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COCYCLES WITH RANGE {±1}

KEITH YALE

Let Γ be a subgroup of the real line with the discrete
topology and suppose Γ has at least two rationally indepen-
dent elements. A nontrivial cocycle D whose range {±1} con-
sists only of the numbers +1 and —1 is constructed on the
dual G of Γ using properties of local projective represen-
tations.

Cocycles play an important role in harmonic analysis on G and
three apparently quite different methods for constructing nontrivial
cocycles are known: Helson and Lowdenslager [5] (and extended by
Helson and Kahane [4]), Gamelin [2] and the author [7]. In answer
to a question raised by Helson [3] Gamelin constructed a nontrivial
cocycle with range {±1}. In this paper we provide a different con-
struction of cocycles with range {±1} based upon the method intro-
duced in [7],

2* Preliminaries* We will briefly recall a few definitions and
will summarize the main idea of [7] to which we refer the reader for
further properties of cocycles and projective cocycles.

For the problem at hand it is sufficient to let G be the 2-dimen-
sional torus T2 realized as the square [ — π, π] x [ — π, π] with opposite
edges identified ([7], p. 559). The open neighborhood ( — π, π) x ( — 7Γ, π)
of the identity in T2 is denoted by Λ" and A — {et \ t e Reals} is the
continuous dense one-parameter subgroup of T2 formed by the wind-
ing line of irrational slope passing through the identity of T2. A
(Borel) function φ on T2 is said to be unitary in case φ(x) has
modulus one a.e. (x) (with respect to Haar measure on T2). For
unitary functions φ and ψ we write φ(-) — φ( ) to mean φ(x) =
ψ(x) a.e. (x).

It is convenient to view a cocycle A as a family of unitary func-
tions A(et, ),eteA, which satisfy the identity

(2.1) A(et + eu, ) = A(et, . )A(eu, . - et)

in addition to a continuity condition which need not be stated here.
If A(et, ) is a constant unitary function for each ete A we say that
A is a constant cocycle; necessarily A is of the form A(et, ) = exp iXt
for some real number λ. Cocycles of the form A(et, •) = <p( )φ( — et)
for some unitary function φ are called coboundaries. We say that
a cocycle A is nontrivial if A is not the product of a constant cocycle
and a coboundary.
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We now turn to the main idea of [7]. Given a local protective
multiplier ω a projective cocycle Aω was formed and this induced
a cocycle A related to Aω by

(2.2) A(et, •) = q{et)Aω{et, .)

for some continuous function q on a segment ΛQ of Λ containing the
identity. Moreover, A is unique up to a constant cocycle factor and
if the multiplier ω is nontrivial then the cocycle A is nontrivial; this
last assertion relies heavily upon the continuity of ω.

Bargmann [1] showed that T2 has two inequivalent local projective
multipliers. We can let ω be the continuous (on Λ" x ^K) nontrivial
multiplier so that the cocycle A given by (2.2) is nontrivial.

The idea of this paper is to observe that the continuous multiplier
ω2 must be equivalent to the trivial multiplier 1 and upon taking square
roots properly one finds that ω is equivalent to a nontrivial multiplier
d with range {±1}. Now d, though not continuous, is measurable and
this essentially allows us to construct a measurable projective cocycle
Ad with range {±1}. Although a cocycle, qAd, can be induced by
Ad it need not have the desired range and it would be somewhat
difficult to prove qAd is nontrivial by the techniques of [7] since d is
not continuous.

Fortunately, as is shown in § 4, a simple modification of Ad pro-
duces a nontrivial cocycle D with range {±1}. In fact D is actually
induced by Ad but not by the general construction of [7].

Since [7] dealt exclusively with continuous multipliers we will
indicate those modifications necessary for constructing the measurable
multiplier d and its associated projective cocycle. We attend to these
matters in § 3 reserving § 4 for the actual construction of D.

3* Measurable projective multipliers d with range {±1} are famil-
iar in the theory of group representations and we will only sketch
a construction (Cf. Mackey [6], p. 154).

As mentioned in the preceding section T2 has only one (up to
equivalence) nontrivial continuous local projective multiplier ω defined
on ^K x ^yi It follows that the continuous multiplier ω2 is either
equivalent to ω or is trivial. If ω2 were equivalent to ω then ω itself
would be trivial and so we must assume ω2 is trivial, i.e.,

(3.1) ω\x, y)(s(x)s(y)s(x + y)) = 1

for some continuous function s of modulus one on ^V and for all
x, y e <yy~ such that x + y e
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Now let p be a measurable square root of s on <sV~ and define d by

(3.2) d(x, y) = ω(x, y)(p(x)p(y)p(x + y))

for all x,ye ^ such that x + y e ^K Clearly d is a local projective
multiplier with domain iβ^Γ x 1/2^7 say, and with range {±1}.

Actually, our interest lies with the unitary function

(3.3) d(et, ) - ω(et, ')(p(et)p( )p(et + •))

defined for each eteAf)^: Notice that d(et, •) has essential range

{±1}.
For each x e ^4^ Aω(x, y) = ω(x, y — x) defines a unitary function

Aω(xy • ) since co is continuous on ^V x - ^ ( [ 7 ] , p. 563). If d were
continuous then Ad(x, y) — d(x, y — x) formally defines a projective
cocycle which satisfies

(3.4) Aω(x, y)Άd(x, y) - p(x)B(x, y)

where B(x, y) = p(y)p(y - x) ([7], p, 562).
However, for our purposes, we need not define Ad(x, •) for all

x G isV" nor obtain (3.4) for measurable multipliers. Rather, let B be
the coboundary B(et, •) = p(*)p(m — et) (which is defined for all eteΛ)
and let

(3.5) Ad(et, 0 - Pfe)5(e,, 0 ^ ( β , , •)

which defines Ad(eu •) as a unitary function for each eteΛΠ ^ir-
A straightforward computation using (3.3), (3.5) and the defining

expressions for B and Aω shows that Ad(et, •) = d(et, '—et) for all
eteΛf] <yy~ and we conclude that Ad(eu •) has essential range {±1}.

4* The construction* We can eliminate Aω from (2.2) and (3.5)
to obtain

(4.1) Ad(et, •) = pq(et)BA{et1 .)

for all et e Λo.
With the exception of q all the terms in (4.1) are defined, at

least, for all et e A Π ̂ /K Hence the unitary function P(et, •) given by

(4.2) P(et, •) = Ad{eu -)BA{et, .)

is defined for all ete A f] ,sK and coincides with the constant unitary
function pq(et) for et e AQ.

Disregarding the fact that Ad(eu •) is not defined for all eteA
the function Ad is a cocycle only if P is a cocycle. Now P 2 but not
necessarily P is a cocycle and D = rBA where r is a cocycle square
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root of P 2 is the desired nontrivial cocycle with range {±1}. To see
this first square both sides of (4.2) to obtain

(4.3) P\et, .) = {BA)\et, .)

for all eteΛf] <sK
We can use (4.3) to extend P 2 to A since (BA)2 is a cocycle and

as such BA(et, •) is a unitary function for all eteΛ. Thus, retaining
the same notation, (4.3) is valid for all eteΛ and we see that P 2 is
a cocycle.

Now P2(e*, •) = (pq)2(et) for et e Λo and a routine application of the
cocycle identity (2.1) shows that P2(et, •) is a constant unitary func-
tion for all et e A. Hence P 2 is a constant cocycle and we have
P2(et, •)== exp (i2Xt) for some real number 2λ. The constant cocycle
T given by r(et) = exp (ίxt) is evidently a square root of P 2 .

Let D be defined for all et e A by

(4.4) D(et, •) = r(et)BA(et, •) .

Clearly D is a cocycle and since D is a square root of P2B2A2 — 1 it
follows that the essential range of D(et, •) is contained in {±1} for
each et e A. Moreover, D is nontrivial because A is nontrivial.

5* Remarks* In [3] Helson showed that any cocycle A can be
written as the product

(5.1) A = CRD'

where C is a coboundary, Ώ' a cocycle with range {±1} and R is
a regular cocycle given by

(5.2) R{et, x) — exp (i l m(x — eu)du\ a.e.(x) ,

for some real Borel function m on T2. It was the factoring (5.1)
which led to the question if nontrivial cocycles with range {±1} exist.

If we apply the factoring (5.1) to the cocycle A induced by Aω

and substitute into (4.4) we obtain

(5.3) DD'{et, •) - r(et)(BC)(et, .)R(eu •).

Notice that DD' is trivial if and only if R is trivial. However, noth-
ing is known about the regular factor R of the cocycle A induced by
Aω. In particular, if R were trivial then protective multipliers would
give rise to a class of nontrivial cocycles quite distinct from the non-
trivial regular cocycles produced in [4] and [5].
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