COCYCLES WITH RANGE $\{ \pm 1\}$

Keith Yale

Let Γ be a subgroup of the real line with the discrete topology and suppose Γ has at least two rationally independent elements. A nontrivial cocycle D whose range $\{ \pm 1\}$ consists only of the numbers +1 and -1 is constructed on the dual G of Γ using properties of local projective representations.

Cocycles play an important role in harmonic analysis on G and three apparently quite different methods for constructing nontrivial cocycles are known: Helson and Lowdenslager [5] (and extended by Helson and Kahane [4]), Gamelin [2] and the author [7]. In answer to a question raised by Helson [3] Gamelin constructed a nontrivial cocycle with range $\{ \pm 1\}$. In this paper we provide a different construction of cocycles with range $\{ \pm 1\}$ based upon the method introduced in [7].
2. Preliminaries. We will briefly recall a few definitions and will summarize the main idea of [7] to which we refer the reader for further properties of cocycles and projective cocycles.

For the problem at hand it is sufficient to let G be the 2-dimensional torus T^{2} realized as the square $[-\pi, \pi] \times[-\pi, \pi]$ with opposite edges identified ([7], p. 559). The open neighborhood $(-\pi, \pi) \times(-\pi, \pi)$ of the identity in T^{2} is denoted by \mathscr{N} and $\Lambda=\left\{e_{t} \mid t \in\right.$ Reals $\}$ is the continuous dense one-parameter subgroup of T^{2} formed by the winding line of irrational slope passing through the identity of T^{2}. A (Borel) function φ on T^{2} is said to be unitary in case $\varphi(x)$ has modulus one a.e. (x) (with respect to Haar measure on T^{2}). For unitary functions φ and ψ we write $\varphi(\cdot)=\psi(\cdot)$ to mean $\varphi(x)=$ $\psi(x)$ a.e. (x).

It is convenient to view a cocycle A as a family of unitary functions $A\left(e_{t}, \cdot\right), e_{t} \in \Lambda$, which satisfy the identity

$$
\begin{equation*}
A\left(e_{t}+e_{u}, \cdot\right)=A\left(e_{t}, \cdot\right) A\left(e_{u}, \cdot-e_{t}\right) \tag{2.1}
\end{equation*}
$$

in addition to a continuity condition which need not be stated here. If $A\left(e_{t}, \cdot\right)$ is a constant unitary function for each $e_{t} \in \Lambda$ we say that A is a constant cocycle; necessarily A is of the form $A\left(e_{t}, \cdot\right)=\exp i \lambda t$ for some real number λ. Cocycles of the form $A\left(e_{t}, \cdot\right)=\varphi(\cdot) \bar{\varphi}\left(\cdot-e_{t}\right)$ for some unitary function φ are called coboundaries. We say that a cocycle A is nontrivial if A is not the product of a constant cocycle and a coboundary.

We now turn to the main idea of [7]. Given a local projective multiplier ω a projective cocycle A_{ω} was formed and this induced a cocycle A related to A_{ω} by

$$
\begin{equation*}
A\left(e_{t}, \cdot\right)=q\left(e_{t}\right) A_{\omega}\left(e_{t}, \cdot\right) \tag{2.2}
\end{equation*}
$$

for some continuous function q on a segment Λ_{0} of Λ containing the identity. Moreover, A is unique up to a constant cocycle factor and if the multiplier ω is nontrivial then the cocycle A is nontrivial; this last assertion relies heavily upon the continuity of ω.

Bargmann [1] showed that T^{2} has two inequivalent local projective multipliers. We can let ω be the continuous (on $\mathscr{N} \times \mathscr{N}$) nontrivial multiplier so that the cocycle A given by (2.2) is nontrivial.

The idea of this paper is to observe that the continuous multiplier ω^{2} must be equivalent to the trivial multiplier 1 and upon taking square roots properly one finds that ω is equivalent to a nontrivial multiplier d with range $\{ \pm 1\}$. Now d, though not continuous, is measurable and this essentially allows us to construct a measurable projective cocycle A_{d} with range $\{ \pm 1\}$. Although a cocycle, $q A_{d}$, can be induced by A_{d} it need not have the desired range and it would be somewhat difficult to prove $q A_{d}$ is nontrivial by the techniques of [7] since d is not continuous.

Fortunately, as is shown in $\S 4$, a simple modification of A_{d} produces a nontrivial cocycle D with range $\{ \pm 1\}$. In fact D is actually induced by A_{d} but not by the general construction of [7].

Since [7] dealt exclusively with continuous multipliers we will indicate those modifications necessary for constructing the measurable multiplier d and its associated projective cocycle. We attend to these matters in $\S 3$ reserving $\S 4$ for the actual construction of D.
3. Measurable projective multipliers d with range $\{ \pm 1\}$ are familiar in the theory of group representations and we will only sketch a construction (Cf. Mackey [6], p. 154).

As mentioned in the preceding section T^{2} has only one (up to equivalence) nontrivial continuous local projective multiplier ω defined on $\mathscr{N} \times \mathscr{N}$. It follows that the continuous multiplier ω^{2} is either equivalent to ω or is trivial. If ω^{2} were equivalent to ω then ω itself would be trivial and so we must assume ω^{2} is trivial, i.e.,

$$
\begin{equation*}
\omega^{2}(x, y)(\bar{s}(x) \bar{s}(y) s(x+y))=1 \tag{3.1}
\end{equation*}
$$

for some continuous function s of modulus one on \mathscr{N} and for all $x, y \in \mathscr{N}$ such that $x+y \in \mathscr{N}$.

Now let p be a measurable square root of s on \mathscr{N} and define d by

$$
\begin{equation*}
d(x, y)=\omega(x, y)(\bar{p}(x) \bar{p}(y) p(x+y)) \tag{3.2}
\end{equation*}
$$

for all $x, y \in \mathscr{N}$ such that $x+y \in \mathscr{N}$. Clearly d is a local projective multiplier with domain $1 / 2 \mathscr{N} \times 1 / 2 \mathscr{N}$, say, and with range $\{ \pm 1\}$.

Actually, our interest lies with the unitary function

$$
\begin{equation*}
d\left(e_{t}, \cdot\right)=\omega\left(e_{t}, \cdot\right)\left(\bar{p}\left(e_{t}\right) \bar{p}(\cdot) p\left(e_{t}+\cdot\right)\right) \tag{3.3}
\end{equation*}
$$

defined for each $e_{t} \in \Lambda \cap \mathscr{N}$. Notice that $d\left(e_{t}, \cdot\right)$ has essential range $\{ \pm 1\}$.

For each $x \in \mathscr{N}, A_{\omega}(x, y)=\omega(x, y-x)$ defines a unitary function $A_{\omega}(x, \cdot)$ since ω is continuous on $\mathscr{N} \times \mathscr{N}([7], \mathrm{p}$. 563). If d were continuous then $A_{d}(x, y)=d(x, y-x)$ formally defines a projective cocycle which satisfies

$$
\begin{equation*}
A_{\omega}(x, y) \bar{A}_{d}(x, y)=p(x) B(x, y) \tag{3.4}
\end{equation*}
$$

where $B(x, y)=\bar{p}(y) p(y-x)([7], \mathrm{p}, 562)$.
However, for our purposes, we need not define $A_{d}(x, \cdot)$ for all $x \in \mathscr{N}$ nor obtain (3.4) for measurable multipliers. Rather, let B be the coboundary $B\left(e_{t}, \cdot\right)=\bar{p}(\cdot) p\left(\cdot-e_{t}\right.$) (which is defined for all $e_{t} \in \Lambda$) and let

$$
\begin{equation*}
A_{d}\left(e_{t}, \cdot\right)=\bar{p}\left(e_{t}\right) \bar{B}\left(e_{t}, \cdot\right) A_{\omega}\left(e_{t}, \cdot\right) \tag{3.5}
\end{equation*}
$$

which defines $A_{d}\left(e_{t}, \cdot\right)$ as a unitary function for each $e_{t} \in \Lambda \cap \mathscr{N}$.
A straightforward computation using (3.3), (3.5) and the defining expressions for B and A_{ω} shows that $A_{d}\left(e_{t}, \cdot\right)=d\left(e_{t}, \cdot-e_{t}\right)$ for all $e_{t} \in A \cap \mathscr{N}$ and we conclude that $A_{d}\left(e_{t}, \cdot\right)$ has essential range $\{ \pm 1\}$.
4. The construction. We can eliminate A_{ω} from (2.2) and (3.5) to obtain

$$
\begin{equation*}
A_{d}\left(e_{t}, \cdot\right)=\overline{p q}\left(e_{t}\right) \bar{B} A\left(e_{t}, \cdot\right) \tag{4.1}
\end{equation*}
$$

for all $e_{t} \in \Lambda_{0}$.
With the exception of q all the terms in (4.1) are defined, at least, for all $e_{t} \in \Lambda \cap \mathscr{N}$. Hence the unitary function $P\left(e_{t}, \cdot\right)$ given by

$$
\begin{equation*}
P\left(e_{t}, \cdot\right)=\bar{A}_{d}\left(e_{t}, \cdot\right) \bar{B} A\left(e_{t}, \cdot\right) \tag{4.2}
\end{equation*}
$$

is defined for all $e_{t} \in \Lambda \cap \mathscr{N}$ and coincides with the constant unitary function $p q\left(e_{t}\right)$ for $e_{t} \in \Lambda_{0}$.

Disregarding the fact that $A_{d}\left(e_{t}, \cdot\right)$ is not defined for all $e_{t} \in \Lambda$ the function A_{d} is a cocycle only if P is a cocycle. Now P^{2} but not necessarily P is a cocycle and $D=\bar{r} \bar{B} A$ where r is a cocycle square
root of P^{2} is the desired nontrivial cocycle with range $\{ \pm 1\}$. To see this first square both sides of (4.2) to obtain

$$
\begin{equation*}
P^{2}\left(e_{t}, \cdot\right)=(\bar{B} A)^{2}\left(e_{t}, \cdot\right) \tag{4.3}
\end{equation*}
$$

for all $e_{t} \in \Lambda \cap \mathscr{N}$.
We can use (4.3) to extend P^{2} to Λ since $(\bar{B} A)^{2}$ is a cocycle and as such $\bar{B} A\left(e_{t}, \cdot\right)$ is a unitary function for all $e_{t} \in \Lambda$. Thus, retaining the same notation, (4.3) is valid for all $e_{t} \in \Lambda$ and we see that P^{2} is a cocycle.

Now $P^{2}\left(e_{t}, \cdot\right)=(p q)^{2}\left(e_{t}\right)$ for $e_{t} \in \Lambda_{0}$ and a routine application of the cocycle identity (2.1) shows that $P^{2}\left(e_{t}, \cdot\right)$ is a constant unitary function for all $e_{t} \in \Lambda$. Hence P^{2} is a constant cocycle and we have $P^{2}\left(e_{t}, \cdot\right)=\exp (i 2 \lambda t)$ for some real number 2λ. The constant cocycle r given by $r\left(e_{t}\right)=\exp (i \lambda t)$ is evidently a square root of P^{2}.

Let D be defined for all $e_{t} \in \Lambda$ by

$$
\begin{equation*}
D\left(e_{t}, \cdot\right)=\bar{r}\left(e_{t}\right) \bar{B} A\left(e_{t}, \cdot\right) \tag{4.4}
\end{equation*}
$$

Clearly D is a cocycle and since D is a square root of $\bar{P}^{2} \bar{B}^{2} A^{2}=1$ it follows that the essential range of $D\left(e_{t}, \cdot\right)$ is contained in $\{ \pm 1\}$ for each $e_{t} \in \Lambda$. Moreover, D is nontrivial because A is nontrivial.
5. Remarks. In [3] Helson showed that any cocycle A can be written as the product

$$
\begin{equation*}
A=C R D^{\prime} \tag{5.1}
\end{equation*}
$$

where C is a coboundary, D^{\prime} a cocycle with range $\{ \pm 1\}$ and R is a regular cocycle given by

$$
\begin{equation*}
R\left(e_{t}, x\right)=\exp \left(i \int_{0}^{t} m\left(x-e_{u}\right) d u\right), \text { a.e. }(x) \tag{5.2}
\end{equation*}
$$

for some real Borel function m on T^{2}. It was the factoring (5.1) which led to the question if nontrivial cocycles with range $\{ \pm 1\}$ exist.

If we apply the factoring (5.1) to the cocycle A induced by A_{ω} and substitute into (4.4) we obtain

$$
\begin{equation*}
D \bar{D}^{\prime}\left(e_{t}, \cdot\right)=\bar{r}\left(e_{t}\right)(\bar{B} C)\left(e_{t}, \cdot\right) R\left(e_{t}, \cdot\right) \tag{5.3}
\end{equation*}
$$

Notice that $D \bar{D}^{\prime}$ is trivial if and only if R is trivial. However, nothing is known about the regular factor R of the cocycle A induced by A_{ω}. In particular, if R were trivial then projective multipliers would give rise to a class of nontrivial cocycles quite distinct from the nontrivial regular cocycles produced in [4] and [5].

References

1. V. Bargmann, On unitary ray representations of continuous groups, Ann. of Math., 59 (1954), 1-46.
2. T. W. Gamelin, Uniform Algebras, Prentice Hall, Englewood Cliffs, N. J., 1969.
3. H. Helson, Compact groups with ordered duals, Proc. London Math. Soc., (3) 14A (1965), 144-156.
4. H. Helson and J.-P. Kahane, Compact groups with ordered duals III, to appear.
5. H. Helson and D. Lowdenslager, Invariant subspaces, Proc. Int. Symp. on Linear Spaces, Jerusalem (1960), Macmillan (Pergamon), New York, 1961, 251-262.
6. G. W. Mackey, Induced representations of locally compact groups and applications, Proc. Conf. on Functional Analysis and Related Fields, Chicago (1968), Springer, Berlin-Heidelberg-New York, 1970, 132-166.
7. K. Yale, Invariant subspaces and projective representations, Pacific. J. Math., 36 (1971), 557-565.

Received February 29, 1972.
University of Montana

