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THE CONSTRUCTIVE THEORY OF COUNTABLE
ABELIAN P-GROUPS

FRED RICHMAN

The purpose of this paper is to develop the theory of
abelian p-groups along constructive lines. To this end a con-
structive theory of ordinal numbers and an axiomatic treat-
ment of the notion of height are presented. The classical
theorems of Zippin and Ulm concerning existence and uni-
queness of countable p-groups with prescribed invariants are
proved in a finitistic setting.

1* Introduction* Throughout this paper the letter p will denote
a fixed prime, and we shall use the word group to mean an abelian
p-group. The idea of a p-group illustrates how the constructive
point of view directs our attention to the manner in which a math-
ematical object is presented, and not merely to its absolute structure.
When we say that an element x of a group has order a power of p,
we mean that we can find an integer n such that pnx = 0. The
interpretation of this is that we possess an algorithm that will
produce, in a finite number of steps (bounded in advance), such an
integer n.

Decision problems play an important role in this approach. It is
easy to come up with an algorithm that produces a sequence of 0's
and Γs so that no one knows whether it will ever produce a 1. The
nt\i output of one such algorithm is 1 if and only if 100 consecutive
7's appear in the first n digits of the decimal expansion of π.
However, the idea of a decision problem does not depend upon the
existence of such algorithms. It is a question of what information is
at your disposal; we could just as well imagine that we were examin-
ing the output of an algorithm, possibly a completely transparent
one, of whose nature we were ignorant. One such problem is deciding
whether two elements of a set are equal or not. A set is called discrete
if we can settle this question for any two of its elements. The set
of sequences of 0's and Γs is not discrete, for we cannot necessarily
tell whether a given sequence is equal to a sequence of all 0's.

Countability, in the constructive setting, carries a different
connotation from the classical one of "not too big." Here the
significance is that we can call for the elements one by one, and
given an element we can compute its place in that sequence. A
subset of a countable set need not be countable. The set of exponents
n for which Fermat's conjecture is true is such a subset. The dif-
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ficulty is that we cannot necessarily decide whether a given n is in
the subset or not. Here again the reliance on a specific problem is
unnecessary. The idea of not having enough information to decide
whether an element is in a subset or not is clear.

A set is subfinite if you can list its elements xl9 , xn. A finite
set is a discrete subfinite set. A function is to be thought of as a
finite algorithm, or as a black box that behaves like one.

The relevant invariants for countable p-groups are defined in
terms of ordinal numbers. Section 2 is devoted to developing a
constructive theory of ordinals. In § 3 the notion of a height func-
tion is developed. This function provides the information necessary
to construct the Ulm invariants, and to construct the isomorphism
in Ulm's theorem on the uniqueness of groups with prescribed in-
variants. In § 5 we provide a method for constructing groups with
prescribed Ulm invariants ("Zippin's theorem," see [3; Theorem 36.1])
that differs, even in classical terms, from the usual treatments.

2. A constructive theory of ordinal numbers* In this section
we define the notion of an ordinal number, establish a few properties,
and give a few examples.

DEFINITION. An oridinal number is a set λ with a binary rela-
tion < such that:

1. If a < b and b < c, then a < c.
2. Precisely one of a < 6, a = 6, and b < α, holds for each pair

a, b in λ.
3. If S is a subset of λ, with the property that beS whenever

beλ and ae S for all a in λ such that a < ί>, then S = λ.

A few comments on this definition. We have defined a well
ordered set rather than an ordinal number. Two well ordered sets
represent the same ordinal number if there is an order preserving
correspondence between them. Following Bishop [1] we identify
equivalence classes with their representatives, and define equality to
be equivalence. Property 2, interpreted constructively, implies that
we can decide which of the three alternatives holds. In particular,
an ordinal is discrete. Note that the empty set is an ordinal.

THEOREM 1. If X is an ordinal, and μ is a subset of λ, then μ
is an ordinal {under the induced order).

Proof. The first two properties are clearly inherited by μ. To
prove the third, suppose that T is a subset of μ with the property that
be T whenever be μ and ae T for all a in μ such that a < b. Let



THE CONSTRUCTIVE THEORY OF COUNTABLE ABELIAN P-GROUPS 623

S = {x e λ: if me μ and m < x, then m e T). It is easily seen that
S satisfies the hypothesis of Property 3. Hence S = λ, and so
T = μ.

If a eX, and a < b for all b in λ, we say that a is the first
element of λ. Classically, each nonempty ordinal has a first element;
constructively, we may not be able to find it. For example, let λ
be either the set of positive integers or the set of nonnegative in-
tegers, but we do not know which. By Theorem 1, since the non-
negative integers constitute an ordinal, so does λ. However, we
cannot exhibit the first element. Although we could strengthen the
definition of ordinal number by requiring a first element, we cannot
hope to find the first element of every nonempty subset of an ordinal,
even for very well specified subsets. Consider the subset S of ω + 1
consisting of ω together with those integers n such that 100 con-
secutive 7's appear in the first n places of the decimal expansion
of π. Although we know an algorithm for checking whether any
given element of ω + 1 is in S or not, there is no known finite
procedure that will produce the first element of S. In particular, if
we demand that ordinals come equipped with first elements, we lose
Theorem 1.

If λ is an ordinal and a is an element of λ such that b < a for
all b in λ, then we say that a is the last element of λ. If for a in
λ there is a b in λ such that a < 6, and whenever a < c for c in λ,
then 6 < c, then we write 6 = a + 1 and say that 6 is the successor
of a. Thus, a + 1 is the first element of the subset {c e λ: a < c).
As with first elements, if we wish to be able to find the successor
of each element other than the last, we must strengthen the defini-
tion of ordinal. Let λ be the subset of ω + 1 consisting of 0, ω,
and the odd perfect numbers. We know of no algorithm that will
produce the successor of 0.

Even if we know the first element, and are able to find succes-
sors (and will recognize the last element should we chance upon it),
we still cannot necessarily determine whether we are dealing with a
limit ordinal or not. For example, let λ be the set of positive integers
n such that there are no odd perfect numbers less than n. Since
we will never have all the information we might want about an
ordinal, it seems best to build as little information into the definition
of ordinal as possible. Properties 1, 2, and 3 will suffice for our
purposes here.

Brouwer [2] defines ordinals as sets that are built up from non-
empty finite sets by finite and countable addition. One disadvantage
to this approach is that it admits only countable ordinals, and does
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not even allow ordinals such as the example in the preceding para-
graph. The definition suggested here has the virtue of being equiva-
lent to the classical definition (classically) The difference between
the approach adopted here and those of Brouwer and others is that
we are developing a constructive theory of ordinals rather than a
theory of constructive ordinals.

Although we cannot necessarily find the first element of a non-
empty ordinal λ, it would be absurd to deny that one existed, in the
sense of asserting that for any a in λ there is a b in λ such that
6 < α. This would entail the existence of an infinite descending
sequence of elements of λ, which is impossible, just as in the classi-
cal setting. In fact we can prove a little more.

THEOREM 2. Let X be an ordinal and let a1 ^ α2 Ξ> be a
sequence of elements of X. Then we can find a positive integer n
such that an — an+1.

Proof. Let S be the set of all elements of λ such that the con-
clusion is true for any such sequence with a1 in S. Suppose δeλ,
and ae S whenever a < b. Then, given a sequence aι ^ α2 Ξ> with
<xx = b, either ax = a2 and we choose n — 1, or ax > α2 in which case
α2 G S and we find the required n by considering the sequence

a2 ^ α3 :> .

So b e S and hence S = λ and the theorem is proved.

We cannot necessarily find a positive integer n such that am = an

for all m^n although classically such an n exists. To see this,
define α< = 0 if 100 consecutive 7's appear in the first i places of the
decimal expansion of π, and a{ = 1 otherwise. Using Theorem 2 we
can clarify what it means to be able to find the successor of an
element. If a < b then, given a + 1, we can compare b with a + 1,
and either find an element strictly between a and b or verify that
no such element exists. This property is equivalent to having a + 1.

COROLLARY. Let a be an element of an ordinal λ such that if
a < b we can either find an element c in X such that a < c < 6, or
ascertain that no such element c exists. Then, given an element b0 of
λ such that a < b0, we can find a + 1.

Proof. Consider the sequence bQ ̂  δL g: where a < bi+1 < 6̂
unless 6̂  = a + 1, in which case bi+1 = bi By Theorem 2 we can find
an n such that bn+1 = bn, and hence bn — a + 1.
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If λ is an ordinal and a and 6 are in λ, then we use the nota-
tions [0, a) = {b 6 λ: b < α}, and [0, α] = {δ e λ: b < α}. Notice that
[0, α) is an ordinal, which we may identify with a. Two ordinals λ
and μ are said to be equal if there is an invertible order preserving
function p from λ to μ. We write p: λ = μ. More generally, an
injection of λ into μ is a function /0 from λ to μ such that if a < δ
then <oα < /θ6, and if c < <oδ, then there is an a in λ such that
pa ~ c.

THEOREM 3. If p and σ are injections of λ into μ, then pa = σa

for all a in λ.

Proof. Let S = {aeλ: pa = σa}. Suppose aeS for all a < c. If

σc < |θe, then there is an a in λ such that pa — σc <. pc, so α < c,
so pα = σa; but pa — σc > σa, a contradiction. Similarly we cannot
have pc < <JC. Hence pc — σc, so £ = λ.

COROLLARY, // λ is cm ordinal and a and b are in λ, then
a — b if and only if [0, a) = [0, b) as ordinals.

Proof. If a < 6 and />: [0, α) = [0, 6), then /? = σ, where σ is the
inclusion [0, a) S [0, 6). Hence a = b.

If λ and μ are ordinals, we write λ < ^ if there is an injection
p: \—+μ. Since the product of injections is an injection, the ordinals
are partially ordered by < . However, we cannot always compare
ordinals. Let λ = {n: the first n decimal places of π contain no se-
quence of 100 consecutive 7?s}, and let μ — {n: the first n decimal
places of π contain no sequence of 100 consecutive 8's}. There is no
way to compare ordinals like λ and μ. We could rule out λ and μ
by changing the definition of ordinal to include more information,
but other incomparable ordinals would arise to take their place. No
one has yet succeeded in developing a theory of ordinal numbers in
which any two ordinals are constructively comparable.

Obvious examples of ordinals are 1 = {0}, 2 = {0,1}, 3 = {0,1, 2},
and ω = {0,1,2, •••}. We can construct more complicated ordinals
in the usual ways.

DEFINITION. Let μ be an ordinal and let λα be an ordinal for
each a in μ.

(1) Σ ^ λα is the disjoint union of the λα, where x < y if xe\a

and y e Xb for a < δ, or if x < y in λo

(2) ΐίμ^a is the set of functions / in the cartesian product of
the λα such that f(a) is the first element of λα for each a in μ out-
side of some finite subset (depending on / ) . The order is given by
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/ < g if for some a in μ, we have f(a) < g(d) and /(&) = #(&) for
all 6 > a.

If μ = {0,1} we write ΣA* λα as λ0 + λt and Π/* λ« as λoλL. We
write aβ for Π/* a Note that aβ — Σ ^ # Before verifying that
these definitions give ordinals, we observe that the union of any set
of comparable ordinals is an ordinal under the natural definitions of
x = y and x < y.

THEOREM 4. If μ is an ordinal, and Xa is an ordinal for each
a in μ, then Σ ^ ^α cmd JJμXa are ordinals.

Proof. The only problem is in verifying Property (3), the induc-
tion property. If a and β are ordinals it is clear that a + β is an
ordinal. Let S = {be μ: Σ[o,w \» is an ordinal}, and suppose that ceS
for all c < b. Then Σ[o,&] λα = Σ[o,δ) K + λ6 is an ordinal because
Σ[o,6) ^a is the union of the chain of comparable ordinals Σ[o,β) λα for
c < b. Hence S = μ, so Σ/* ̂ α is an ordinal, being the union of the
ordinals Σ[o,« ^α for 6 e μ. Similarly we can let S = {6 e ^: Π[o,δ] λΛ is
an ordinal}. The argument proceeds as above except we use the
equation Πco,&] \* = (Π[o,6)λα)λό and the fact that aβ = Σ ^ α is an
ordinal if α and /9 are.

As an illustration, let us examine a representation of the ordinal
ε0. If β is an ordinal, then an element / in ωβ can be considered
to be a list (bly •••, bn) of elements of βί where f(a) is the number
of indices j such that a = fy. Thus ωω consists of lists of integers,
ωωω consists of lists of lists of integers, and so on. There are natural
inclusions ω £ ωω S ωωω and the union is e0. The elements of
ε0 are thus lists of lists of of lists of integers. The first few
elements are

0,1, 2, . . . (1), (1, 0), (1, 0, 0), .(1, 1), (1,1, 0), . . . (2), . . .(3), ((1)) .

A typical element is (((1, 0), (1, 0), 0), (2), (2), 2, 0, 0).

3* The height function* Having said what ordinals are, and
given a number of examples, we turn to the question of heights of
elements in a group. The height of an element x in a group G is
defined classically by defining subgroups paG of G for all ordinals a.
This is done by induction, setting pa+1G = p(paG) and paG = Γiβ<a pβG
for limit ordinals a. If xepaG\pa+1G, then x is said to have height
α; if xepaG for all a, then x is said to have height ©o. The length
of G is the least ordinal λ such that pλG = pλ+1G.

Constructively, there are several drawbacks to this approach. To
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make use of the inductive definition we have to know whether our
ordinals are limit ordinals or not, and what the predecessors of their
elements are, if any. Since ordinal numbers need not be comparable,
we may have elements x and y whose heights are incomparable.
Also we may have an element x whose height is both a and β, but
we cannot show that a = β. The length of a group, defined in this
way, makes no sense constructively. Finally, we will certainly want
to be able to decide whether an element x is in paG or not. In
fact, given an x, we will want to know exactly what its height is.
Such information is not included in this definition.

What we really want is a function h that assigns to each element
of the group G its height. To make these heights comparable we
take the range of ft to be a fixed ordinal λ together with the symbol
oo. It is natural that λ be the length of G, and we achieve this by
demanding that h be surjective. We denote λ U {°°} by X^ and write
a < oo for all a in λ^.

DEFINITION. Let G be a group and λ an ordinal. A height
function on G with values in λ is a surjection h: G—^X^ such that:

1. hpx > hx.
2. If hx > a, then we can find a y such that hy ^ a and py = x.

We call λ the length of G.

Note that (1) implies that hO = σo. It is clear that the classical
height function satisfies this definition in the classical sense. It is
not completely clear that this definition is a classical characteriza-
tion of the height function. This will be a consequence of the more
incisive result that h and λ are isomorphism invariants of G, in the
constructive sense. We first show that h is a valuation.

THEOREM 5. If h: G —> λ^ is a height function, then

h(x — y) ^ min (hx, hy)

for any pair x, y in G, with equality holding if hx Φ hy.

Proof. It suffices to prove the theorem when hy < hx, for then
h( — y) — hy upon setting x ~ 0. Let S be the set of b in λ for
which h(x — y) ^ hy whenever b = hy < hx. We shall show that if
ae S for all a < b, then b e S. Suppose, on the contrary, that

h(x — y) < hy = b < hx .

Then y — pz and x — pw, where hz ^ h(x — y) and hw >̂ h(x — y), so
h(x — y) = h(pz — pw) > h(z — w) ^ min (hz, hw) ^ h(x — y), a con-
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tradiction. Thus S = λ, so the claim is true if hy Φ oo. If hy =
then h(x — y) — oo, lest to — h(y + (α? — t/)) Φ oo. Finally, if to ^
then % = Λ(α5 — (a; — y)) ̂  min(to, &(# — y)), so hy ^ h(x — y).

THEOREM 6. // / is an isomorphism of G onto H, and h and
h0 are height functions on G and H with values in λ and μ respec-
tively, then we can find a p: λ = μ such that hof = ph, where we set
poo r : oo,

Proof. Let h~~ι be any right inverse of h, set p = hofh~\ and
let S = {a e λ: hx — a implies hofx — pa, and p is an injection on
[0, α]}. We wish to show that S = λ. Suppose aeS for all a < b.
If hx — b we shall show: (i) if a < b, then Λo/α? > pa, and (ii) if
c < hofx then we can find an a < 6 such that />α = c. In particular,
if x = /Γ^δ, then /ι0/^ = /θ6, and (i) and (ii) show that p is an injec-
tion on [0, 6].

If a < b, then there is a 2 such that a < ft2 < & and pz = a? So
pfz — /^ a n d ^o/^ = phz ^ pα. Thus hjx > pa. If c < Ao/ίc, then
we can find a z such that Λ02 ̂  c and p^ = /α;. Then pf~ιz — x, so
hf~ιz — d < b = hx. So ^ = hoff~

ιz = /9d, and /? is an injection on
[0, d]. Hence there is an a < d < 6 such that <oα = c.

Since S — λ, the function ô is an injection of λ into μ. Similarly
we get an injection from μ into λ. Their composition is an injection
of λ (or μ) into itself, and hence is the identity by Theorem 3.
Finally, if hx = oo then hofx = oo lest to = hf~ιfx Φ OO .

Since the height function is unique, it should behave like the
classical height function. For example, homomorphisms increase
heights, provided that you can make sense of this statement. If two
ordinals are comparable, then we can compare their elements in a
well-defined manner.

THEOREM 7. Let G and H be groups, h and h0 height functions
on G and H with values in λ and μ respectively. If λ and μ are
comparable, and if f is a homomorphism from G to H, then

hofx ^ hx for all x in G .

Proof. Let S — {a e λ: hx — a implies hofx >̂ a}. Suppose that
aeS for all a < b. If to = b and hofx < b, then x = py, where
hy 2̂  hofx. Since b = hx = hpy >hy, we have hQfy ^ hy. But

hofx = hoPfv >

so hofx > hy, a contradiction. Thus S = λ. If to = oo, then α = pxt
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and hxλ = oo, so xλ — px2 and hx2 = oo, etc., and we get a descending
chain hofx > hofx1 > h0fx2 > . Hence hofx = oo by Theorem 2.

Heights computed in summands are the same as heights com-
puted in the original group.

THEOREM 8. Let G be a group, h: G —> λ^ a height function, e
an idempotent endomorphism of G, and H — {xeG: ex = x}. Let
μ — {aeX: there is an x in H such that hx = a}. Then μ g λ is an
injection, and h: H—> μ^ is a height function on H.

Proof. To show that / ^ g λ is an injection, let S = {be μ: if
α e λ and a < b then ae μ}. We show that S = λ. Suppose that
c G S for all c < b in λ. If a < 6, then there is an x in J ϊ and a
2/ in G such that hx = b and a? = p?/, and hy ^ α. Now eyeH
and Λe^ Ξ> % ^ α. So Λ# = /̂ eα; = Λpe^ > /̂ e?/ Ξ> α. If /̂ β?/ — a we
are done. If hey > α, then, letting c = hey we are done. In any
case, the element ey demonstrates that M s a height function.

Recall that a group G is divisible if pG = G and reduced if {0}
is its only divisible subgroup. If G has a height function &, it is
evident that G is divisible if and only if h(G) = {oo}, and G is reduced
if and only if /^(oo) = {0}. In any case, the set h~\oo) is a divisible
subgroup that contains every divisible subgroup. If G is countable,
we can find a complementary summand to this maximum divisible
subgroup; in fact we can find a complementary summand to any
divisible subgroup D for which the question "is x in DV is decidable
for each x in G.

THEOREM 9. Let G be a countable group and let D be divisible
subgroup of G such that it is decidable whether x € D for each x in
G. Then we can construct a countable subgroup K of G such that
G =

Proof. Let xu x2, be an enumeration of the elements of G
such that pxi+1 is in the subgroup generated by xu , α?4 for each
i. We shall construct subfinite subgroups Kγ S K2 g of G such
that Xi e Ki + D and K\ Π D = {0}. Then K = \J K{ is as desired.
Given Kt we construct Ki+1 as follows. If xi+1 e Kι + D (a decidable
question) we set Kί+1 = iQ. If a?i+1 £ Ki + D we write p# ί + 1 = ^ + d,
where k{ e Kι and d e D. Since D is divisible, we can find dr in D
such that d = pd\ Let ?/ = »<+1 — d'. Then p?/ = fe. , and we let
Ki+ι be the subgroup generated by Ki and y. Certainly xi+1 e Ki + D;
we must show that Ki+1 f] D = {0}. If w is an element of Ki+1 Π I>,
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then we way write w = ny + z, where ze Kit So ny = w — z, where
we D and ze K^ If p does not divide n, then yeKi + D, so

αί+1 eKi + D ,

a contradiction. Thus p divides π, so ny e i^ and w = 0.

COROLLARY. If G is a countable group with height function,
then we can construct countable subgroups R and D of G such that
R is reduced, D is divisible, and G = R 0 D.

Either directly or by using Theorem 9 we can prove the classical
result that a countable discrete divisible group is a countable direct
sum of copies of Z(p°°) and the trivial group. For example we can
follow the proof of [4; Theorem 4], using countability instead of
Zorn's lemma. In the nondiscrete case, the best you can get is a
homomorphic image of such a direct sum. However, there seems to
be no good reason to deny discreteness to these groups.

Thus our attention is drawn to countable groups with height
functions that are reduced. We call such groups Ulm groups. Note
that any Ulm group is discrete. An elegant idea of E. A. Walker
allows us to construct reduced groups of any length.

THEOREM 10. // λ is an ordinal, then there is a reduced group
G with height function h and length λ.

Proof. Let F be the free abelian group on strings <αx, , an}
where α< e λ for 1 < i < n, and a, < α2 < < an. We identify the
empty string with the zero element of F. Let M be the subgroup
of F generated by elements of the form

V (flu α 2 , , a * ) — < ^ 2 , • • • , « « > >

and let G be the quotient group F/M, that is, G is F with equality
defined by gt = g2 if g1 — g2 € M. Then any element of G is equal to
a unique element of the form Σ %#ί> where the 04 are distinct free
generators of F, and 0 < % < p. That such an element can be found
is clear from the nature of the generators of M. That such an ele-
ment is unique follows from the fact that every nonzero element
Σ mβi of M has nonzero coordinate m< that is divisible by p. This
unique element is said to be in standard form. Define h: G —> λ^ by
hg = a, where a is the least element of λ occuring in a string that
has a nonzero coefficient in the standard form of g, and hg — ^ if
all the coefficients are zero (and so g = 0). It is readily seen that h
is a reduced height function on G under which G has length λ.
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COROLLARY. If X is a countable ordinal, then there is an Ulm
group of length λ.

By a countable ordinal λ we mean one for which λ^ is countable.
This allows the empty set to be countable, and gives every Ulm
group a countable length.

4* Ulm invariants* A complete set of invariants for Ulm
groups is provided by certain countable discrete vector spaces over
the p-element field, called Ulm invariants. It will be convenient to
define these invariants in a more general setting, suggested by sub-
groups of Ulm groups.

DEFINITION. Let S a group, λ an ordinal, and h a function from
S to λ*,. We say that h is a subheight function on S with values
in λ if

1. hpx > hx.
2. h(x — y) ^ min{hx, hy).

We say that h (or S) is reduced if h~\oo) = {0}

We write a < b if we can find c such that a < c < 6.

DEFINITION. Let S be a group and h a subheight function on S
with values in λ. For each a in λ define Fs(a) = {xeS: hx >̂ α},
where equality in Fs(a) is defined by x = y if h(x — y) > α. The αth

invariant of S is the subspace of Fs(α) defined by

a] .

The function fs is called the ί7im function of £.

Both ^ ( α ) and fs(a) are discrete vector spaces over the ^-element
field. The classical definition of Ulm invariant is the dimension of the
subspace of fs(a) defined by V = {x e S: hx ^ a and px = 0}. If h is a
height function then V=fs(a), for if x e fs(a) then hpx>b>a,sopx = pz
where hz ^ ό. Hence x — ze V, but x — z = x in /5(α). Since F is
countable if S is, this makes fs(a) countable when S is an Ulm group.
The equality of V and fs(a) is well known and lies at the heart of
the proof of Ulm's theorem. The advantage of our definition is that
fs(a) is the relevant space when S is a subgroup of an Ulm group.
We let the space itself be the invariant because, constructively, the
dimension of fs(a) need not be an integer or co since we may never
be able to decide exactly what the dimension is.

There is one thing to watch out for concerning the space fs(a)
Given an element x in S, we cannot necessarily decide whether
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hpx > hx. Hence we cannot in general decide whether a given element
of Fs(a) is in fs(a). In particular, if S is finite, then fs(a) need not
be finite or even subfinite.

Let / be a function that assigns to each element a in a countable
ordinal λ a countable discrete vector space f(a) over the p-element
field. When is / = fG for some Ulm group G? Classically, necessary
and sufficient condition on / may be stated: if a e λ then f(a + n) is
nonzero for some nonnegative integer n. This is too strong a con-
dition from the constructive point of view, for by Theorem 10 we
can construct an Ulm group of length λ for any countable ordinal
λ, but given an element a in λ we cannot in general even find
a + n. We want to determine the precise conditions that / must
satisfy for / to be isomorphic to the Ulm function of some Ulm group.
The fact that given two elements a < δ in λ, we cannot necessarily
decide whether a < δ, introduces complications.

THEOREM 11. Let G be an Ulm group of length λ. Then
1. If a < b for α e λ and b e λ ,̂ then we can find an element c

in λ such that a < c < b, and such that if c < b then we can find a
nonzero element of fG(c).

2. // xeFG(a), then we can find an element b > a in λ«, such
that a < δ if and only if xefG(a).

3. If U is a finite subspace of fG{a) and V is a finite subspace
of FG(b), where a < δ, then either a < b or we can find a subspace
W of FG(a), disjoint from U and isomorphic to V, such that a < b
if and only if W^fG(a).

Proof. To prove statement (1) when b — oo, find x in G such
that hx = a and set c = hpn~1x, where pn is the order of x. Then
pn~~γx is a nonzero element of fG(c). If δeλ, find x in G such that
hx = b, and find y in G such that py — x and hy ^ α. Set c = hy.
If c < b then y is a nonzero element of fG(c). To prove statement
(2) set b = hpx. Then a < b if and only if xefβ(a) by definition.
To prove statement (3) let vu , vn be a basis for V, and find
Wi, " ,wn such that pw{ = v< and hWi^a. Let TF be the finite
subspace of i^(α) generated by the ^ Map TF into V by taking
X m^ί to Σ w<^ Either α < 6 or this map is well defined (and
therefore is an isomorphism), for if /&QΓ, m ^ ) > α, then fe(Σ WM;4)> α,
so either α < & or /&(Σ ww) > 6. (Note that we need consider only
a finite number of values of m« in this argument.) Moreover, if
ue U, then %% > α, while if w is a nonzero element of W, then
hpw = 6. So if u = w in FG(a), then /fc(w — u) > α, and hence
ft(pw — p%) > α, so b > α. Finally, α < δ if and only if TF £ fG(a)
by definition.
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DEFINITION. Let λ be a countable ordinal and / a function as-
signing to each element a in λ a countable discrete vector space
over the p-element field. We say that / is a U-function if, for each
a in λ, we can imbed f(a) in a countable discrete vector space F(a)
over the p-element field so that

1. If a < b for aex and δ e λ ^ then we can find an element
c in λ such that a < c < b, and such that if c < b then we can find
a nonzero element of /(c).

2. If x e F(a), then we can find an element b > a in λTO such
that a < b if and only if xef(a).

3. If U is a finite subspace of f(a) and F is a finite subspace
of jP(δ), where a < 6, then either α « 5 or we can find a subspace
TΓ of F(α), disjoint from U and isomorphic to V, such that α < 6 if
and only if W ^ f(a).

Theorem 11 then says that every Ulm function is a [/-function.
As a constructive Zippin's theorem we shall show that, conversely,
if / is a [/-function, then we can construct an Ulm group whose
Ulm function is isomorphic to /. The space F(a) plays no overt role
in the classical treatment, and we could dispense with it here if we
had successors. If, given a < b in λ, we can find a + 1, then we
can satisfy properties (2) and (3) in the definition of a [/-function
by simply taking F(a) = f(a) ® K, where K is any infinite dimensional
countable discrete vector space over the p-element field. The space
F(a) only plays a role as a buffer against the appearance of embar-
rassing elements of λ. An example of a reasonable looking function
/ that is not a [/-function is provided by letting λ be a countable
ordinal such that {0 ,2}gλg {0, 1,2}, and letting f(a) be one-
dimensional for every a in λ. If / were a [/-function, then we
could decide whether 1 was in λ or not. In fact we let U = /(0) and
V = /(2) and appeal to Property (3) in the definition of [/-function.
Either 1 e λ, or we get a one-dimensional space W, disjoint from [/,
such that if l e λ , then W ^ /(0), a contradiction.

5. Existence of Ulm groups* Our plan is to construct an Ulm
group whose Ulm function is isomorphic to a given [/-function /.
We will construct this group element by element, giving us at each
stage a finite group S with a subheight function defined on it. If
S is to end up as a subgroup of an Ulm group with Ulm function /,
we will have to put restrictions on the Ulm invariants of S.

DEFINITION. Let S be a group and h a reduced subheight func-
tion on S with values in λ. Let / be a [/-function on λ. Then S
is f-admissίble if, for each a in λ, we have an imbedding φ of Fs(ά)
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in F(a) such that xefs(a) if and only if φ(x)ef(a).
If S is a subgroup of an Ulm group with Ulm function /, then

S is clearly /-admissible. The existence theorem for Ulm groups is
proved by verifying the converse of this statement for finite groups
S. The key construction involves enlarging an /-admissible finite
group to an /-admissible finite group in which a given instance of
Property (2) of a height function is satisfied.

LEMMA. Let S be a finite group and h a reduced subheight
function on S with values in λ. Let f be a U-function on λ. //
S is f-admissible, x e S, and a < hx = 6, then we can construct a
finite group T containing S, and we can extend h to T so that T is
f-admissible and py — x for some y in T such that hy ^ a.

Proof. Let U = {se S: hs ^ a and hps > b} and let V = Fs(b).
By increasing a, if necessary, we can assume that there is no element
s in S such that a < hs < b. By Property (3) of a C7-function, either
a < δ, in which case by increasing a we can assume that a $ h(S),
or we can find a subspace W of F(a) disjoint from (the image of)
U, and isomorphic to V, such that a < b if and only if W £ /(α).

Adjoin y to S subject only to the relation py = x, and set

h(s + ky) — mm{hs, a)

for s e S and 0 < k < p. We shall show that this defines an /-
admissible group T. It is immediate that h is a subheight function
on T. To show that Γ is /-admissible we must, for each e in λ,
imbed Fτ(e) in F(e) in the appropriate way. If e Φ α, or if e —
a £ h(S), then Fτ{e) is naturally isomorphic to Fs(e) which is already
properly imbedded in F(e). So we need only consider the case where
e = a and we have the subspace W of F(a) described above. Since
upon discovering that a < b we can start again and assume that
a g h(S), which is the easy case, we may proceed on the assumption
that we will not run across anything strictly between a and b while
we imbed Fτ{a) in F(a).

It is clear that Fτ(a) = Fs(a) 0 <τ/> so all we need is to find an
element y0 in F(a) that is not in the image of Fs(a), and that is in
f(a) if and only if a < 6. We can assume that x has maximal height
among elements of the form x + ps where s e S and hs ^ α, since if
py — x then p(y + s) = x + ps. Then fτ(a) is equal to Λ(α) 0 (y} or
/s(α) depending on whether a < 6 or not. Multiplication by p gives
a map from ^(α) to Fs(b) whose kernel is U. Now x is not in the
image of this map by our assumption on x. Hence

dim U + dim Fs(b) > dim Fs(a) ,
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so the finite space W must contain an element y0 not in Fs(a).

THEOREM 12. Let λ be a countable ordinal and f a U-functίon
defined on λ. Let S be a finite group and h a subheight function
on S with values in λ. If S is f-admissible, then S can be imbedded
in an Vim group G such that fG(a) ~ f(a) for each a in λ, and so
that the height function on G agrees with h.

Proof. If μ is a finite subset of λ, then by repeated applications of
the lemma, we can imbed S in a finite group E(S, μ), and extend h so
that E(S, μ) is /-admissible, and so that if a e μ and xe S with a < hx,
then there is a y in E(S, μ) satisfying py = x and hy^a. We shall
construct a chain of finite /-admissible groups S = So g Sλ S
with a common height function h. Let xly x2, be an enumeration
°f \Jλf{o), and let au a2, ••• be an enumeration of λ. Let

and set S2n = E(S2n-.u μn) For xnef(a), set S2n^ = S2n_2 if αΛ is
in the image of FS2n_2(a); otherwise set >S2«_i = 2̂̂ -2 0 (y} where
y is a new element defined by py — 0 and hy — a. Then G = \J Sj
is clearly a countable group with subheight function h taking
values in λ. That h is in fact a height function follows easily
from the construction S2n = E(S2n^lf μn), provided that we can show
that h(G) = λoo. This follows from property (1) of a {/-function. For
suppose αeλ. Then there is a c in λ such that a < c and f(c) Φ {0}.
By the construction of S2n-i we can find an element xx in G such
that hx1 = c. If a = c we are through. Otherwise, by the construc-
tion of ί>2%, we can find an element x2 of G such that a < hx2 < fex.
Continuing in this way we find an element xn in G such that a = hxn

by Theorem 2. The isomorphism between fG(a) an /(α) is provided
by the construction of S2n-ι

6. Ulm's theorem. We now know how to construct a group
with prescribed Ulm invariants. That this group is unique up to
isomorphism is the content of Ulm's theorem. The construction of the
required isomorphism follows Kaplansky [4], with a few modifications
to overcome the undecidability of a < b. If S is a subgroup of an
Ulm group G, and xe G, we say that x is S-proper if x is of maxi-
mum height among the elements of x + S.

THEOREM 13. Let G and K be Ulm groups with isomorphic Ulm
invariants. Then we can construct an isomorphism between G and
K.
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Proof. Let h denote the height function of either G or K, and
let λ denote their common length. We may assume an enumeration
xu x2, of the elements of G such that pxt is in the subgroup
generated by xly , x^, and a similar enumeration yu y2, of the
elements of K. We shall construct sequences of finite subgroups
Si S S2 S £ G , and TΊ S T2 S S JSΓ, and height preserving
isomorphisms φn: Sn—+ Tn, so that xwe S2%_! and # n e T2n9 and so that
φn+1 extends φn. It will suffice to show that if φ is a height pre-
serving isomorphism between a finite subgroup S g G and a finite
subgroup T S if, and if a? e G and pa; e S, then ^ can be extended
to a height preserving isomorphism of the subgroup generated by S
and x.

If xeS we are done. Otherwise, by choosing an element of
maximum height in the finite set x + S, we may assume that x is
S-proper. Among such x we may pick one which maximizes hpx.
Note that h(x + s) — min(hx, hs) for all s in S because x is S-proper.
Let hx — α. We must define 9^.

Since Λ<pp# = hpx > α, we can find y in K such that hy ^ a and
2>2/ = ^px. If hy = a and 3/ is T-proper (note that these questions
are decidable), then we can extend φ by setting φx = y. If hy = α
and 2/ is not Γ-proper, then there is an s in S such that

Ml/ + φs) > a ,

so Mw + ^P s) ^ α> a n ( i s o ^(^^ + Ps) ^ α Bu* Hx + s) = α> since
fee = /2,92s = a, so a? + s is S-proper. Hence, by our choice of x, we
have hpx ^ h(px + ps), so hpx > α. Again, if hy > α, then hpx > α.

So we turn our attention to the case when hpx > a and hence
xefG(a) but, since x is S-proper, xgfs(cή We need to find an ele-
ment y0 in /s:(α) that is not in fτ(a). Let a be the given isomorphism
of fa(d) with /κ(α). Note that it is decidable whether an element of
fκ{a) is in fτ(a) or not. If σx£fτ{a) we are done. If not, then by
repeated application of φ~ι and σ we can find a finite subgroup V of
fs(a) such that σxe φV = σV, or find a 2/0 along the way. But if
σxeσV, then xeV which contradicts the fact that xgfs(ά). Thus
we get our y0.

We can choose y0 so that pyQ — 0. Moreover y0 is T-proper, for
if h(y0 + t) > a, and hence ht = a, then hpt = hp(y0 + t) > a, so
tefτ(a), and 2/0 = —tefτ(a), a contradiction. Set <pa? = 2/0 + 1/, where
py — φpx and hy ^ α, noting that yQ + y is Γ-proper since y0 is.

A theorem of Prϋfer characterizes the Ulm groups that are direct
sums of cyclic groups as those Ulm groups that have no nonzero
elements of infinite height [3; Theorem 11.3]. This theorem can be
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proven directly, or flogged to death with Ulm's theorem. We shall
do the latter. The interest here is in the constructive interpretation
of an Ulm group without elements of infinite height, and in the
distinction between possessing a sequence of independent generators
of a group, and knowing that the group could not fail to be a direct
sum of cyclic groups.

An example will illustrate the problem. Let λ be a countable
ordinal such that {1} £Ξ λ ϋ {0, 1}. Let G be the Ulm group specified
by the [/-function /, where /(I) is one-dimensional and f(a) = {0} if
a Φ 1. Then G cannot be other than cyclic of order p or cyclic of order
p\ But possession of a generator of G would decide the question of
whether 0 e λ or not. Certainly in no sense does G have elements of
infinite height. Note that G is even bounded, yet we cannot neces-
sarily write it as a direct sum of cyclic groups.

The trouble is with λ. An initial segment of ω is a subset λ of
ω such that it n e λ, then m e λ for all m <̂  n. This amounts to
saying that λ <; ω.

THEOREM 14. Let G be an Ulm group of length λ. Then G is
a direct sum of cyclic groups if and only if λ < ω.

Proof. If G is a direct sum of cyclic groups, then it is easy to
define a height function on G that makes the length of G equal to
an initial segment of ω. Since length is an isomorphism invariant,
we have λ < ω. On the other hand, if λ < ω then we can construct
a group H of length λ, that is a direct sum of cyclic groups, such
that fa = fu By Ulm's theorem G is isomorphic to H, so G is a
direct sum of cyclic groups.
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