CENTRAL 2-SYLOW INTERSECTIONS

Marcel Herzog

Abstract

Let G be a finite group. A subgroup D of G is called a 2-Sylow intersection if there exist distinct Sylow 2 -subgroups S_{1} and S_{2} of G such that $D=S_{1} \cap S_{2}$. An involution of G is called central if it is contained in a center of a Sylow 2 -subgroup of G. A 2-Sylow intersection is called central if it contains a central involution. The aim of this work is to determine all non-abelian simple groups G which satisfy the following condition B: the 2 -rank of all central 2 -Sylow intersections is not higher than 1 , under the additional assumption that the centralizer of a central involution of G is solvable.

In 1964, M. Suzuki [5] determined all simple groups with all 2-Sylow intersections being trivial (i.e. of rank 0). Using a recent fusion theorem by E. Shult [3, p. 62] the author proved [4] that no additional simple groups are involved if Suzuki's condition is weakened to read: all central 2-Sylow intersections are trivial (i.e. no central involution is contained in a 2 -Sylow intersection).

This paper is a step toward the characterization of all simple groups G which satisfy Condition B (in short $G \in B$). We will prove the following

Theorem. Let G be a non-abelian simple group. Suppose that $G \in B$ and the centralizer of a central involution z in G is solvable. Then G is isomorphic to one of the following groups:
(i) $\operatorname{PSL}(2, q), \quad q=2^{n}>2$;
(ii) $\operatorname{Sz}(q), \quad q=2^{n} \geqq 8$;
(iii) $\operatorname{PSU}(3, q), \quad q=2^{n}>2$ and
(iv) $\operatorname{PSL}(2, q), \quad q \equiv 3$ or $5(\bmod 8), q>5$.

A finite group G is of 2 -rank n if an elementary abelian 2 -subgroup of G of maximal order contains 2^{n} elements. The 2-length of G is denoted by $1_{2}(G)$. The maximal power of 2 dividing $|G|$ is denoted by $|G|_{2}$. An involution z of G is called isolated if it belongs to a Sylow 2-subgroup S of G and $z^{g} \in S$ implies $z^{g}=z$. The maximal normal subgroup of G of odd order is denoted by $0(G)$. Finally the groups Q_{8}, S_{3} and S_{4} are the ordinary quarternion group, the symmetric group on 3 letters and the symmetric group on 4 letters, respectively.
2. Properties of groups satisfying Condition B.

Lemma 1. Let $G \in B, H \cong G$.
(i) If $|H|_{2}=|G|_{2}$ then $H \in B$.
(ii) If $H \triangleleft G$ and $|G / H|_{2}=|G|_{2}$ then $G / H \in B$.

Proof. (i) is obvious. If H is a normal subgroup of G of odd order, then the S_{2}-subgroups of $\bar{G}=G / H$ are of the form $S H / H=$ $\bar{S} \cong S$, where S is an S_{2}-subgroup of G. Let S_{1} and S_{2} be S_{2}-subgroups of G such that $\bar{S}_{1} \cap \bar{S}_{2}$ is a central 2-Sylow intersection of 2 rank at least 2. Since H is of odd order, there exists a 2 -subgroup D of G, such that $\bar{S}_{1} \cap \bar{S}_{2}=D H / H=\bar{D} \cong D$. It is clear that there exist $h_{1}, h_{2} \in H$ such that $D \subseteq S_{1}^{h_{1}} \cap S_{2}^{h_{2}}$. If $z H$ is a central involution of $S H / H, z \in S$, then $[z, s] \in S \cap H=1$ for all $s \in S$, hence $z \in Z(S)$. Thus D contains a central involution of G and as $G \in B$ and the 2-rank of D is at least 2, it follows that $S_{1}^{h_{1}}=S_{2}^{h_{2}}, \bar{S}_{1}=\bar{S}_{2}$ and \bar{D} is not a 2-Sylow intersection of G. Thus $\bar{G} \in B$.

Lemma 2. Let $G \in B, H \subseteq G$ and suppose that the following assumptions hold:
(i) H is solvable;
(ii) $|H|_{2}=|G|_{2}$ and
(iii) $O_{2}(H)$ contains a central involution of G.

Then $1_{2}(H)=1$, unless $0_{2}(\bar{H}) \cong Q_{8}$ and $\bar{H} / 0_{2}(\bar{H}) \cong S_{3}$, where $\bar{H}=H / 0(H)$.
Proof. By Lemma $1 H$ and \bar{H} satisfy Condition B and $0_{2}(\bar{H})$ obviously contains a central involution of \bar{H}. If $0_{2}(\bar{H})$ is cyclic or generalized quaternion (but not ordinary quaternion), then $\operatorname{Aut}\left(0_{2}(\bar{H})\right.$) is a 2 -group and therefore $\bar{H} / C\left(0_{2}(\bar{H})\right)$ is a 2 -group. As \bar{H} is solvable, $C\left(0_{2}(\bar{H})\right) \subseteq 0_{2}(\bar{H})$ and consequently \bar{H} is a 2 -group, hence $1_{2}(H)=1$.

If $0_{2}(\bar{H})$ is of 2 -rank at least 2 , then $\bar{H} \in B$ forces \bar{H} to be 2-closed, hence $1_{2}(H)=1$.

Suppose, finally, that $0_{2}(\bar{H}) \cong Q_{8}$. Then $\bar{H} / C\left(0_{2}(\bar{H})\right)$ is isomorphic to a subgroup of S_{4} and if \bar{H} is not 2-closed then obviously 24 divides the order of $\bar{H} / C\left(0_{2}(\bar{H})\right)$. Thus $\bar{H} / C\left(0_{2}(\bar{H})\right) \cong S_{4}$ and $\bar{H} / 0_{2}(\bar{H}) \cong S_{3}$.

Lemma 3. Let $G \in B$ and suppose that S and S_{1} are S_{2}-subgroups of G. Let $z \in Z(S)$ be an involution, $g \in G$, and suppose that $z^{g} \in S_{1}$. Then $z^{g} \in Z\left(S_{1}\right)$.

Proof. Suppose that z^{g} is not central in S_{1}. Then $S_{1} \cap C_{G}\left(z^{g}\right)$ contains z^{g} and a central involution of S_{1}. Let T be an S_{2}-subgroup of $C_{G}\left(z^{g}\right)$ containing $S_{1} \cap C_{G}\left(z^{g}\right)$; as $C_{G}\left(z^{g}\right) \supseteqq S^{g}, T$ is an S_{2}-subgroup of G. Since the 2-rank of $D=S_{1} \cap T$ is at least 2 and D contains a
central involution of G, it follows from our assumptions that $S_{1}=T$, hence $z^{g} \in Z\left(S_{1}\right)$, a contradiction.

Lemma 4. Let $G \in B$ and suppose that $\left|\Omega_{1}(Z(S))\right|=2$, where S is an S_{2}-subgroup of G. Then $\Omega_{1}(Z(S)) \subseteq Z^{*}(G)$, where $Z^{*}(G) / 0(G)=$ $Z(G / 0(G))$.

Proof. Let $z \in \Omega_{1}(Z(S))$; then by Lemma $3 z$ is an isolated involution in G. It follows then by the Z^{*}-theorem of Glauberman [2] that $\Omega_{1}(Z(S)) \subseteq Z^{*}(G)$.

Lemma 5. Let $G \in B, S$ be an S_{2}-subgroup of G and $G=0(G) S$. Suppose that $\left|\Omega_{1}(Z(S))\right|>2$ and S is not normal in G. Then the 2 -rank of G is at most 2.

Proof. Let G be a counterexample of minimal order. Then S contains an elementary abelian subgroup A of order 8 such that $|A: Z(S) \cap A| \leqq 2$. Let $H=0(G)$ and $C=C_{S}(H)$. Then $C \triangleleft S$ and consequently $C \triangleleft S H=G$. As G is not 2-closed and $G \in B$, we have $A \not \subset C$. Consider $A H$; A is not normal in $A H$ and $\left|A \cap A^{h}\right| \leqq 2$ for all $h \in H-N(A)$, as otherwise $G \notin B$. Thus $A H$ is a counterexample and by the minimality of $G, G=A H$.

Let P be a Sylow p-subgroup of H, such that $A \subseteq N(P)$ and $A \not \subset C(P)$; then again by the minimality of $G, G=A P$. As by a theorem of Burnside A does not centralize $P / \Phi(P)$, it follows by Lemma 1 (ii) and the minimality G that $\Phi(P)=1, P$ is elementary abelian. Since A acts on P in a completely reducible way, it follows again by the minimality of G that A acts irreducibly of P and $A / C_{A}(P)$ acts faithfully and irreducibly on P. Thus $A / C_{A}(P)$ is a cyclic group and $C_{A}(P)$ is a normal subgroup of G of 2 -rank 2. As $C_{A}(P)$ contains a central involution and $G \in B$, it follows that G is 2 -closed, a contradiction.
3. Proof of the theorem. Let $H=C_{G}(z)$. If H is 2-closed then by Lemma $3 z$ belongs to a unique Sylow 2-subgroup of G. Therefore by Theorem C of [4] G is isomorphic to one of the groups in (i)-(iii).

Suppose now that H is not 2-closed. Let $\bar{H}=H / 0(H)$ and suppose that $0_{2}(\bar{H}) \cong Q_{8}$ and $\bar{H} / 0_{2}(\bar{H}) \cong S_{3}$. Then obviously

$$
\begin{equation*}
\text { 2-rank } H=2 \text {-rank } G=2 \tag{*}
\end{equation*}
$$

Otherwise it follows by Lemma 2 that $1_{2}(H)=1$, hence $0_{2^{\prime}, 2}(H)=S L$, where $L=0_{2^{\prime}}(H)$ and S is an S_{2}-subgroup of G. Since H is not 2closed, S is not normal in $0_{2^{\prime}, 2}(H)$. As G is simple, it follows by Lemma 4 that $\left|\Omega_{1}(Z(S))\right|>2$ and Lemma 5 then yields (*) again.

Thus in all cases 2 -rank $G=2$ and by the classification theorem of Alperin, Brauer and Gorenstein [1] only three types of 2-groups could occur as a Sylow subgroup S of a group not mentioned in (i)-(iv):
(a) dihedral of order 8 at least,
(b) quasi-dihedral, or
(c) wreathed.

In all of these cases $Z(S)$ is cyclic, hence by Lemma $4 G$ is nonsimple, a contradiction. The proof of the theorem is complete.

References

1. J. L. Alperin, R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, to appear.
2. G. Glauberman, Central elements of core-free groups, J. Algebra, 4 (1966), 403-420. 3. ——, Global and local properties of finite groups, Finite Simple Groups, Academic Press, 1971.
3. M. Herzog, On 2-Sylow intersections, Israel J. Math., 11 (1972), 326-327.
4. M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. Math., 80 (1964), 58-77.

Received December 6, 1971. This paper was written while the author was a visiting professor in Aarhus University, Denmark.

Tel-Aviv University

