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HOMOMORPHISMS OF COMMUTATIVE RINGS
WITH UNIT ELEMENT

E. FRIED AND J. SICHLER

Let R be a commutative ring. All its endomorphisms
form a monoid Sf (.#) and a natural question to ask is what
monoids appear as full endomorphism monoids of commutative
rings. It was shown in [8] that every group is representable
as the full automorphism group of a ring without unit ele-
ment. Much more cannot be expected in this case as the
zero mapping is always one of the endomorphisms. The
presence of the unit element 1 in the ring changes the picture.
We will show here that every monoid is isomorphic to the
monoid ifi(i?) of all 1-preserving endomorphisms of a com-
mutative ring R with 1. In fact, a stronger theorem will be
proved: the category &ι of all rings with 1 and all 1-
preserving homomorphisms is binding.

DEFINITION. A category ^ is binding if every category of algebras
is isomorphic to a full subcategory of ^ .

Every monoid is representable as Honv(C, C) for a suitable object
C of a binding category <g% see e.g [3]. Many other properties are
also shared by binding categories. There is a considerable list of
binding categories: categories of directed [5] and undirected graphs
[7], the category of semigroups [3], the category of commutative
groupoids [9], the category of bounded lattices [1], and other cate-
gories of algebras. Next is the list of theorems proved here.

FULL EMBEDDING THEOREM. &y is binding.

This is the basic theorem. The remaining theorems are con-
senquences of results proved elsewhere and of the proof of the above
theorenio

REPRESENTATION THEOREM. Let M be a monoid, let σ be a cardi-
nal number, σ ^ max (fc$0, \M\). Then there is a set (Ra\ae2°) of
commutative rings Ra with unit such that for all α:, α' e 2σ.

( i ) \Ra\ = σ,
(ii) ^,{Ra)~M,
(iii) Hom^ l (Ra, Ra,) = 0 whenever a Φ a'.

In particular, the rings Ra are pairwise nonisomorphic. Note also
that the result is the best possible—there are exactly 2σ pairwise
nonisomorphic rings of a cardinality σ :> ^ 0 .
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SUBRING INDEPENDENCE THEOREM. Let Mx and M2 be monoids.
Then there are commutative rings with unit R1 and R2 such that Rx

is a subring of R2 and %Ί(Ri) ~ Mi for i = 1, 2.

QUOTIENT RING INDEPENDENCE THEOREM. Let M1 and M2 be

monoids. Then there are commutative rings with unit RL and R2

such that R2 is a homomorphic image of Rι and &ι(Ri) = Mi for i —
1,2.

EXTENSION PROPERTY. Let M be a monoid of transformations on
the set X. Then there is a commutative ring with unit R such that
R contains X and every me M extends uniquely to an endomorphism
of R. This extension is an isomorphism between M and ζfχ(R).

To prove the first theorem a full embedding Φ of the category
& of undirected graphs into ^ will be constructed in third section.
The necessary definitions follow.

2* Graphs and categories* An undirected graph G is a pair
G = (X, R} where X is a set and R is a set of two-element subsets
of X. Let G' = <X', R'y be another graph; a mapping f:X-+X' is
compatible if [xu x2) e R implies {/fe), f(x2)} e Rf. Let & be the cate-
gory whose objects are all undirected graphs and whose morphisms
are all compatible mappings. A morphism /: G—>Gf is onto if / it-
self is an onto mapping and if R! — {{f(x1)9f(x2)}\{^i, x2}£R}

A concrete category is a category ^ together with a fixed faith-
ful functor U: <& —> Set (Set is the category all sets and all mappings).
& is concrete category with Z7«X, R}) = X; for categories of algebras
we shall always choose the standard underlying-set functor. Let
<^i, Ϊ7i> and < ^ , U2) be two concrete categories. A functor Σ: <^1—+
^ 2 is a full embedding if Σ is one-to-one both on objects and on
morphisms and if for every β: Σ(C) —> Σ{C) there exists a morphism
a: C—>C in ^ such that Σ(a) = β. A full embedding Σ is called
an extension if there is a monotransformation μ: Uι—>U2oΣ.

The starting point is the following theorem; it can be easily
obtained using results of [5] and [7].

THEOREM A. Let J^f be a full category of algebras or a full cate-
gory of relational systems. Then there is an extension Ψ^: Jzf —• &
such that ΨV preserves all one-to-one and onto morphisms. If J ^ is
the category of commutative groupoids, then Ψ^ also preserves the cardi-
nalities of those underlying sets that are infinite.

3. The full embedding* An extension
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( 1 ) Φl & — ^

will be constructed here.
Let G = <X, R} be an undirected graph, let Z be the ring of

integers. Consider the ideal I generated by the set {xz — 5.7|$eX}
in the polynomial ring Z[X] and let

(2) R(X) = Z[X]/I.

Obviously, Z ϋ R{X) and R{X) contains a copy of the set X as
a set of generators. Let Φ{G) be the subring of R(X) generated by
the set

(3) Z{j{5x\xeX}Ό{xy\{%,y}eR}.

Every compatible mapping /: G-+G' — <X', R'} extends uniquely
to a 1-preserving homomorphism / : Z[X] —> Z\X'\ such that /(/) S I'
Hence there is a unique homomorphism R(f): R(X) —* R{Xf) such that
R(f)(5x) = 5f(x) and for each xy in Φ(G) R(f)(xy) = f(x)f(y). As /
is a compatible mapping, R{f)(Φ{G)) £ Φ((?') Let Φ(/) be the restric-
tion of ϋ?(/) to Φ(G); it is easy to see that Φ is naturally equivalent to a
one-to-one functor denoted also as Φ.

The mappings μσ: X—> Φ(G) defined by μG{x) = 5x form a natural
transformation μ: ί/i —> ί72o φ, where Z7X: ̂  —> Set and U2: ̂  —̂  Set
are the standard underlying-set functors, μ is a monotransformation.
To prove that Φ is an extension it is enough to show that for every
1-preserving homomorphism g: Φ(G) —> Φ(G') there is a compatible
mapping /: G —> G' such that ^ = Φ(/).

First of all, adjoin a third root p of the unit to R(X); that is,
let p2 + ̂  + 1 3z 0 and let

E(X) = (R(X))[p] .

Let E — Z[p]. Observe that E(X) is a free 2?-module over the
set of all commutative products

(4) π = x[ι...xi

%*

of powers of pairwise different elements of X with 1 ̂  i3 ^ 2.
In particular, if

(5) e = Σw (e4e^)
V=l

is an element of JE'(X) such that the products π< are pairwise different
and if β is divisible by an integer k, then A: divides every e^ No
integer is a zero divisor in E{X).

For a product of the form (4) denote

(6) u(π) = {xly . . . , & , }
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and

( 7 ) l(π) = \u(π)\.

Note that always u(π1 π2) £ u(πt) U u(π2); if n(π1 π2) Φ v,{πl) U
u(π2), then the product πγ π2 is divisible by 5.7.

LEMMA 1. ^3 = 54 7 m 2£(-X") if and only if rj = 5|θβa? /or some
a e {0, 1, 2} cmcϋ xeX.

Proof. For each a; and a {ζ>ρaxf = 53 1 x3 = 54 7. Conversely,
let ^ e 2?(X) and ^3 = 54 7. 7}=η(xl9 ", xn) for a finite set {̂ , , xn}S
X so it is enough to prove the lemma for finitely generated rings
En = E({xl9 •••, α?Λ}). We will proceed by induction.

Since E1 is an integral domain, the polynomial

( 8 ) ^ _ 5 4 # 7

has at most three roots in Et. Eλ contains, however, three different
roots of (8), namely 5xλ, 5px1 and 5p2xλ.

Assume the lemma to be true for n and let rj e En+ι be a root of

(8),

(9 ) η = a + bxn+1 + cx2

n+ί

for some α, δ, c in i£n. It is easy to see that mappings

defined by

(the coefficients of p are in E) are endomorphisms of En+1 and that
^ ( ^ % + 1 ) - E% for i - 0, 1, 2. Put

(10) Vi = Ψi(V) (i = 0, 1, 2 )

Clearly

(11) 7]o = a + bxx + c ^ ,

(12) ift = α + 6iox1 + cp2x\,

(13) % = α + 6 ^ ^ + cpx\ ,

and Q7o, ̂ , η2 are roots of (8) in En. By the induction hypothesis η0 —
5ρaxif ηι = 5ρβxjf η2 = 5prxk for some a, β, 7 e {0,1, 2} and i, j , k e
{1, , w}. Consequently, Zcx\ = rjo + PVi + P% = 5pa%i + 5pβ+% + δiO^2^.
Since the right side of the last equation is divisible by three, xt — xs =
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xk; so 3cx] — 5(ρa + ρβ+ι + pr+z)Xi. Multiplying both sides by xί and
dividing by five yields 7(3c) = (pa + pβΛl + pr*2)xYXi. A sum of three
third roots of the unit is divisible by seven if and only if it vanishes,
i.e., if either a = β = τ(mod 3) or β = a + l(mod 3) and r = a + 2(mod 3).
In both cases c — 0.

Let CίΞΞβΞΞ 7(mod 3). Note t h a t Sa = ηo + 'η1 + η2 = 5(pa + pβ + py)Xi]

therefore a = 5ρaXt and b = 0.
If β = a + l(mod 3) and 7 = oc + 2(mod) then a = 0. As c = 0,

(11) implies 6^ = 5/^χ . If ^ ^ xi9 then 76 = ^ ^ ^ — a contradiction.
Therefore ^ = x1 and 6 = 5pa.

Since ^(X) = i2(X)[/>] the only roots of (8) in R{X) are of the
form

(14) η = 5x (x e X) .

All of them are contained in Φ(G).

LEMMA 2. The only ίdempotent elements in Φ(G) are 0 and 1.
s3 = 0 in Φ(G) if and only if s — 0.

Proof. As Φ(G) is a subring of E(X), we need only prove the
lemma for E(X); in fact the proof for all the rings En is sufficient.
We can proceed by induction again. E1 is an integral domain, there-
fore both assertions hold there. The rest of the proof is similar to
the proof of Lemma 1.

LEMMA 3. Let G — <X, R) be a graph. A product xy (x, y e X)
belongs to Φ(G) if and only if {x, y] e R.

Proof. If {x, y} e R, then xy e Φ(G) by definition.
Conversely let S be the set of all elements σ of R(X) of the

form

(15) σ = k + Σ K β π + Σ ί»o ψ
u(-)eR

where k, k~ e {0, , 4} and for every ψ either l(φ) > 2 or mφ is divisi-
ble by five. All the generators of Φ(G) are of the form (15) and it
is easy to see that S is a ring; R(X) 3 S 3 Φ(G). Since R(X) is a
free abelian group over the set of all products of the form (4), (15)
is determined by σ uniquely. The lemma follows.

To finish the proof of fullness of Φ, let g: Φ(G) — Φ(G') be a 1-
preserving homomorphism and let xeX. (g(5x)f = g((5xY) = g(5i 7) =
54 7, thus, by Lemma 1, g(5x) = 5f(x) for some f(x)eX' (f:X-+Xr

is a well-defined mapping). Let {x, y} e R. By the definition of Φ(G),
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xy e Φ(G) and 25g(xy) = g{5x 5y) = g(5x) g(5y) = 25f(x)f(y), so g(xy) =
f(x)f(y). The product f(x) f(y) belongs to Φ(G'). By Lemma 3,
{/(»), f(v)} € Λ' /: <-3Γ, #> — <-3Γ', #'> is a morphism in g^ and Φ(f) =
#—proving the fullness of Φ.

Now, let h: Φ{G) —» Φ(G') be a homomorphism not preserving the
unit element 1. Since 0 is the only other idempotent in Φ(Gr), h(l) = 0.
Thus h(n) — 0 for every integer n and, in particular, (h(5x)f =
h((5x)d) = fe(54 7) - 0 and (h(xy))3 = h(x"y3) = /^(52.72) - 0. According
to Lemma 2, /&(5#) = 0 a A(^) = 0. All generators of Φ(G) are
mapped to the zero of Φ{Gr) so h is the zero homomorphism. The
last observation is utilized as follows.

THEOREM. Let 6^ be the category of all commutative rings with
unit 1 and all their (not necessarily 1-preserving) homomorphisms
Let <yί^ he the class of all nonzero homomorphisms of S/ί Then there
is a full subcategory J^ of 6^ such that

(i) J?~ Π ̂ V is a category
(ii) j ^ ~ Π ̂ V" is binding.

In particular, for every monoid M there is a commutative ring R
with unit such that the set of all its nonzero endomorphisms is closed
under composition and isomorphic to M. All the theorems listed in
the first section can be similarly reformulated.

4. Concluding remarks* First we shall indicate the proofs of
the remaining four theorems.

The Representation Theorem is an immediate consequence of the
proof of the Full Embedding Theorem, Theorem A and Theorem 4 of
[6].

To prove the Subring Independence and Quotient Ring Independ-
ence Theorems, observe that the extension Φ: gf —> ^ preserves all
one-to-one and all onto morphisms. Combining this fact with Theo-
rem A and the main results [4] and [2] respectively, we obtain both
Independence Theorems.

The proof of the Extension Property is based on the fact that
there is an extension φ o Ψ ,: j y —> ^ for every category ,s>/ of rela-
tional systems (Theorem A and the third section) and on the observa-
tion that every monoid M of transformations on the set X is the
monoid of all mappings X—>X compatible with one |XJ-ary relation.

L. Kucera and Z. Hedrlίn have proved recently that any concrete
category has an extension to & provided there are no measurable
cardinals. Using this fact one can generalize immediately the Exten-
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sion Property to the statement saying that any concrete category has
an extension to the category of all commutative rings with 1 and all
1-preserving homomorphisms (under the hypothesis of nonexistence of
measurable cardinals).

We conclude by mentioning two open problems. Note that all
rings Φ(G) have zero divisors and are infinite. Thus the present
results do not apply to the case of finite rings and to the case of
integral domains.
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