CENTRAL 2-SYLOW INTERSECTIONS

MARCEL HERZOG

Let G be a finite group. A subgroup D of G is called a 2-Sylow intersection if there exist distinct Sylow 2-subgroups S_1 and S_2 of G such that $D = S_1 \cap S_2$. An involution of G is called *central* if it is contained in a center of a Sylow 2-subgroup of G. A 2-Sylow intersection is called *central* if it contains a central involution. The aim of this work is to determine all non-abelian simple groups G which satisfy the following condition

B: the 2-rank of all central 2-Sylow intersections is not higher than 1, under the additional assumption that the centralizer of a central involution of G is solvable.

In 1964, M. Suzuki [5] determined all simple groups with all 2-Sylow intersections being trivial (i.e. of rank 0). Using a recent fusion theorem by E. Shult [3, p. 62] the author proved [4] that no additional simple groups are involved if Suzuki's condition is weakened to read: all central 2-Sylow intersections are trivial (i.e. no central involution is contained in a 2-Sylow intersection).

This paper is a step toward the characterization of all simple groups G which satisfy Condition B (in short $G \in B$). We will prove the following

THEOREM. Let G be a non-abelian simple group. Suppose that $G \in B$ and the centralizer of a central involution z in G is solvable. Then G is isomorphic to one of the following groups:

A finite group G is of 2-rank n if an elementary abelian 2-subgroup of G of maximal order contains 2^n elements. The 2-length of G is denoted by $1_2(G)$. The maximal power of 2 dividing |G| is denoted by $|G|_2$. An involution z of G is called isolated if it belongs to a Sylow 2-subgroup S of G and $z^g \in S$ implies $z^g = z$. The maximal normal subgroup of G of odd order is denoted by 0(G). Finally the groups Q_8 , S_3 and S_4 are the ordinary quarternion group, the symmetric group on 3 letters and the symmetric group on 4 letters, respectively.

2. Properties of groups satisfying Condition B.

LEMMA 1. Let $G \in B, H \subseteq G$.

(i) If $|H|_2 = |G|_2$ then $H \in B$. (ii) If $H \triangleleft G$ and $|G/H|_2 = |G|_2$ then $G/H \in B$.

Proof. (i) is obvious. If H is a normal subgroup of G of odd order, then the S_2 -subgroups of $\overline{G} = G/H$ are of the form SH/H = $\overline{S} \cong S$, where S is an S_2 -subgroup of G. Let S_1 and S_2 be S_2 -subgroups of G such that $\overline{S}_1 \cap \overline{S}_2$ is a central 2-Sylow intersection of 2rank at least 2. Since H is of odd order, there exists a 2-subgroup D of G, such that $\overline{S}_1 \cap \overline{S}_2 = DH/H = \overline{D} \cong D$. It is clear that there exist $h_1, h_2 \in H$ such that $D \cong S_1^{h_1} \cap S_2^{h_2}$. If zH is a central involution of $SH/H, z \in S$, then $[z, s] \in S \cap H = 1$ for all $s \in S$, hence $z \in Z(S)$. Thus D contains a central involution of G and as $G \in B$ and the 2-rank of D is at least 2, it follows that $S_1^{h_1} = S_2^{h_2}, \overline{S}_1 = \overline{S}_2$ and \overline{D} is not a 2-Sylow intersection of G. Thus $\overline{G} \in B$.

LEMMA 2. Let $G \in B$, $H \subseteq G$ and suppose that the following assumptions hold:

- (i) *H* is solvable;
- (ii) $|H|_2 = |G|_2$ and

(iii) $0_2(H)$ contains a central involution of G.

Then $1_2(H) = 1$, unless $0_2(\bar{H}) \cong Q_8$ and $\bar{H}/0_2(\bar{H}) \cong S_3$, where $\bar{H} = H/0(H)$.

Proof. By Lemma 1 H and \overline{H} satisfy Condition B and $0_2(\overline{H})$ obviously contains a central involution of \overline{H} . If $0_2(\overline{H})$ is cyclic or generalized quaternion (but not ordinary quaternion), then $\operatorname{Aut}(0_2(\overline{H}))$ is a 2-group and therefore $\overline{H}/C(0_2(\overline{H}))$ is a 2-group. As \overline{H} is solvable, $C(0_2(\overline{H})) \subseteq 0_2(\overline{H})$ and consequently \overline{H} is a 2-group, hence $1_2(H) = 1$.

If $0_2(\bar{H})$ is of 2-rank at least 2, then $\bar{H} \in B$ forces \bar{H} to be 2-closed, hence $1_2(H) = 1$.

Suppose, finally, that $0_2(\bar{H}) \cong Q_8$. Then $\bar{H}/C(0_2(\bar{H}))$ is isomorphic to a subgroup of S_4 and if \bar{H} is not 2-closed then obviously 24 divides the order of $\bar{H}/C(0_2(\bar{H}))$. Thus $\bar{H}/C(0_2(\bar{H}))\cong S_4$ and $\bar{H}/0_2(\bar{H})\cong S_3$.

LEMMA 3. Let $G \in B$ and suppose that S and S_1 are S_2 -subgroups of G. Let $z \in Z(S)$ be an involution, $g \in G$, and suppose that $z^g \in S_1$. Then $z^g \in Z(S_1)$.

Proof. Suppose that z^g is not central in S_1 . Then $S_1 \cap C_G(z^g)$ contains z^g and a central involution of S_1 . Let T be an S_2 -subgroup of $C_G(z^g)$ containing $S_1 \cap C_G(z^g)$; as $C_G(z^g) \supseteq S^g$, T is an S_2 -subgroup of G. Since the 2-rank of $D = S_1 \cap T$ is at least 2 and D contains a

central involution of G, it follows from our assumptions that $S_1 = T$, hence $z^g \in Z(S_i)$, a contradiction.

LEMMA 4. Let $G \in B$ and suppose that $|\Omega_1(Z(S))| = 2$, where S is an S_2 -subgroup of G. Then $\Omega_1(Z(S)) \subseteq Z^*(G)$, where $Z^*(G)/0(G) = Z(G/0(G))$.

Proof. Let $z \in \Omega_1(Z(S))$; then by Lemma 3 z is an isolated involution in G. It follows then by the Z^{*}-theorem of Glauberman [2] that $\Omega_1(Z(S)) \subseteq Z^*(G)$.

LEMMA 5. Let $G \in B$, S be an S_2 -subgroup of G and G = 0(G)S. Suppose that $|\Omega_1(Z(S))| > 2$ and S is not normal in G. Then the 2-rank of G is at most 2.

Proof. Let G be a counterexample of minimal order. Then S contains an elementary abelian subgroup A of order 8 such that $|A: Z(S) \cap A| \leq 2$. Let H = 0(G) and $C = C_S(H)$. Then $C \triangleleft S$ and consequently $C \triangleleft SH = G$. As G is not 2-closed and $G \in B$, we have $A \not\subset C$. Consider AH; A is not normal in AH and $|A \cap A^h| \leq 2$ for all $h \in H - N(A)$, as otherwise $G \notin B$. Thus AH is a counterexample and by the minimality of G, G = AH.

Let P be a Sylow p-subgroup of H, such that $A \subseteq N(P)$ and $A \not\subset C(P)$; then again by the minimality of G, G = AP. As by a theorem of Burnside A does not centralize $P/\Phi(P)$, it follows by Lemma 1 (ii) and the minimality G that $\Phi(P) = 1, P$ is elementary abelian. Since A acts on P in a completely reducible way, it follows again by the minimality of G that A acts irreducibly of P and $A/C_A(P)$ acts faithfully and irreducibly on P. Thus $A/C_A(P)$ is a cyclic group and $C_A(P)$ is a normal subgroup of G of 2-rank 2. As $C_A(P)$ contains a central involution and $G \in B$, it follows that G is 2-closed, a contradiction.

3. Proof of the theorem. Let $H = C_c(z)$. If H is 2-closed then by Lemma 3 z belongs to a unique Sylow 2-subgroup of G. Therefore by Theorem C of [4] G is isomorphic to one of the groups in (i)-(iii).

Suppose now that H is not 2-closed. Let $\overline{H} = H/0(H)$ and suppose that $0_2(\overline{H}) \cong Q_8$ and $\overline{H}/0_2(\overline{H}) \cong S_3$. Then obviously

(*)
$$2-\operatorname{rank} H = 2-\operatorname{rank} G = 2.$$

Otherwise it follows by Lemma 2 that $l_2(H) = 1$, hence $0_{2',2}(H) = SL$, where $L = 0_{2'}(H)$ and S is an S₂-subgroup of G. Since H is not 2closed, S is not normal in $0_{2',2}(H)$. As G is simple, it follows by Lemma 4 that $|\Omega_1(Z(S))| > 2$ and Lemma 5 then yields (*) again.

MARCEL HERZOG

Thus in all cases 2-rank G = 2 and by the classification theorem of Alperin, Brauer and Gorenstein [1] only three types of 2-groups could occur as a Sylow subgroup S of a group not mentioned in (i)-(iv):

(a) dihedral of order 8 at least,

- (b) quasi-dihedral, or
- (c) wreathed.

In all of these cases Z(S) is cyclic, hence by Lemma 4 G is nonsimple, a contradiction. The proof of the theorem is complete.

References

1. J. L. Alperin, R. Brauer and D. Gorenstein, *Finite simple groups of 2-rank two*, to appear.

G. Glauberman, Central elements of core-free groups, J. Algebra, 4 (1966), 403-420.
_____, Global and local properties of finite groups, Finite Simple Groups, Academic Press, 1971.

4. M. Herzog, On 2-Sylow intersections, Israel J. Math., 11 (1972), 326-327.

5. M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. Math., 80 (1964), 58-77.

Received December 6, 1971. This paper was written while the author was a visiting professor in Aarhus University, Denmark.

TEL-AVIV UNIVERSITY