. The direct sum of finitely many left Euclidean
rings is left Euclidean.

We obtain with the corollary to Theorem 1:

COROLLARY. A semi simple ring R is left (and right) Euclidean.

Finally, we prove a non commutative version of Prop. 5 in [10].

THEOREM 3. A left principal ideal domain R with only finitely
many maximal left ideals which are assumed to be two sided is left
Euclidean.

In order to prove this theorem we have to recall certain results
from Chapter III in [8].

Let R be a ring satisfying the conditions of Theorem 3. The
prime ideals of R contained in one of the maximal ideals Mi are the
transίinite powers Mf. If for a prime ideal 0 Φ P = Mf> then a
is uniquenly determined. We say P has Λf4 weight a and we say P
has weight a if a is maximal among the Mrweights.

Using the fact that two prime ideals Px and P2 with Px §£ P2 §£ Px
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commute and that PiP[ = P2' for prime ideals P2' S= PI one can write
every non unit a Φ 0 in R as a product of prime elements, i.e.
elements that generate prime ideals Φ (0), Φ R, in a certain standard
way; or in Jategaonkar's language:

a = px pn such that (pl9 , pn)

is an admissable set of prime elements.

Such a factorization is unique up to permissible rearrangements
and associates. R is left Euclidean for φ defined by

φ(a) = ωCCίm1 + + ωakmk

where m̂  is the number of primes of weight αf in a standard facto-
rization of α; ̂ (unit) = 0, (̂0) = — 1.

To prove this consider any two elements a, b Φ 0 in R. If

Ra + Rb = R ,

no common prime appears in any standard factorization of a and 6.

Assume {ilί/} = {M,; a e M4}; {M'/} = {Λfy; 6 e ilί,} and let pu , pk

be generators of the maximal prime ideals different from all Ml and
all Λf". We conclude that α — p1 pΛ6 is a unit and we are done.
(We excluded the trivial cases a = 0 or 6 a unit.)

If now Ra + Rb = Rd — Rb we are finished again and only the
case Ra + Rb — Rd 3 ^δ remains.

Then a = α^, δ = M and there exists # in R and a unit u such
that

#! = qbt + w; it follows that a = qb + ud and ^(^d) <

This last inequality is true since φ(pd) > φ(a) for any prime element
p in R.

A special class of rings which satisfy the conditions of Theorem
3 are the non commutative KruU domains with finitely many defining
overrings only. For examples see [2], and for examples of local
rings in which primes of arbitrary weight appear see [6].

It follows further from the results in [1] that rings in which
all left ideals are inversely well ordered by inclusion are left Euclidean
rings. This expands at least for the local case the result in Theorem
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3 to certain rings with zero divisors.
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