COCYCLES WITH RANGE $\{\pm 1\}$

KEITH YALE

Let Γ be a subgroup of the real line with the discrete topology and suppose Γ has at least two rationally independent elements. A nontrivial cocycle D whose range $\{\pm 1\}$ consists only of the numbers +1 and -1 is constructed on the dual G of Γ using properties of local projective representations.

Cocycles play an important role in harmonic analysis on G and three apparently quite different methods for constructing nontrivial cocycles are known: Helson and Lowdenslager [5] (and extended by Helson and Kahane [4]), Gamelin [2] and the author [7]. In answer to a question raised by Helson [3] Gamelin constructed a nontrivial cocycle with range $\{\pm 1\}$. In this paper we provide a different construction of cocycles with range $\{\pm 1\}$ based upon the method introduced in [7].

2. Preliminaries. We will briefly recall a few definitions and will summarize the main idea of [7] to which we refer the reader for further properties of cocycles and projective cocycles.

For the problem at hand it is sufficient to let G be the 2-dimensional torus T^2 realized as the square $[-\pi, \pi] \times [-\pi, \pi]$ with opposite edges identified ([7], p. 559). The open neighborhood $(-\pi, \pi) \times (-\pi, \pi)$ of the identity in T^2 is denoted by \mathscr{N} and $\Lambda = \{e_t \mid t \in \text{Reals}\}$ is the continuous dense one-parameter subgroup of T^2 formed by the winding line of irrational slope passing through the identity of T^2 . A (Borel) function φ on T^2 is said to be unitary in case $\varphi(x)$ has modulus one a.e. (x) (with respect to Haar measure on T^2). For unitary functions φ and ψ we write $\varphi(\cdot) = \psi(\cdot)$ to mean $\varphi(x) = \psi(x)$ a.e. (x).

It is convenient to view a cocycle A as a family of unitary functions $A(e_t, \cdot), e_t \in \Lambda$, which satisfy the identity

(2.1)
$$A(e_t + e_u, \cdot) = A(e_t, \cdot)A(e_u, \cdot - e_t)$$

in addition to a continuity condition which need not be stated here. If $A(e_t, \cdot)$ is a constant unitary function for each $e_t \in A$ we say that A is a constant cocycle; necessarily A is of the form $A(e_t, \cdot) = \exp i\lambda t$ for some real number λ . Cocycles of the form $A(e_t, \cdot) = \varphi(\cdot)\overline{\varphi}(\cdot - e_t)$ for some unitary function φ are called coboundaries. We say that a cocycle A is nontrivial if A is not the product of a constant cocycle and a coboundary. We now turn to the main idea of [7]. Given a local projective multiplier ω a projective cocycle A_{ω} was formed and this induced a cocycle A related to A_{ω} by

(2.2)
$$A(e_t, \cdot) = q(e_t)A_{\omega}(e_t, \cdot)$$

for some continuous function q on a segment Λ_0 of Λ containing the identity. Moreover, A is unique up to a constant cocycle factor and if the multiplier ω is nontrivial then the cocycle A is nontrivial; this last assertion relies heavily upon the continuity of ω .

Bargmann [1] showed that T^2 has two inequivalent local projective multipliers. We can let ω be the continuous (on $\mathcal{N} \times \mathcal{N}$) nontrivial multiplier so that the cocycle A given by (2.2) is nontrivial.

The idea of this paper is to observe that the continuous multiplier ω^2 must be equivalent to the trivial multiplier 1 and upon taking square roots properly one finds that ω is equivalent to a nontrivial multiplier d with range $\{\pm 1\}$. Now d, though not continuous, is measurable and this essentially allows us to construct a measurable projective cocycle A_d with range $\{\pm 1\}$. Although a cocycle, qA_d , can be induced by A_d it need not have the desired range and it would be somewhat difficult to prove qA_d is nontrivial by the techniques of [7] since d is not continuous.

Fortunately, as is shown in §4, a simple modification of A_d produces a nontrivial cocycle D with range $\{\pm 1\}$. In fact D is actually induced by A_d but not by the general construction of [7].

Since [7] dealt exclusively with continuous multipliers we will indicate those modifications necessary for constructing the measurable multiplier d and its associated projective cocycle. We attend to these matters in § 3 reserving § 4 for the actual construction of D.

3. Measurable projective multipliers d with range $\{\pm 1\}$ are familiar in the theory of group representations and we will only sketch a construction (Cf. Mackey [6], p. 154).

As mentioned in the preceding section T^2 has only one (up to equivalence) nontrivial continuous local projective multiplier ω defined on $\mathcal{N} \times \mathcal{N}$. It follows that the continuous multiplier ω^2 is either equivalent to ω or is trivial. If ω^2 were equivalent to ω then ω itself would be trivial and so we must assume ω^2 is trivial, i.e.,

(3.1)
$$\omega^{2}(x, y)(\bar{s}(x)\bar{s}(y)s(x + y)) = 1$$

for some continuous function s of modulus one on \mathcal{N} and for all $x, y \in \mathcal{N}$ such that $x + y \in \mathcal{N}$.

Now let p be a measurable square root of s on \mathcal{N} and define d by

(3.2)
$$d(x, y) = \omega(x, y)(\overline{p}(x)\overline{p}(y)p(x+y))$$

for all $x, y \in \mathcal{N}$ such that $x + y \in \mathcal{N}$. Clearly d is a local projective multiplier with domain $1/2\mathcal{N} \times 1/2\mathcal{N}$, say, and with range $\{\pm 1\}$.

Actually, our interest lies with the unitary function

(3.3)
$$d(e_t, \cdot) = \omega(e_t, \cdot)(\overline{p}(e_t)\overline{p}(\cdot)p(e_t + \cdot))$$

defined for each $e_t \in \Lambda \cap \mathcal{N}$. Notice that $d(e_t, \cdot)$ has essential range $\{\pm 1\}$.

For each $x \in \mathcal{N}$, $A_{\omega}(x, y) = \omega(x, y - x)$ defines a unitary function $A_{\omega}(x, \cdot)$ since ω is continuous on $\mathcal{N} \times \mathcal{N}([7], p. 563)$. If d were continuous then $A_d(x, y) = d(x, y - x)$ formally defines a projective cocycle which satisfies

$$(3.4) A_w(x, y)\overline{A}_d(x, y) = p(x)B(x, y)$$

where $B(x, y) = \overline{p}(y)p(y - x)$ ([7], p, 562).

However, for our purposes, we need not define $A_d(x, \cdot)$ for all $x \in \mathscr{N}$ nor obtain (3.4) for measurable multipliers. Rather, let B be the coboundary $B(e_t, \cdot) = \overline{p}(\cdot)p(\cdot - e_t)$ (which is defined for all $e_t \in \Lambda$) and let

(3.5)
$$A_d(e_t, \cdot) = \overline{p}(e_t)B(e_t, \cdot)A_\omega(e_t, \cdot)$$

which defines $A_d(e_t, \cdot)$ as a unitary function for each $e_t \in \Lambda \cap \mathcal{N}$.

A straightforward computation using (3.3), (3.5) and the defining expressions for B and A_{ω} shows that $A_d(e_t, \cdot) = d(e_t, \cdot - e_t)$ for all $e_t \in A \cap \mathcal{N}$ and we conclude that $A_d(e_t, \cdot)$ has essential range $\{\pm 1\}$.

4. The construction. We can eliminate A_{ω} from (2.2) and (3.5) to obtain

(4.1)
$$A_d(e_t, \cdot) = \overline{pq}(e_t)\overline{B}A(e_t, \cdot)$$

for all $e_t \in \Lambda_0$.

With the exception of q all the terms in (4.1) are defined, at least, for all $e_t \in \Lambda \cap \mathcal{N}$. Hence the unitary function $P(e_t, \cdot)$ given by

(4.2)
$$P(e_t, \cdot) = \bar{A}_d(e_t, \cdot)\bar{B}A(e_t, \cdot)$$

is defined for all $e_t \in \Lambda \cap \mathscr{N}$ and coincides with the constant unitary function $pq(e_i)$ for $e_t \in \Lambda_0$.

Disregarding the fact that $A_d(e_t, \cdot)$ is not defined for all $e_t \in A$ the function A_d is a cocycle only if P is a cocycle. Now P^2 but not necessarily P is a cocycle and $D = \bar{r}\bar{B}A$ where r is a cocycle square root of P^2 is the desired nontrivial cocycle with range $\{\pm 1\}$. To see this first square both sides of (4.2) to obtain

(4.3)
$$P^2(e_t, \cdot) = (\overline{B}A)^2(e_t, \cdot)$$

for all $e_t \in \Lambda \cap \mathcal{N}$.

We can use (4.3) to extend P^2 to Λ since $(\overline{B}A)^2$ is a cocycle and as such $\overline{B}A(e_t, \cdot)$ is a unitary function for all $e_t \in \Lambda$. Thus, retaining the same notation, (4.3) is valid for all $e_t \in \Lambda$ and we see that P^2 is a cocycle.

Now $P^2(e_t, \cdot) = (pq)^2(e_t)$ for $e_t \in \Lambda_0$ and a routine application of the cocycle identity (2.1) shows that $P^2(e_t, \cdot)$ is a constant unitary function for all $e_t \in \Lambda$. Hence P^2 is a constant cocycle and we have $P^2(e_t, \cdot) = \exp(i2\lambda t)$ for some real number 2λ . The constant cocycle r given by $r(e_t) = \exp(i\lambda t)$ is evidently a square root of P^2 .

Let D be defined for all $e_t \in A$ by

(4.4)
$$D(e_t, \cdot) = \overline{r}(e_t)\overline{B}A(e_t, \cdot) .$$

Clearly D is a cocycle and since D is a square root of $\overline{P}^2\overline{B}^2A^2 = 1$ it follows that the essential range of $D(e_t, \cdot)$ is contained in $\{\pm 1\}$ for each $e_t \in A$. Moreover, D is nontrivial because A is nontrivial.

5. Remarks. In [3] Helson showed that any cocycle A can be written as the product

$$(5.1) A = CRD'$$

where C is a coboundary, D' a cocycle with range $\{\pm 1\}$ and R is a regular cocycle given by

(5.2)
$$R(e_t, x) = \exp\left(i\int_0^t m(x - e_u)du\right)$$
, a.e.(x),

for some real Borel function m on T^2 . It was the factoring (5.1) which led to the question if nontrivial cocycles with range $\{\pm 1\}$ exist.

If we apply the factoring (5.1) to the cocycle A induced by A_{ω} and substitute into (4.4) we obtain

(5.3)
$$D\overline{D}'(e_t, \cdot) = \overline{r}(e_t)(\overline{B}C)(e_t, \cdot)R(e_t, \cdot).$$

Notice that $D\overline{D}'$ is trivial if and only if R is trivial. However, nothing is known about the regular factor R of the cocycle A induced by A_{ω} . In particular, if R were trivial then projective multipliers would give rise to a class of nontrivial cocycles quite distinct from the non-trivial regular cocycles produced in [4] and [5].

COCYCLES WITH RANGE $\{\pm 1\}$

References

1. V. Bargmann, On unitary ray representations of continuous groups, Ann. of Math., **59** (1954), 1-46.

2. T. W. Gamelin, Uniform Algebras, Prentice Hall, Englewood Cliffs, N. J., 1969.

3. H. Helson, Compact groups with ordered duals, Proc. London Math. Soc., (3) 14A (1965), 144-156.

4. H. Helson and J.-P. Kahane, Compact groups with ordered duals III, to appear.

5. H. Helson and D. Lowdenslager, *Invariant subspaces*, Proc. Int. Symp. on Linear Spaces, Jerusalem (1960), Macmillan (Pergamon), New York, 1961, 251-262.

6. G. W. Mackey, Induced representations of locally compact groups and applications, Proc. Conf. on Functional Analysis and Related Fields, Chicago (1968), Springer, Berlin-Heidelberg-New York, 1970, 132-166.

7. K. Yale, Invariant subspaces and projective representations, Pacific. J. Math., 36 (1971), 557-565.

Received February 29, 1972.

UNIVERSITY OF MONTANA