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ON THE NUMBER OF TYPE-2 TRANSLATION-
INVARIANT GROUPS

J. HILLEL

The concept of a translation-invariant permutation group
was introduced in connection with the problem of constructing
“algebras of symmetry-classes of tensors”. Such a group is
of type-k if it has k orbits. In this paper the number of
type-k groups is shown to be the same as the number of
divisors of X* — 1 over the two-element field.

Let S. be the group of all permutations of finite degree on the
set {1, 2,3, ---}. If o is the permutation given by (a,b)(a.b,) --- (a.b,),
its translate o' is defined to be the permutation

(@ +1 b +1)a+1b+1)e-(a+1b +1).

The definition of the translate of ¢ is independent of the decomposition
of o into a product of transpositions. A subgroup H of S. is said
to be translation-invariant (briefly, H is a t — 7 group) if whenever
g is in H so is ot

The translation-invariant groups were first introduced in [1] in
connection with the problem of generalizing the construction of the
Tensor, Grassmann and Symmetric algebras by using symmetry-classes
of tensors (see [2]). The following was proven in [1]: if H is a non-
trivial ¢ — ¢ group (assume H moves 1), then the orbits for the action
of H on {1,2,8,--:} are Z,, ={4,1+ k,t+ 2k, ---},1 £1 =k, for
some k = 1. The number of orbits is called the type of H. Let S;.
(resp. A;.) be the group of all (resp. even) permutations on the set
Ziw, 1 <1<k, and let S.(k) = S, .X -+« XS..., Au(k) = A,,. X -+ Ay e
For each k& =1, these are ¢t — ¢ groups and if H is any type-k ¢ — ¢
group, clearly H < S_(k). Moreover, it was proven that a t — 7 group
contains all the even permutations on each of its orbits, i.e.,

THEOREM 1. If His a type-kt — © group then A.(k) < H < S.(k).

In this presentation we are concerned with determining the number
of type-k t — i groups for each k= 1. In [1] it was proven that:

THEOREM 2. There are 2" + 1 ¢t — 1 groups of type-2", n = 0.

The above theorem was proved by looking at some special features
of the lattice of the type-k ¢ — 7 groups. However, here we will show
that the number of type-k ¢ — ¢ groups is the same as the number
of factors of the polynomial X* — 1 over the two-element field F’, and
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thus is completely known.

2. Let k=1 be fixed and let P(k) denote the power set on the
set {1,2, ---, k}. Let 4 denote the symmetric-difference of sets, then
{P(k), 4} is an abelian group whose zero element is the empty set ¢,
and every « in P(k) satisfies ada = ¢, i.e., {P(k), 4} is a k-dimensional
vector-space over F, and the singleton sets {i},1 < ¢ < k form a basis.

Any permutation ¢ in S..(k) can be written as a product ¢.0, --- 0,
where o; is a permutation on the orbit Z;,,1 <¢ < k. Define F(o)
to be {7, -+, %} where o;,--+,0;, are those permutations among
0, »++, 0, Which have odd parity. The map F": S.(k) — P(k) satisfies
F(ot) = F(0)4F(7) for every ¢ and 7 in S.(K), i.e., F'is a group homo-
morphism with Ker (F) = A.(k). By Theorem 1, the usual corre-
spondence between subgroups of S.(k) which contain A.(k) and the
subgroups of P(k) sets a one-to-one correspondence between the type-k
t — 4 groups and a certain subfamily of subgroups of P(k) (the ¢ — ¢
mod (k) subgroups in [1]).

Consider the basis C, = {{1}, -- -, {k}} of the vector-space P(k) and
define a multiplication on C, by {i}-{j} = {(- + 7 — 1) mod (k)} for
1<¢<k1<j<k. C, thus becomes a cyclic group and the multi-
plication is uniquely extendable to all of P(k), i.e.,

{il""sim}'{jh'°’9jn}: 4 {ir}'{js}’
1=rsm
1=ssn
This multiplication endows P(k) with a commutative ring structure.
In fact, P(k) is the group-ring F,(C,). We note that as {2} is a
generator of the group C,, it is also a generator (in the algebraic
sense) of P(k).

PROPOSITION. The type-k t — © groups are in one-to-one correspond-
ence with the ideals of the ring P(k).

Proof. Let I be a nontrivial subgroup of P(k) which corresponds
to a ¢ — ¢ group H under the homomorphism F defined above. Sup-
pose « = {t, «++,%,} is in I, then F(o) = « for some ¢ in H, i.e.,
0 = 0, -+ 0, where o; acts on the orbit Z;, and o;, -+, 0;, are the
permutations of odd parity. Since H is a t — 4 group, ¢ = ¢! is in
H and F(z) is in I. Writing ¢ as a product 7, --- 7, where 7, acts
on Z,,, it is easily seen that 7,,, = 0,,1 <7 < k and 7, = ¢}'. Hence
F(z) ={(t.+ 1) mod (k), - -+, (i, + 1) mod (k)} = {3,, -+, 4.} - {2}, i.e., @ {2}
is in I whenever « is in I. As {2} generates the whole ring, it fol-
lows that I is an ideal.

Conversely, if I is an ideal of P(k) it is immediate that F~'(I) is
a t — 1 group.
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The group-ring P(k) is isomorphic to F,[X]/(X* — 1) hence the
ideals in P(k) correspond to the divisors of X* — 1 in F,[X]. Let
k= 2" where (2,7) =1, then X* -1 =(X"—-1)*". Now X" —1=
I1a- 4(X) where ¢,(X) are the cyclotomic polynomials. Furthermore
(see [3], Theorem 7-2-4), ¢,(X) is a product of the irreducible poly-
nomials P(X) .- P, (X), my = ¢(d)/f;, where ® is the Euler function
and f, is the smallest integer f such that 2/ = mod (d). Thus, if s,
is the number of irreducible divisors of X" — 1, then s, = 3., P(d)/fs.
Letting s, = 1, we conclude:

THEOREM 3. Let k = 2"r where (2, ) = 1, then there are (2" + 1)°r
translation-invariant groups of type-k.
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