WILD ARCS IN THREE-SPACE

1: Families of Fox-Artin Arcs

James M. McPherson

Roughly speaking, a Fox-Artin arc is an arc which is tame modulo one endpoint at which it has penetration index three, and which may be constructed in the way that the examples of R. H. Fox and E. Artin were constructed in their classical paper of 1948.

For each oriented Fox-Artin arc, there is an associated infinite sequence of oriented prime 2 -component links, which is an invariant of the local embedding type of the arc in R^{3}. Using existence results from link theory, this result yields the corollary: If M is a 3 -manifold and p a point in the interior of M, then there exists an uncountable family of locally non-invertible Fox-Artin arcs in M, which are wild at p.

Later papers will be concerned with developing invariants of the oriented local embedding type of an arc k_{n} which is tame modulo one endpoint, at which it has penetration index $2 n+1$.
O. Introduction. The results of this paper originated in attempts to answer the following two questions:

1. Do there exist uncountably many arcs in Euclidean 3-space R^{3}, which are tame modulo one endpoint? ([1], p. 33. Such arcs are called "nearly polyhedral" in [1].)
2. Are the $\operatorname{arcs} 1.1,1.1^{*}, 1.3$ of [3] amphicheiral or invertible? (Problem 17 of [2].)

In 1961, R. H. Fox and O. G. Harrold [4] succeeded in completely classifying the Wilder arcs of penetration index 2, and the existence of uncountably many non-invertible Wilder arcs follows immediately from their classification. In 1963, an affirmative answer to question 1 was announced by Giffen [5] (a more detailed development of Giffen's ideas is given in [13]); however, Giffen developed no new invariant of local embedding type, so there was still no way of distinguishing nearly polyhedral arcs of the same penetration index. While S. J. Lomonaco ([8], 1967) succeeded in algebraically distinguishing the local types of ares at one interior wild point, there was no theory of local embedding type for nearly polyhedral arcs.

To the best of the present author's knowledge, the invariants of local type of an oriented nearly polyhedral arc, developed in this paper and in [9], are the only ones available (other than penetration index invariants) that will differentiate one nearly polyhedral are type
from another. Use of these invariants will give a detailed affirmative answer to question 1 (see § 2, and p. 91 of [9]) and a partial answer to question 2.

The author wishes to thank Professor N. Smythe for his helpful advice in the writing of his Ph. D. thesis [9], presented to the University of New South Wales. The development of the invariants of [9] will be the subject of later papers in this series.

1. Preliminaries. Let X be a set-we use $\mathrm{Bd} X, \mathrm{Cl} X$, and Int X to denote the boundary, closure, and interior respectively of X. X has $N(X)$ elements. If k is an oriented arc in R^{3} (the orientation of R^{3} is fixed), and X is an oriented surface, $\nu(k \cap X)$ is the algebraic intersection number of k with X.

An oriented link $L=l_{1} \cup l_{2}$ of two components in R^{3} is splittable if there exists a 2 -sphere $S \subset R^{3}$, such that l_{1} and l_{2} lie in different components of $R^{3}-S ; S$ is said to split L. If no such 2 -sphere exists, L is unsplittable. If L^{\prime} is another link in R^{3} which is F isotopic to L (for the definition of F-isotopy, see either [14] or [10]), then L^{\prime} is splittable iff L^{\prime} is splittable, by Theorem 1 of [14].

The main theorem of [6] states that if L is unsplittable, L has a unique factorisation into prime links; by Theorem 1 of the same paper, at most one of these prime links is a 2 -component link L^{*}. (The other factors are 1-component links, i.e. knots, which are factors of the knot types of the components of L.) We call L^{*} the (oriented) prime hub of L, and note that L and L^{*} are F-isotopic.

Let k be an oriented arc in R^{3}, with endpoints p and q. Let E_{1} and E_{2} be tame closed 3-cell neighbourhoods of p, with $N\left(k \cap B d E_{i}\right)=3$. If $E_{2} \subset \operatorname{Int} E_{1}$, the set $k \cap \mathrm{Cl}\left(E_{1}-E_{2}\right)$ is either (i) three arcs, each with one endpoint on $\mathrm{Bd} E_{1}$ and the other on $\mathrm{Bd} E_{2}$, or (ii) one arc γ_{1} connecting $\operatorname{Bd} E_{1}$ and $\operatorname{Bd} E_{2}$, one arc α_{1} whose endpoints both lie on $\mathrm{Bd} E_{1}$, and one arc β_{1} with both endpoints on $\mathrm{Bd} E_{2}$.

In case (i), we say E_{1} and E_{2} are k-similar and write $E_{1} \sim E_{2}$, without distinguishing E_{1} and E_{2}. We note that " \sim " is not transitive, but if E_{1}, E_{2}, E_{3} are tame closed 3-cell neighbourhoods of p with $E_{i+1} \subset \operatorname{Int} E_{i}$, and $E_{1} \sim E_{2}, E_{2} \sim E_{3}$, then $E_{1} \sim E_{3}$. The use of the symbol \sim for a relation which is not an equivalence relation is unfortunate but seems unavoidable.

In case (ii), we write $E_{1} \succ E_{2}$ if the pair (α_{1}, β_{1}) is unsplittable in the sense of [10]; that is, there exist oriented non-singular arcs $\alpha^{\prime} \subset \operatorname{Bd} E_{1}$ and $\beta^{\prime} \subset \mathrm{Bd} E_{2}$ such that the link $L=\left(\alpha_{1} \cup \alpha^{\prime}\right) \cup\left(\beta_{1} \cup \beta^{\prime}\right)$ is unsplittable. (Hereafter, we shall always assume that the arcs α^{\prime} and β^{\prime} are chosen to make L a consistently oriented link.) Let $L\left(E_{1}, E_{2}\right)$ denote the prime hub of L.

Unless otherwise stated, all our "3-cells" will be tame closed 3-cell
neighbourhoods of p, each meeting k on its boundary in exactly three points. We fix a 3 -cell E_{0}, which will contain all other 3-cells in its interior. When we write $E_{2} \subset E_{1}$, it is implicit that $E_{2} \subset \operatorname{Int} E_{1}$.

We make the following observations:
A : " \sim " is not a transitive relation.
B : If E_{1}, E_{2}, and C are 3 -cells with $E_{1} \supset C \supset E_{2}$, and $E_{1} \sim C$, then $C \succ E_{2}$ iff $E_{1} \succ E_{2}$. In either case, $L\left(C, E_{2}\right)=L\left(E_{1}, E_{2}\right)$.
B^{*} : If $C \sim E_{2}$, then $C \prec E_{1}$ iff $E_{2} \prec E_{1}$, and $L\left(E_{1}, C\right)=L\left(E_{1}, E_{2}\right)$ in either case.

We shall only prove that $C \succ E_{2}$ if $E_{1} \succ E_{2}$ and $E_{1} \sim C$, and that then $L\left(C, E_{2}\right)=L\left(E_{1}, E_{2}\right)$.

Let $\alpha_{1}, \alpha^{\prime}, \beta_{1}, \beta^{\prime}$, and γ_{1} be chosen as above, so that $L=\left(\alpha_{1} \cup \alpha^{\prime}\right) \cup$ $\left(\beta_{1} \cup \beta^{\prime}\right)$. Let α_{C} be an arc on $\operatorname{Bd} C-\gamma_{1}$ which connects the two points of $\alpha_{1} \cap \mathrm{Bd} C$, and let Γ be a regular neighbourhood of γ_{1} in $E_{1}-\left(C \cup \alpha_{1}\right)$. See Figure 1.

Denote by L_{C} the link $\left[\alpha_{C} \cup\left(\alpha_{1} \cap C\right)\right] \cup\left(\beta_{1} \cup \beta^{\prime}\right)$. The cube $Q=$ $\mathrm{Cl}\left(E_{1}-C \cup \Gamma\right)$ is an "admissible cube" for the link L, and by [6], p. 284, L is the link-product of L_{c} and the knot formed by the arcs α^{\prime} and α_{C} and the two arcs of $\alpha_{1} \cup\left(E_{1}-C\right)$. This implies (i) L and L_{C} have the same prime hub, i.e. $L\left(C, E_{2}\right)=L\left(E_{1}, E_{2}\right)$, and (ii) L_{C} and L are F-isotopic. Since L is unsplittable, L_{C} is unsplittable and $C>E_{2}$.

Figure 1

2. Statement of the theorem.

Definition. An oriented arc k in R^{3}, with endpoints p and q, is a Fox-Artin arc if $k-p$ is tame, and there exists a sequence $\mathscr{E}: E_{0} \succ E_{1} \succ E_{2} \succ \cdots$ of tame closed 3-cell neighbourhoods of p, with $\cap E_{i}=\{p\} . \quad \mathscr{E}$ is a Fox-Artin sequence for k.

By [10], the Fox-Artin arcs are wild, with penetration index three at p. Example 1.2 of [3] is a Fox-Artin arc.

Before stating the main theorem of this paper, we must recall two definitions.

Two sequences $\left\{a_{i}\right\}$ and $\left\{b_{j}\right\}$ are cofinal if there exist indices M and N such that $a_{M+r}=b_{N+r}$ for all $r=0,1,2, \cdots$.

Two arcs k_{1} and k_{2} are of the same oriented local type at points p_{1} and p_{2} if there exist neighbourhoods U_{i} of p_{i} (which inherit their orientation from R^{3}, and an orientation-preserving homeomorphism of U_{1} to U_{2} which takes $\left(U_{1} \cap k_{1}, p_{1}\right)$ onto $\left(U_{2} \cap k_{2}, p_{2}\right)$ ([8], p. 323).

Theorem. Let k_{1} and k_{2} be Fox-Artin arcs with wild endpoints p_{1} and p_{2}, and Fox-Artin sequences

$$
\mathscr{E}_{1}: E_{0}>E_{1}>E_{2} \succ \cdots, \mathscr{E}_{2}: B_{0}>B_{1} \succ B_{2}>\cdots
$$

for k_{1} and k_{2} respectively. Then if k_{1} and k_{2} have the same oriented local type at p_{1} and p_{2}, the sequences of oriented prime 2 -component links $L\left(\mathscr{E}_{1}\right)=\left\{L\left(E_{i}, E_{i+1}\right)\right\}$ and $L\left(\mathscr{E}_{2}\right)=\left\{L\left(B_{j}, B_{j+1}\right)\right\}$ are cofinal.

Corollary 1. There exists an uncountable family of locally noninvertible Fox-Artin arcs in R^{3}, and an uncountable family of nonamphicheiral such arcs.

Proof 1. It is shown in [11] that there exists an infinite family of non-invertible prime 2 -component links, and the links $L_{n}, n=$ $1,2,3, \cdots$ of [7] form an infinite family of non-amphicheiral prime links.

Let k be a Fox-Artin arc, and \mathscr{E} one of its Fox-Artin sequences. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots$ be an ordering of the prime links which have property P, where P connotes non-invertibility or non-amphicheirality. Obtain a binary number $\alpha(k)$ by the rule: the i th digit of $\alpha(k)$ is 1 if the prime λ_{i} occurs infinitely often in the sequence $L(\mathscr{E})$, and is 0 otherwise. Since all the binary numbers may be obtained in this way, the result follows.

Figure 2(a) shows a Fox-Artin arc, which may be constructed from an infinite family of cylinders of the type shown in Figure 2(a) (cf. [3] or [1] for details). For each i, the link $L\left(E_{i}, E_{i+1}\right)$ is the link

Figure 2 (a)

Figure 2 (b)

Figure 3
of Figure 3, which is known to be non-amphicheiral ([7], p. 653), so the arc of Figure 2 (b) is non-amphicheiral.

Corollary 2. Let M be a 3-manifold, and p a point in the interior of M. If M is non-orientable, there exist uncountably many
locally non-invertible Fox-Artin arcs which are wild at p. If M is oriented, there exist uncountably many locally non-invertible Fox-Artin arcs which are wild at p, and uncountably many non-amphicheiral such arcs.

Using the results of C. D. Sikkema in [12], we obtain
Corollary 3. There exist uncountably many crumpled 3-cubes.
A crumpled n-cube is a topological space which is homeomorphic to a closed complementary domain of an $(n-1)$-sphere in S^{n}. An n-psuedo-half-space M^{n} is an n-manifold with boundary, whose boundary is homeomorphic to R^{n-1} and whose interior is homeomorphic to R^{n}. For $n \neq 3$, every n-psuedo-half-space is homeomorphic to the closed half-space R_{+}^{n} ([12], p. 399, p. 411). However, for $n=3$, Theorem 8 of [12] yields.

Corollary 4. There exists an uncountable family of topologically different 3-psuedo-half-spaces.

We conclude our list of corollaries with a partial answer to question 2 of $\S 0$, namely.

Corollary 5. The arcs 1.1, 1.1*, and 1.2 of [3] are not amphicheiral.

Proof 5. We prove that the are 1.2 (whose projection is shown in Figure 7 of [3]) is non-amphicheiral. Denote this arc by k, and its mirror image by $k^{\prime} . k$ is constructed from cylinders of the type shown in Figure 1 of [3], while k^{\prime} may be constructed from cylinders which are the mirror images of those used to construct k. A glance at Figure 1 of [3] shows that the link obtained by identifying r_{-}and s_{-}, and t_{+}with r_{+}, has linking number +1 , while the corresponding link in the mirror image of this cylinder has linking number -1 . For k, then, the sequence of oriented prime 2 -component links is a sequence of simply linked circles with linking number +1 , whereas the sequence of oriented prime 2 -component links associated with k^{\prime} is a sequence of simply linked circles with linking number $-1 . k$ and k^{\prime} (the mirror image of k) therefore cannot have the same oriented local type, so k cannot be amphicheiral.
3. The proof of the theorem. The proof consists of a sequence of manipulatory lemmas. In each, k is a fixed Fox-Artin arc, with fixed Fox-Artin sequence $\mathscr{E}: E_{0} \succ E_{1} \succ E_{2} \succ \ldots, \alpha_{i}$ and β_{i} are the arcs of $k \cap \mathrm{Cl}\left(E_{i}-E_{i+1}\right)$ whose endpoints both lie on $\mathrm{Bd} E_{i}$, and on
$\operatorname{Bd} E_{i+1}$ respectively. γ_{i} is the unique subare of k which connects $\operatorname{Bd} E_{i}$ and $\operatorname{Bd} E_{i+1} \cdot \quad L_{i}=L\left(E_{i}, E_{i+1}\right)$ denotes the prime hub of the link $\left(\alpha_{i} \cup \alpha\right) \cup\left(\beta_{i} \cup \beta\right)$, where α and β are suitably chosen arcs on $\operatorname{Bd} E_{i}$ and $\mathrm{Bd} E_{i+1}$ respectively.

Lemma 1. Let C be a 3 -cell with $E_{i} \supset C \supset E_{i+1}$, some i. Then either $C \sim E_{i}$, or $C \sim E_{i+1}$.

Proof. Suppose $\alpha_{i} \subset \operatorname{Int}\left(E_{i}-C\right)$-we assert that $\beta_{i} \cap \mathrm{Bd} C \neq \varnothing$ and that $C \sim E_{i+1}$.

So suppose $\beta_{i} \cap \mathrm{Bd} C=\varnothing$, i.e. that $\beta_{i} \subset \operatorname{Int} C$. Then $\mathrm{Bd} C$ is a 2 -sphere that splits the pair (α_{i}, β_{i}), contradicting the hypothesis that $E_{i}>E_{i+1}$. Hence $\beta_{i} \cap \operatorname{Bd} C \neq \varnothing$, and β_{i} therefore meets $\operatorname{Bd} C$ in precisely two points, for $N(k \cap B d C)=3$ and $\nu\left(\beta_{i} \cap \mathrm{Bd} C\right)=0$. Also, γ_{i} must meet Bd C in only one point.

To prove $C \sim E_{i+1}$, assume to the contrary, and that α is a subarc of k in $C-E_{i+1}$ whose endpoints both lie on Bd C. If α joins the points of $\beta_{i} \cap \mathrm{Bd} C$, then $\alpha \cup\left(\beta_{i} \cap \mathrm{Cl}\left(E_{i}-C\right)\right)$ is a simple closed curve in the arc k, which is impossible. One of the endpoints of α must therefore be the point $\gamma_{i} \cap \operatorname{Bd} C-$ so α must be a subarc of γ_{i}, else k intersects itself at $\gamma_{i} \cap \operatorname{Bd} C$. But then γ_{i} meets $\operatorname{Bd} C$ in at least two points, for

$$
2=N(\alpha \cap \mathrm{Bd} C) \leqq N\left(\gamma_{i} \cap \mathrm{Bd} C\right)
$$

since $\alpha \subset \gamma_{i}$. But γ_{i} meets $\operatorname{Bd} C$ in only one point, so $\gamma_{i} \cap \mathrm{Bd} C$ cannot be an endpoint of α.

Hence no such subarc α of k exists, and $k \cap \mathrm{Cl}\left(C-E_{i+1}\right)$ must therefore consist of three arcs connecting $\operatorname{Bd} C$ and $\operatorname{Bd} E_{i+1}$. Thus $C \sim \mathrm{E}_{i+1}$.

Similarly, $C \sim E_{i}$ if $\beta_{i} \subset$ Int C.
The cases $\alpha_{i} \subset E_{i}-C$ and $\beta_{i} \subset \operatorname{Int} C$ are the only two cases possible; it is impossible that both $\alpha_{i} \cap \mathrm{Bd} C$ and $\beta_{i} \cap \mathrm{Bd} C$ be nonempty together. For α_{i} and β_{i} are disjoint, and both have algebraic intersection number zero with $\mathrm{Bd} C$, so

$$
N(k \cap \operatorname{Bd} C) \geqq N\left(\alpha_{i} \cap \operatorname{Bd} C\right)+N\left(\beta_{i} \cap \mathrm{Bd} C\right) \geqq 4
$$

because α_{i} and β_{i} must both meet $\mathrm{Bd} C$ in at least two points. So if $N(k \cap \mathrm{Bd} C)=3$, one and only one of the sets $\alpha_{i} \cap \operatorname{Bd} C, \beta_{i} \cap \operatorname{Bd} C$ is empty.

Lemma 2. If C is a 3-cell, $C \sim E_{i}, E_{i-1} \supset C \supset E_{i+1}$, then

$$
\mathscr{C}^{\prime}: E_{0} \succ E_{1} \succ \cdots>E_{i-1}>C>E_{i+1} \succ \cdots
$$

is a Fox-Artin sequence for k, and $L\left(\mathscr{E}^{\prime}\right)=L(\mathscr{E})$.
Proof. This is a straightforward application of the results B and B^{*} of $\S 1$.

If $C \supset E_{i}$, then $C \prec E_{i-1}$ and $L\left(E_{i-1}, C\right)=L\left(E_{i-1}, E_{i}\right)$, by B^{*}. Also, $E_{i}>E_{i+1}$ so $C \succ E_{i+1}$ and $L\left(C, E_{i+1}\right)=L\left(E_{i}, E_{i+1}\right)$, by B. This is sufficient to show that \mathscr{E}^{\prime} is a Fox-Artin sequence for k.

If $C \subset E_{i}$, the proof is similar.
Let $E_{i+1} \in \mathscr{E}$. A containing sequence for E_{i+1}, of length s in E_{0}, is a 3 -cell sequence

$$
E_{0}=B_{0} \succ B_{1} \succ B_{2} \succ \cdots \succ B_{s} \succ B_{s+1}=E_{i+1}
$$

The associated sequence of prime links is the sequence $\left\{L\left(B_{i}, B_{i+1}\right)\right\}$.
Lemma 3. Any two containing sequences for E_{i+1} in E_{0} have the same length (length i), and the associated sequences of prime links are identical. Thus any two Fox-Artin sequences \mathscr{E} and \mathscr{E}^{\prime} which start at E_{0} and have E_{i+1} as a common term also have the first $i+1$ terms of $L(\mathscr{E})$ and $L\left(\mathscr{E}^{\prime}\right)$ in common.

Proof. Let \mathscr{E}_{i+1} denote the containing sequence

$$
E_{0} \succ E_{1} \succ \cdots>E_{i}>E_{i+1}
$$

for E_{i+1} in E_{0}, let

$$
E_{0} \succ B_{1} \succ \cdots>B_{s}>E_{i+1}
$$

be another containing sequence for E_{i+1}, and assume $s>i$. Let \mathscr{B} be the class of all containing sequences for E_{i+1}, of length s in E_{0}, whose associated sequences of prime links are identical with the sequence $\left\{L\left(B_{j}, B_{j+1}\right)\right\} . \mathscr{B}$ is not empty by hypothesis, so there exists a sequence

$$
E_{0}=C_{0}>C_{1} \succ C_{2} \succ \cdots>C_{s}>C_{s+1}=E_{i+1}
$$

in \mathscr{B} with the properties:
(i) each 2-sphere $\mathrm{Bd} C_{j}$ is in general position with respect to the 2 -spheres $\operatorname{Bd} E_{1}, \cdots, \mathrm{Bd} E_{i}$, and
(ii) the number of elements of the family

$$
C\left(\mathscr{E}_{i+1}\right)=\bigcup_{j=1}^{s} \bigcup_{h=1}^{i} \operatorname{Bd} C_{j} \cap \operatorname{Bd} E_{h}
$$

of intersection curves is minimal in \mathscr{B}, and none of these intersection curves meets k.

Note that by (i), each intersection curve is a simple closed curve $\sigma \subset \operatorname{Bd} C_{j} \cap \mathrm{Bd} E_{h}$, which bounds discs on both $\mathrm{Bd} C_{j}$ and $\mathrm{Bd} E_{h}$.

Our first step is to show $C\left(\mathscr{E}_{i+1}\right)=\varnothing$.
For some l and h, let $\sigma \subset \mathrm{Bd} C_{l} \cap \mathrm{Bd} E_{h}$ be an intersection curve. σ separates $\mathrm{Bd} E_{h}$ into two discs, D_{1} and D_{2}, and one of these discs contains at most one point of k, because $N\left(k \cap \mathrm{Bd} E_{h}\right)=3$. Let this disc be $D(\sigma)$.

Suppose there exists an index j and an intersection curve $\alpha \subset \operatorname{Bd} C_{j} \cap \operatorname{Int} D(\sigma)$, which bounds a disc $\mathrm{D} \subset \operatorname{Int} D(\sigma)$ containing no other intersection curves. α also separates $\mathrm{Bd} C_{j}$ into two discs; one of these, say D^{\prime}, together with D is the boundary of a 3-cell S which does not contain C_{j+1}. Let N be a closed regular neighbourhood of S. We write $C_{j}^{\prime}=C_{j} \cup N$ if $D \subset \mathrm{Cl}\left(E_{0}-C_{j}\right)$, and $C_{j}^{\prime}=\mathrm{Cl}\left(C_{j}-N\right)$ if $D \subset C_{j}$.

Then C_{j}^{\prime} is a tame closed 3-cell neighbourhood of p, with $C_{j-1} \supset$ $C_{j}^{\prime} \supset C_{j+1}$; we will show
(a) $N\left(k \cap \mathrm{Bd} C_{j}^{\prime}\right)=N\left(k \cap \mathrm{Bd} C_{j}\right)=3$, and
(b) $C_{j}^{\prime} \prec C_{j-1}, C_{j}^{\prime} \succ C_{j+1}$,

$$
L\left(C_{j-1}, C_{j}^{\prime}\right)=L\left(C_{j-1}, C_{j}\right),
$$

and

$$
L\left(C_{j}^{\prime}, C_{j+1}\right)=L\left(C_{j}, C_{j+1}\right) .
$$

The sequence

$$
E_{0}>C_{1} \succ \cdots>C_{j-1} \succ C_{j}^{\prime} \succ C_{j+1} \succ \cdots>C_{s} \succ E_{i+1}
$$

will then be a sequence in \mathscr{B} by Lemma 2 ; and we note that

$$
\mathrm{Bd} C_{j}^{\prime} \cap \mathrm{Bd} E_{l} \subset \mathrm{Bd} C_{j} \cap \mathrm{Bd} E_{l}
$$

particularly if $l=h$, when
$\mathrm{Bd} C_{j}^{\prime} \cap \mathrm{Bd} E_{h} \subset \mathrm{Bd} C_{j} \cap \mathrm{Bd} E_{h}-\{\alpha\}$.
But this new sequence in \mathscr{B} has at least one less intersection curve in $C\left(\mathscr{E}_{i+1}\right)$ than our original sequence, contradicting the minimality hypothesis (ii). Hence if (a) and (b) hold, we must conclude that $C\left(\mathscr{E}_{i+1}\right)$ is empty.
(a) k meets $\mathrm{Bd} C_{j}^{\prime}$ in at least three points, for k has penetration index three at p. So $N\left(k \cap \mathrm{Bd} C_{j}^{\prime}\right) \geqq N\left(k \cap \mathrm{Bd} C_{j}\right)$, i.e. $N(k \cap D) \geqq$ $N\left(k \cap D^{\prime}\right)$. But

$$
N\left(k \cap D^{\prime}\right) \leqq N(k \cap D) \leqq N(k \cap D(\sigma)) \leqq 1 ;
$$

so certainly $k \cap D^{\prime}$ is empty if $k \cap D=\varnothing$, and k meets D^{\prime} in precisely one point if $N(k \cap D)=1$, because $\nu(k \cap \mathrm{Bd} S)=0$. In both cases,
then, $N(k \cap D)=N\left(k \cap D^{\prime}\right)$ and $N\left(k \cap \mathrm{Bd} C_{j}^{\prime}\right)=3$.
(b) If $k \cap D=\varnothing$, this is trivial. If $k \cap D$ and $k \cap D^{\prime}$ are both one-point sets, $k \cap S$ must consist of one arc γ joining D and D^{\prime}, so C_{j}^{\prime} and C_{j} are k-similar. Then it follows from Lemma 1 that $C_{j}^{\prime}<C_{j-1}$ and $C_{j}^{\prime} \succ C_{j+1}$, and from B and B^{*} that

$$
L\left(C_{j-1}, C_{j}^{\prime}\right)=L\left(C_{j-1}, C_{j}\right)
$$

and

$$
L\left(C_{j}^{\prime}, C_{j+1}\right)=L\left(C_{j}, C_{j+1}\right) .
$$

We conclude that $C\left(\mathscr{E}_{i+1}\right)=\varnothing$; that is, that $\mathrm{Bd} C_{j} \cap \mathrm{Bd} E_{h}=\varnothing$ for all indices $j=1, \cdots, s$ and $h=1, \cdots, i$. Our next aim is to show that the assumption $s>i$ leads to a contradiction; and to this end, we let $n(h)$ denote the number of 2 -spheres $\mathrm{Bd} C_{j}$ contained in $\operatorname{Int}\left(E_{h}-E_{h+1}\right), h=0, \cdots, i$.

That $n(0)$ and $n(i)$ are both at most 1 follows from Lemma 1. Indeed, suppose $\mathrm{Bd} C_{s-1} \cup \mathrm{Bd} C_{s} \subset \operatorname{Int}\left(E_{i}-E_{i+1}\right)$. Then $C_{s} \sim E_{i}$ because $C_{s} \succ E_{i+1}$, so there is no subarc of k in $\mathrm{Cl}\left(E_{i}-C_{s}\right)$ which has both endpoints lying on $\mathrm{Bd} C_{s}$. Since $E_{i} \supset C_{s-1} \supset C_{s}$, it is therefore impossible that $C_{s-1}>C_{s}$. So C_{s-1} must contain E_{i} in its interior, and $n(i) \leqq 1$. Similarly $n(0) \leqq 1$.

Suppose $n(h)=r$; that is, that the 2 -spheres $\mathrm{Bd} C_{j}, \cdots, \mathrm{Bd} C_{j+r-1}$ all lie in $\operatorname{Int}\left(E_{h}-E_{h+1}\right)$. If C_{j} and E_{h} are not k-similar, then $C_{j} \sim E_{h+1}$ by Lemma 1. Again, this means that there is no subarc of k in $C_{j}-E_{h+1}$ which has both its endpoints on $\mathrm{Bd} C_{j}$, so it is impossible that $C_{j} \succ C_{j+1}$ if $C_{j} \supset C_{j+1} \supset E_{h+1}$. So $r=1$ if $C_{j} \sim E_{h+1}$.

If $C_{j} \sim E_{h}$, then $E_{h}>C_{j+1}$ (by the remark B in $\S 1$) because $C_{j} \succ$ C_{j+1}. By Lemma 1, C_{j+1} and E_{h+1} must be k-similar. It is then impossible that $C_{j+1}>C_{j+2}$ if $\operatorname{Bd} C_{j+2} \subset \operatorname{Int}\left(C_{j+1}-E_{h+1}\right)$, so $C_{j+2} \subset E_{h+1}$. Hence $r=2$ if $C_{j} \sim E_{h}$.

Thus $n(h)=r \leqq 2$ for all h. Suppose $n(h)=2$ and $n(l)=1$ for all $l<h$. Then $E_{l-1} \supset C_{l} \supset E_{l}$ for all l, and $C_{1} \sim E_{1}$ because $C_{1} \prec E_{0}$, by Lemma 1. C_{2} and E_{1} cannot be k-similar, for then $C_{1} \sim C_{2}$, so $C_{2} \sim E_{2}$ by Lemma 1. Similarly, $C_{3} \sim E_{3}, C_{4} \sim E_{4}, \cdots, C_{h} \sim E_{h}$: but the preceding paragraphs show $C_{h+1} \sim E_{h}$ because $n(h)=2$. Because $C_{h} \supset E_{h} \supset C_{h+1}, C_{h}$ and C_{h+1} must be k-similar, which contradicts the hypothesis $C_{h} \succ C_{h+1}$. Then $n(l)$ must be zero for at least one $l<h$.

Similarly, we may show that if h is the last index such that $n(h)=2$, then there is an index $l>h$ such that $n(l)=0$.

Now suppose $n(h)=n(t)=2$, but $n(r)=1$ for all $h<r<t$. Let C_{l} be the 3 -cell which is k-similar to E_{h+1}. Then $C_{l+1} \sim E_{k+2}$, so $C_{l+2} \sim E_{h+3}, \cdots$, and $C_{l+t-h-1} \sim E_{t} . \quad$ But because

$$
C_{l+t-h-1} \supset E_{t} \supset C_{l+t-h} \succ C_{l+t-h+1} \supset E_{t+1}
$$

it follows that $C_{l+t-h} \sim E_{t}$; but then $C_{l+t-h-1} \sim C_{l+t-k}$, which is impossible. So $n(r)$ must be zero for some $r, h<r<t$.

Thus, in the sequence $n(0), n(1), \cdots, n(i)$, we have shown that there is an 0 preceding the first 2, succeeding the last 2 is a 0 , and between any two 2 's there is a 0 . There are more 0 's than 2 's therefore. But then

$$
s=\sum_{h=0}^{i} n(h)<i+1 \leqq s
$$

which is impossible. So the assumption $s>i$ leads to a contradiction. However if $s<i$, we let $m(j)$ denote the number of 2 -spheres Bd E_{h} in $\operatorname{Int}\left(C_{j}-C_{j+1}\right)$, and deduce, as above, that

$$
i=\sum m(j)<s+1 \leqq i
$$

This forces $s=i$.
We now have two containing sequences for E_{i+1}, of length i in E_{0}; we wish to show that the associated sequences of prime links are identical.

For each index h, it is impossible that $C_{h} \succ E_{h}$ if $C_{h} \supset E_{h}$, for then

$$
E_{0} \succ C_{1} \succ C_{2} \succ \cdots C_{h} \succ E_{h}
$$

is a containing sequence for E_{h}, of length h in E_{0}, while

$$
E_{0}>E_{1}>\cdots>E_{h-1}>E_{h}
$$

is a containing sequence of length $h-1$ in E_{0}. But from the part of the lemma already proven, any two containing sequences for E_{h} must have the same length $-h-1-$ in E_{0}. Therefore C_{h} and E_{h} are k-similar if $C_{h} \supset E_{h}$; similarly, $C_{h} \sim E_{h}$ if $C_{h} \subset E_{h}$.

Then to prove $L\left(C_{h}, C_{h+1}\right)=L\left(E_{h}, E_{h+1}\right)$, we have several possibilities to consider: we shall only prove that the prime hubs are identical if $E_{h} \supset C_{h}>C_{h+1} \supset E_{k+1}$. We have

$$
L\left(C_{h}, C_{h+1}\right)=L\left(E_{h}, C_{k+1}\right)=L\left(E_{h}, E_{h+1}\right)
$$

where the equalities follow from the statements B and B^{*} of $\S 1$.
The other possibilities may be considered similarly, and we conclude that $L\left(C_{h}, C_{h+1}\right)=L\left(E_{h}, E_{h+1}\right)$ for all h; that is, the associated sequences of prime links are identical.

Lemma 4. Let \mathscr{E} be a Fox-Artin sequence for k, and let $C \subset \operatorname{Int} E_{0}$ be a 3 -cell. Then C has a containing sequence

$$
E_{0}=C_{0}>C_{1} \succ C_{2} \succ \cdots>C_{s}>C=C_{s+1}
$$

such that

$$
L\left(C_{i}, C_{i+1}\right)=L\left(E_{i}, E_{i+1}\right), \quad i=0,1, \cdots, s
$$

Proof. There exists an index h such that $E_{h} \subset \operatorname{Int} C$. Let \mathscr{B} be the class of all containing sequences for E_{h} in E_{0}, which therefore have length $h-1$ in E_{0}, and the associated sequence of prime links for each containing sequence is the first h terms of the sequence $L(\mathscr{E})$, by Lemma 3. \mathscr{B} is not empty. Then there exists one sequence in \mathscr{B}, say

$$
E_{0} \succ C_{1} \succ C_{2} \succ \cdots \succ C_{h-1} \succ E_{h}
$$

with the properties:
(i) $\mathrm{Bd} C$ is in general position with respect to $\mathrm{Bd} C_{1}, \mathrm{Bd} C_{2}, \cdots$, $\mathrm{Bd} C_{h-1}$, and
(ii) the number of intersection curves $\mathrm{Bd} C \cap \bigcup \mathrm{Bd} C_{j}$ is minimal in \mathscr{B}, and none of these curves meets k.

As in the proof of Lemma 3, we may keep C fixed and modify our sequence in \mathscr{B} to eliminate those intersection curves which bound discs on $\mathrm{Bd} C$ containing at most one point of k, i.e. to eliminate any intersection curves which may occur. Since the number of curves of $\mathrm{Bd} C \cap \cup \mathrm{Bd} C_{j}$ is assumed to be minimal, we conclude that $\mathrm{Bd} C \cap$ $\mathrm{Bd} C_{j}=\varnothing$ for all $j=1,2, \cdots, h-1$.

Then $C_{j+1} \subset C \subset C_{j}$ for some $j, 0 \leqq j<h-1$. From Lemma 1, it follows that either $C \sim C_{j}$ or $C \sim C_{j+1}$ and $C \prec C_{j}$. In the first case,

$$
E_{0} \succ C_{1} \succ \cdots>C_{j-1} \succ C
$$

is a containing sequence for C, while

$$
E_{0} \succ C_{1} \succ \cdots>C_{j-1} \succ C_{j} \succ C
$$

is a containing sequence in the second case. Then we can take the s in the statement of this lemma to be either j or $j-1$, and the result follows because

$$
L\left(C_{s}, C\right)=L\left(C_{s}, C_{s+1}\right)=L\left(E_{s}, E_{s+1}\right)
$$

where the equality on the left follows from either statement B or B^{*}.

We are now ready to prove the theorem.
Since k_{1} and k_{2} are of the same oriented local type at their respective endpoints, there exist neighbourhoods U_{i} of p_{i} (with orientation inherited from R^{3}), and an orientation-preserving homeomorphism

$$
h:\left(U_{1}, U_{1} \cap k_{1}, p_{1}\right) \rightarrow\left(U_{2}, U_{2} \cap k_{2}, p_{2}\right)
$$

which takes U_{1} onto U_{2}.
Let $\mathscr{E}_{1}: E_{0} \succ E_{1} \succ E_{2} \succ \cdots$ and $\mathscr{E}_{2}: B_{0} \succ B_{1} \succ B_{2} \succ \cdots$ be FoxArtin sequences for k_{1} and k_{2} respectively, and consider $h\left(\mathscr{E}_{1}\right)$; that is, the sequence

$$
h\left(E_{0}\right)>h\left(E_{1}\right) \succ h\left(E_{2}\right) \succ \cdots
$$

which is a Fox-Artin sequence for k_{2}. There exists an index t such that $h\left(E_{t}\right) \subset \operatorname{Int} B_{0}$; by Lemma 4, there exist 3 -cells C_{1}, \cdots, C_{s} such that

$$
B_{0}>C_{1} \succ C_{2} \succ \cdots>C_{s} \succ h\left(E_{t}\right) \succ h\left(E_{t+1}\right) \succ \cdots>h\left(E_{t+r}\right)
$$

is a containing sequence for $h\left(E_{t+r}\right)$ in B_{0}. Also, there exists an index $H(r)=H$ and 3-cells $C_{s+r+2}, \cdots, C_{H-1}$ such that

$$
h\left(E_{t+r}\right)>C_{s+r+2}>\cdots>C_{H-1}>B_{H}
$$

is a containing sequence for B_{H} in $h\left(E_{t+r}\right)$.
Then we have two containing sequences for B_{H} in B_{0}, namely

$$
B_{0}>B_{1} \succ B_{2} \succ \cdots>B_{H}
$$

and

$$
\begin{aligned}
B_{0} & \succ C_{1} \succ \cdots>C_{s}>h\left(E_{t}\right) \succ h\left(E_{t+1}\right) \succ \cdots \\
& \succ h\left(E_{t+r}\right) \succ C_{s+r+2} \succ \cdots>C_{H-1}>B_{H} .
\end{aligned}
$$

Then by Lemma 3,

$$
\begin{aligned}
L\left(E_{t}, E_{t+1}\right) & =L\left(h\left(E_{t}\right), h\left(E_{t+1}\right)\right)=L\left(B_{s+1}, B_{s+2}\right) \\
L\left(E_{t+1}, E_{t+2}\right) & =L\left(h\left(E_{t+1}\right), h\left(E_{t+2}\right)\right)=L\left(B_{s+2}, B_{s+3}\right) \\
\vdots\left(E_{t+r-1}, E_{t+r}\right) & =L\left(h\left(E_{t+r-1}\right), h\left(E_{t+r}\right)\right)=L\left(B_{s+-1}, B_{s+r}\right)
\end{aligned}
$$

Setting $r=1,2,3, \cdots$ shows that the sequences $L\left(\mathscr{E}_{1}\right)$ and $L\left(\mathscr{E}_{2}\right)$ are cofinal.

References

1. W. R. Alford and B. J. Ball, Some almost polyhedral wild arcs, Duke Math. J., 30 (1963), 33-38.
2. R. H. Fox, Some problems in knot theory, in TOPOLOGY OF 3-MANIFOLDS, ed. M. K. Fort, Jr., Prentice Hall, Englewood Cliffs, N. J. 1962.
3. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. Math., (2) 49 (1948), 979-990.
4. R. H. Fox and O. G. Harrold, The Wilder arcs, in TOPOLOGY OF 3-MANIFOLDS, ed. M. K. Fort, Jr., Prentice Hall, Englewood Cliffs, N. J. 1962.
5. C. H. Giffen, Uncountably many inequivalent nearly tame arcs, Abstract 607-19, Notices Amer. Math. Math. Soc., 10 (1963), 666-667.
6. Y. Hashizume, On the uniqueness of the decomposition of a link, Osaka Math. J.,

10 (1958), 283-300.
7. R. Holmes and N. Smythe, Algebraic invariants of isotopy of links, Amer. J. Math., 88 (1966), 646-654.
8. S. J. Lomonaco, An algebraic theory of local knottedness, I, Trans. Amer. Math. Soc. 129 (1967), 322-343.
9. J. McPherson, Wild knots and arcs in a 3-manifold, University of New South Wales Ph. D. thesis, 1970.
10. ——, A sufficient condition for an arc to be nearly polyhedral, Proc. Amer. Math. Soc., 28 (1971), 229-233.
11. _, A family of non-invertible prime links, Bull. Austral. Math. Soc., 4 (1971), 105-108, Corrigendum 5 (1971), 141-143.
12. C. D. Sikkema, A duality between certain spheres and arcs in S^{3}, Trans. Amer. Math. Soc., 122 (1966), 399-415.
13. C. D. Sikkema, S. Kinoshita, and S. J. Lomonaco, Uncountably many quasi-translations of S^{3}, manuscript.
14. N. Smythe, Topological invariants of isotopy of links, I, Amer. J. Math., 92 (1970), 86-98.

Received October 23, 1970 and in revised form April 5, 1971.
The Australian National University
Canberra, Australia

