ON THE NUMBER OF TYPE-k TRANSLATION-INVARIANT GROUPS

J. HILLEL

The concept of a translation-invariant permutation group was introduced in connection with the problem of constructing "algebras of symmetry-classes of tensors". Such a group is of type-k if it has k orbits. In this paper the number of type-k groups is shown to be the same as the number of divisors of X^k-1 over the two-element field.

Let S_{∞} be the group of all permutations of finite degree on the set $\{1, 2, 3, \dots\}$. If σ is the permutation given by $(a_1b_1)(a_2b_2)\cdots(a_tb_t)$, its translate $\sigma^{[1]}$ is defined to be the permutation

$$(a_1 + 1 b_1 + 1)(a_2 + 1 b_2 + 1) \cdots (a_t + 1 b_t + 1)$$
.

The definition of the translate of σ is independent of the decomposition of σ into a product of transpositions. A subgroup H of S_{∞} is said to be translation-invariant (briefly, H is a t-i group) if whenever σ is in H so is $\sigma^{[1]}$.

The translation-invariant groups were first introduced in [1] in connection with the problem of generalizing the construction of the Tensor, Grassmann and Symmetric algebras by using symmetry-classes of tensors (see [2]). The following was proven in [1]: if H is a nontrivial t-i group (assume H moves 1), then the orbits for the action of H on $\{1, 2, 3, \cdots\}$ are $Z_{i,k} = \{i, i+k, i+2k, \cdots\}, 1 \le i \le k$, for some $k \ge 1$. The number of orbits is called the type of H. Let $S_{i,\infty}$ (resp. $A_{i,\infty}$) be the group of all (resp. even) permutations on the set $Z_{i,k}$, $1 \le i \le k$, and let $S_{\infty}(k) = S_{1,\infty}X \cdots XS_{k,\infty}$, $A_{\infty}(k) = A_{1,\infty}X \cdots A_{k,\infty}$. For each $k \ge 1$, these are t-i groups and if H is any type-k t-i group, clearly $H < S_{\infty}(k)$. Moreover, it was proven that a t-i group contains all the even permutations on each of its orbits, i.e.,

Theorem 1. If H is a type-k t-i group then $A_{\infty}(k) < H < S_{\infty}(k)$.

In this presentation we are concerned with determining the number of type-k t-i groups for each $k \ge 1$. In [1] it was proven that:

THEOREM 2. There are $2^n + 1$ t - i groups of type- 2^n , $n \ge 0$.

The above theorem was proved by looking at some special features of the lattice of the type- $k\ t-i$ groups. However, here we will show that the number of type- $k\ t-i$ groups is the same as the number of factors of the polynomial X^k-1 over the two-element field F_2 and

540 J. HILLEL

thus is completely known.

2. Let $k \ge 1$ be fixed and let P(k) denote the power set on the set $\{1, 2, \dots, k\}$. Let Δ denote the symmetric-difference of sets, then $\{P(k), \Delta\}$ is an abelian group whose zero element is the empty set ϕ , and every α in P(k) satisfies $\alpha \Delta \alpha = \phi$, i.e., $\{P(k), \Delta\}$ is a k-dimensional vector-space over F_2 and the singleton sets $\{i\}$, $1 \le i \le k$ form a basis.

Any permutation σ in $S_{\infty}(k)$ can be written as a product $\sigma_1\sigma_2\cdots\sigma_k$ where σ_i is a permutation on the orbit $Z_{i,k}$, $1\leq i\leq k$. Define $F(\sigma)$ to be $\{i_1,\cdots,i_t\}$ where $\sigma_{i_1},\cdots,\sigma_{i_t}$ are those permutations among σ_1,\cdots,σ_k which have odd parity. The map $F\colon S_{\infty}(k)\to P(k)$ satisfies $F(\sigma\tau)=F(\sigma)\Delta F(\tau)$ for every σ and τ in $S_{\infty}(K)$, i.e., F is a group homomorphism with Ker $(F)=A_{\infty}(k)$. By Theorem 1, the usual correspondence between subgroups of $S_{\infty}(k)$ which contain $A_{\infty}(k)$ and the subgroups of P(k) sets a one-to-one correspondence between the type-k t-i groups and a certain subfamily of subgroups of P(k) (the t-i mod (k) subgroups in [1]).

Consider the basis $C_k = \{\{1\}, \dots, \{k\}\}$ of the vector-space P(k) and define a multiplication on C_k by $\{i\} \cdot \{j\} = \{(i+j-1) \bmod (k)\}$ for $1 \leq i \leq k$, $1 \leq j \leq k$. C_k thus becomes a cyclic group and the multiplication is uniquely extendable to all of P(k), i.e.,

$$\{i_1,\,\cdots,\,i_m\}\cdot\{j_1,\,\cdots,\,j_n\}=\mathop{\it \Delta}_{\substack{1\leq r\leq m\1\leq s\leq n}}\{i_r\}\cdot\{j_s\}$$
 .

This multiplication endows P(k) with a commutative ring structure. In fact, P(k) is the group-ring $F_2(C_k)$. We note that as $\{2\}$ is a generator of the group C_k , it is also a generator (in the algebraic sense) of P(k).

PROPOSITION. The type-k t-i groups are in one-to-one correspondence with the ideals of the ring P(k).

Proof. Let I be a nontrivial subgroup of P(k) which corresponds to a t-i group H under the homomorphism F defined above. Suppose $\alpha=\{i_1,\cdots,i_t\}$ is in I, then $F(\sigma)=\alpha$ for some σ in H, i.e., $\sigma=\sigma_1\cdots\sigma_k$ where σ_i acts on the orbit $Z_{i,k}$ and $\sigma_{i_1},\cdots,\sigma_{i_t}$ are the permutations of odd parity. Since H is a t-i group, $\tau=\sigma^{[1]}$ is in H and $F(\tau)$ is in I. Writing τ as a product $\tau_1\cdots\tau_k$ where τ_i acts on $Z_{i,k}$, it is easily seen that $\tau_{i+1}=\sigma_i, 1\leq i< k$ and $\tau_1=\sigma_k^{[1]}$. Hence $F(\tau)=\{(i_1+1) \bmod (k),\cdots,(i_t+1) \bmod (k)\}=\{i_1,\cdots,i_t\}\cdot\{2\}$, i.e., $\alpha\cdot\{2\}$ is in I whenever α is in I. As $\{2\}$ generates the whole ring, it follows that I is an ideal.

Conversely, if I is an ideal of P(k) it is immediate that $F^{-1}(I)$ is a t-i group.

The group-ring P(k) is isomorphic to $F_2[X]/(X^k-1)$ hence the ideals in P(k) correspond to the divisors of X^k-1 in $F_2[X]$. Let $k=2^nr$ where (2,r)=1, then $X^k-1=(X^r-1)^{2^n}$. Now $X^r-1=\prod_{d\mid r}\phi_d(X)$ where $\phi_d(X)$ are the cyclotomic polynomials. Furthermore (see [3], Theorem 7-2-4), $\phi_d(X)$ is a product of the irreducible polynomials $P_1(X)\cdots P_{m_d}(X)$, $m_d=\varphi(d)/f_d$, where φ is the Euler function and f_d is the smallest integer f such that $2^f\equiv \operatorname{mod}(d)$. Thus, if s_r is the number of irreducible divisors of X^r-1 , then $s_r=\sum_{d\mid r}\varphi(d)/f_d$. Letting $s_1=1$, we conclude:

THEOREM 3. Let $k = 2^n r$ where (2, r) = 1, then there are $(2^n + 1)^{s_r}$ translation-invariant groups of type-k.

REFERENCES

- 1. J. Hillel, Algebras of symmetry classes of tensors, J. Algebra, 23 (1972), 215-227.
- 2. M. Marcus and H. Minc, Permutations on symmetry classes, J. Algebra, 5 (1967), 59-71.
- 3. E. Weiss, Algebraic Number Theory, McGraw-Hill, 1963.

Received November 14, 1971.

SIR GEORGE WILLIAMS UNIVERSITY