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ON THE REST POINTS OF A NONLINEAR
NONEXPANSIVE SEMIGROUP

CHI-LIN YEN

Let X be a reflexive Banach space and T a nonlinear
nonexpansive semigroup on X. The results which we shall
prove are the following:

THEOREM 1. Suppose that for any closed convex set M
with the property that T(t)M g M for all t > 0, M contains
a precompact orbit. Then T has a rest point. Moreover,
the set of all rest points of T is connected.

THEOREM 2. Suppose that X is strictly convex and T
has a bounded orbit. If there is an unbounded increasing
sequence {Ui} of positive numbers and point x such that
limί_>oo T(ui)x exists then T has a rest point. Moreover, if
{U} is an unbounded increasing sequence of positive numbers
such that

1 [i

y — w — lim — \ T(t)x dt

exists, then y e F.

Let X be a Banach space. By a nonlinear nonexpansive strongly
continuous semigroup T on X (or briefly, a semigroup T on X) we
mean that T is a mapping from [0, oo) x X into X such that

( i ) for any x e X, tL > 0, and t2 > 0, T(t,) T(t2)x = T(tL + t2)x;
(ii) for any x e X, lim^0+ T(t)x = T(0)x = x;
(iii) for any x e X, y e X, and t > 0, [ T(t)x - T(t)y \ < [ x - y |.
Throughout this paper Γ will denote a semigroup on X. We

shall give some definitions as follows:
(1) For x G X the orbit of x is the set Ox = {T(t)x; t ;> 0}
(2) .F = {x; T(t)x = x for all t > 0}, and iίxeF then a? is called

a rest point of T.
(3) P = {a; there is t0 > 0 such that T(£0)α; = a?}.
(4) A = {x; Ox is precompact}.
(5) L — {x; there is a sequence {U} of positive numbers such

that ti ί co and lim^^ T{t^x exists}.
Clearly, L 3 4 3 P 3 F , Moreover, if F Φ φ then Ox is bounded

for all xe X. The question arises "Is the converse true?" M. Crandall
and A. Pazy [2] give an affirmative answer, when X is a Hubert
space. However, the converse is not true in general (see R. Martin
[4]). In this paper some sufficient conditions will be given such that
F Φ φ.
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Our main results are the following:

THEOREM 1. Let X be a reflexive Banach space. Suppose that
for any closed convex set M with the property that T(t)M £ M for
all t > 0, M f] A Φ φ. Then F Φ φ. Moreover, F is connected.

THEOREM 2. Let X be a srictly convex reflexive Banach space.
If T has a bounded orbit and L Φ φ, then F Φ φ. Moreover, if

T(t)xdt for some xeX, then yeF.
o

As an application of Theorem 1 one can verify that if X is a
reflexive Banach space and T has a bounded orbit, then F Φ φ
provided that either of the following holds: (i) there is a t0 > 0 such
that T(t0) is weakly continuous function on X or (ii) X has the
property that every m-dissipative Lipschitz continuous function on
X is demiclosed (/ is demiclosed if xn—+xQ strongly then yo=fxo).
It is known that if X is a uniformly convex space, the condition (ii)
is fulfilled, (see F. Browder [1]).

As an application of Theorem 2 one can verify that if X is a
strictly convex, reflexive Banach spach and A Φ φ then F Φ φ. Fur-
thermore, if xe A then for some unbounded increasing sequence

{ίj of positive numbers liπ^ ._>„ 1/^ I % T(u)xdu exists and is an ele-
x Jo

ment of F. This result generalizes that of D. Rutedge [5] in which
X is a Hubert space and P Φ φ.

We need two known lemmas to prove our theorems and we state
them below without proof. Lemma 1 was put in the present form
by M. Crandall and A. Pazy [2] and Lemma 2 due to R. de Marr [3].

LEMMA 1. Let xeX such that | T(t)x | < M for all t > 0. Then
K = Ur>o Πί>r {y> I y — T(t)x | < | x \ + M) is a nonempty convex sub-
set of X such that T(t)K S K for all t ^ 0.

LEMMA 2. (R. de Marr). Let C be a compact subset of X such
that r = diam C > 0. Then there is an xQ e clco C and a positive
number rx < r such that \ y — x0 \ < rx whenever y eC.

We will use the following two lemmas and the above twe lemmas
to prove Theorem 1.

LEMMA 3. Let M be a closed subset of X such that T(t)M Q M
for αii ί > 0. If M Π A Φ φ, then there is a compact subset C of M
such that T(t)C = C.
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Proof. Let x e M Π A. Then Ox is a compact subset of M and
i)O* S TOQO* whenever ^ > ί2 > 0. Hence C - Π^o Γ(ί)Ox is a

nonempty compact subset of M. Furthermore, T(t)C — C for all
t > 0.

LEMMA 4. Lei a?0, xλeX and X e [0,1].

ilίj = {2/ e X; I £0 - 2/1 = λ | xι ~ x0|, | ^ - # | = (1 - λ) | xt - x01}

is a nonempty closed convex bounded subset of X. Moreover, if
Xo, x,eF then T(t)Mλ S Mλ.

Proof.

Mλ = {yeX; \xo-y\ < λ ] x o - ^ i | } n feel; | α?i—2/1 < (1-λ) |α?0-a?i|}

contains \xλ + (1 — X)x0. Thus Mλ is a nonempty closed convex bound-
ed subset of X.

Since T(t)Xi = xζ for all t > 0, i = 0, 1 thus for any ?/ e ikί;>,

I α;0 - T(t)y \ - | Γ(t)a? 0 - T(t)y \^\\xo-Xi\

a n d

I xQ - T(t)y I = I T(t)x, - T(t)y \ < (1 - λ) | x0 - ^ | ,

that is, T(t)yeMλ.

Now we prove Theorem 1.

Proo/ o/ Theorem 1. By Lemma 1 there is a nonempty closed
bounded convex set M such that Γ ( ί ) I g Λf. Let {Λfα} be a chain
of subset of M such that

( i ) Ma is a nonempty closed bounded convex set satisfying
T(t)Ma S Λfβ for all a.

(ii) ikία S Mβ if α > /S.
Since Ma is weak-compact, thus Γ\a Ma Φ φ. Further,

T(t)(Π Ma) ̂  Π Ma .
a a I

t

By Zorn's lemma there is a maximal element, say Mo, in the collec-
tion J?~~ {Mi; M1 is a nonempty closed bounded convex subset of M
such that T{t)M1 S Mx}. We want to show that Mo contains exactly
one point. Suppose not. By hypothesis, Mo Π A contains at least
one point, say x. By Lemma 3 there is a compact subset C of Mo

such that T(t)C = C By Lemma 2 there is a point £0 G clco C S Λf0
such that 12/ — α?01 < n < r = diam C for all y eC. Consider the set
M' = Γ\yec {z e Mo; \ z - y\ < r j .
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We see that M' is a nonempty closed bounded convex subset of
Mo such that T(t)MSs M. Since r = diam C and C is compact, thus
there are xl9 x2eC such that | xx — x2 \ = r. By the definition of M' and
the fact that τλ < r, we have xt $ M' for i — 1, 2. Thus ΛF =£ M"o
and the maximality of Mo is contradicted. Thus MQ must contain
exactly one point which lies in F. This shows that if M is a closed
convex set satisfying T(t)M^ M for all t > 0 then Λf n F ^ $*.

Next we want to show that F is connected. Suppose not. Then
there are two disjoint closed subsets A and B of X such that
4 U 5 3 F , AΓiFφ φ and ΰ ί l ί 7 ^ ^ . Let A' = Af)F and B' = BnF.
Since F is closed thus A' and Bf are closed. For ^eA ' , D(xu Br) =
inf {| a?,. — ?/1; ̂ /eB'} — k > 0. Thus, there is a yγ^Bf such that
I #i — !/i I < 5/4 K. It follows from Lemma 4 and the above paragraph
there is zι e M1 = {z e X; | z — x1 \ = \ z — yx \ = 1/2 | ^ — y11} such that
«! 6 ί7 = A' U 5'. Since | ^ - α?x | = 1/2 | x1 - y, \ < 5/8 K, z1 e A!. Let
x2 = J?I Then there is a yx^Bf such that

I x2 - y21 s

Similarly, there is x3 e M2 = {z e X; \ z — x2 | = | z — y21 = 1/2 | x2 — y21}
such that #3 6 JF\ By the same argument we have x3 6 A!. We assume
we have chosen x%+ιeMn = {zeX; \z — xn\ = \z — yn\ = 1/2 | α?Λ — 2/n |}
and xn+1eA' and yneB' such that

for all n < fc — 1 where A: > 3. We can choose yk, xk+1 as follows:
Since D(xkf Br) <t\xk — yk-i\, there is a ykzBf such that

I % - y k I < Min { - | D(xk, B'), \ xk - yk_x

and let α;fc+1 e A' such that

%+1 eMk = heX; \z - xk\ = \z - yk \ = — \ xk - yk

Note that

1 / 1 \n

Iχ»+ι - yn+iI < IXn+i - y n \ = —\%n - y n \ < -•• < y j

a n d
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x
n+ι

- aj. I = I x,+ι -y.\< (jj (~ K) .

Thus, {xn} is a Cauchy sequence and so {xn} converges to some point,
say x0 in A!. Also D(xn+1, B') ^ \ xn+1 - yn+ι \ < (1/2)* ((5/4)10-0,
so D(xι, B') = 0. Since Bf is closed x^eB'. This is a contradiction
to φ = AΓ) BBX0. Therefore, F is connected.

In order to prove Theorem 2 we need the following lemmas.

LEMMA 5. If xoe X such that x0 = l i m ^ T(tt)x for some xe X
and some unbounded increasing sequence {ίj of positive numbers,
then there is an unbounded increasing sequence {sj of positive
numbers, such that

lim T(s^xQ — x0 .
1-+OO

Indication of proof. By an inductive process, for each i, choose
ni+1 such that tn.+1 — ti+1 > 1 + tn. — ti9 i = 1, 2, 3, and nt = 1.
Let S{ = ίΛί — ti. Then,

- x01 + 2 I Γ(ίt.)a; - x0 \

- I !Γ(ίΛ.)α? - Xo I + 2 I 2X )̂0? - x01 > 0 as i -

T h a t is, lim^oo T(s^a;o = ô

LEMMA 6. Lei X be a strictly convex Banach space. If

lim

for some increasing unbounded sequence {sj of positive numbers, then

for any n, any Xl9 * ,λ n such that λ< > 0, Σ ? - i λ ί ~ l α ^ α ^

(1) Γ(t)(ΣλiflJί) = Σ λίΓίί)^ for all ί > 0 .

Indication of proof. Clearly, (1) is true for the case n = 1.
Using inductive argument we may assume that (1) holds for all n < k
where k > 1. We shall show that (1) holds for the case n = k + 1,
that is, for any λ<, λ* ̂  1, Σ i i 1 ^ = h and any a?lf •••, xk+1 in 0^,

( Ίe+l \ k + l

Let ί/ = Σ f i 1 λi^, 2 = (1 - λO"1 Σ i i 1 λ,^. Then y = λ ^ + (1 - \^z,
and
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( 2 ) I T(t)y - T { t ) X l \ < \ y - X l \ , \ T(t)y - T(t)z\ < \ y - z \

for all ί > 0

(3) [ T{t)x, - T(t)z I < I T(t)y - T{t)x, \ + | T(t)y - T(t)z \

Since | T(ti)xL — T(U)z\ J \xί — z\ as i—» ©o, thus we have

I T ( % - T{t)x, I + I T(t)y - T(t)z | - | T(t)x, - T(t)z \ .

By the strict convexity of X, (2) and (3) we have that

T(t)y = XιT(t)x1 + (1 - XdT(t)z .

By the inductive hypothesis,

T(t)y =
ί

LEMMA 7. Lei a?0> -X" be as in Lemma 6. If there is an un-
bouded increasing sequence {ut} of positive numbers such that

y =
1 Cu%

lim — I T(t)x0dt, then yeF.
**-<» Ui Jo

Proof. Let

For ε > 0, r > 0 fixed, there is an N > 0 such that if M > | Γ(t)a?0

for all ί > 0,

= — P Γ(ί)a?o dt .
^ Jo

ΓM < A whenever i^ N .
^ 3

It follows from Lemma 6 that

T(r)Vi - A Γ(ί)a?0 d* = !/* + - ( -
% Jf ^ VJ«i Jo

Thus I T(r)yi - Vi\ < 2ε/3 for all i > JV. Since y = w - l i m ^ ^ ,

there exists a fc > 0, λt, λ2, •••, Xk > 0 such that Σ Uλ; == 1 and

I y - Σ k i λί^+Λ

T(r)y -y\<

< ε/6. Hence,

k

k

Σ \(T(t y — Σ \y*+N-i

2ε/6 + 2ε/3 = ε .
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Since ε and r are arbitrary positive numbers, thus yeF.

LEMMA 8. Let {U} be an unbounded increasing sequence of positive
numbers and x in X. If T has a bounded orbit and

x0 = lim T(ti)x y

then

lim— Γ (T(t)x - T(t)xo)dt = 0 .
U-*oo U JO

Proof, For e > 0 be given there is an positive integer n such
that

I T(t{)x — xQ I < ε for all i > n .

Let u be any positive number great than tn. Then

— \U(T(t)x - T(t)xo)dt < — [U~tn\ T(t)T(Qx - T(t)xQ\dt
U Jo U Jo

+ — Γ* I T(t)x \dt + — [* I T(t)x01 dt
U Jo U Jw-ίw

U

±(\tn\T(t)x\dt+[ I
U \Jo J«-*Λ

Since orbits are bounded the last term in above inequality will tend
to 0 as u —• oo. Hence, we prove the assertion.

Proof of Theorem 2. By Lemma 5, Lemma 7 and reflexivity of
X, there is an increasing unbounded sequence {%J of positive numbers
such that

w - l i m — fU %T(t)x0dt- l i m — fU%T(t)x
*-><*> Ui Jo

exists and is in ί7, where xQ = lim^^ T(t^)x. Also, it follows from
Lemma 8

lim — [*% (T(t)x - T(t)x0) dt = 0 .

Thus,

- lim — fU% T(t)x dt = w - lim — f ** T(t)xQ dt is in F .
*-« Us Jo t-oβ Ui Jo

W
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