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ISOTOPY GALOIS SPACES

PAUL F. DUVALL, PETER FLETCHER AND ROBERT A. MCCOY

This paper introduces two classes of topological spaces,
isotopy Galois spaces and orbit attraction spaces. Both classes
of spaces are defined in terms of the actions of the homeo-
morphism group of a space onto itself, and both classes are
closely related to the classes of Galois spaces and representable
spaces.

Although there is a metrizable Galois space X such that X x X
is not a Galois space, it is shown that the product of an isotopy
Galois space and any Tychonoff space is an isotopy Galois space.
Consequently, isotopy Galois spaces include the total spaces of locally
trivial fibre spaces with isotopy Galois base and completely regular
fibre. From this result it follows that every locally compact topological
group which is not totally disconnected is an isotopy Galois space.
Since every locally compact totally disconnected topological group is
a representable space, every non-discrete locally compact topological
group is a Galois space.

We make use of three types of homogeneity which were originally
defined and discussed in [3] and [7] A space (X, JT") is strongly
2-homogeneous provided that for any points xl9 x2 and any points yl9 yz,
there is a homeomorphism h of X onto itself such that fifa) = yt and
h(x2) = y2 A space (X, ^~) is nearly homogeneous provided that for
any x e X and any D e άΓ there is a y e D and a homeomorphism h
of X onto itself such that h(x) — y. A space (X, J7~) is strongly
locally homogeneous if for every neighborhood of any point x, there
exists a subneighborhood U(x) such that for any z e U(x) there is a
homeomorphism h of X onto itself such that h(x) = z and h(y) = y
for each y e X — U(x). It is evident that every orbit attraction space
(defined in § 3) is nearly homogeneous and we show that every repre-
sentable continuum is a strongly 2-homeogeneous orbit attraction space.
This result suggests the conjecture that every representable connected
space is locally connected. The following two questions concerning
homogeneity also remain unresolved.

Question. Is every (metrizable) homogeneous continuum a Galois
space?

Question. Is every representable space strongly locally homo-
geneous?
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Galois spaces and representable spaces are defined and studied
in [4], [5] and [6].

All spaces considered in this paper are assumed to be Hausdorff
spaces. We also adopt the following notation. Throughout R will
denote the real numbers and S1 will denote the 1-sphere. If X is a
topological space, H(X) will denote the group of homeomorphisms of
X onto X, and Idx will denote the identity of H(X). If A c X, then
A! = {heH(X):h\A = Idx\A). If GczH(X) a n d i c l , then G(A) =
{g(a) \ge G, ae A}. We write x' instead of {x}' and G{x) instead of
G({x}). For the sake of euphony we say on occasion that a homeo-
morphism h is supported on U to mean that h e (X — U)'.

2. Isotopy Galois spaces*

DEFINITION 2.1. A topological space X is a Galois space (repre-
sentable space) provided that for each closed subset FaX and each
point xe X — F, F'(x) contains a nondegenerate (open) subset of X.

DEFINITION 2.2. A topological space X is an isotopy Galois space
provided that for each open subset U of X and each pe U, there is
an isotopy H of X with Ho — Idx, H^p) Φ p such that for each t e
lO,l],Hte(X- U)\

It is evident that every isotopy Galois space is a Galois space
and that S1 and R are isotopy Galois spaces, as is every (separable
metric) manifold with or without boundary of dimension greater than 1.
We omit the proof of the following proposition which is similar to the
proof of the analogous result for Galois spaces [6, Proposition 3].

PROPOSITION 2.3. A regular space X is an isotopy Galois space
if and only if each xe X is contained in an open set which is an
isotopy Galois space.

THEOREM 2.4. Let X be a completely regular space and let Y be
an isotopy Galois space. Then X x Y is an isotopy Galois space.

Proof. Let (x, p) e X x Y and let W be a neighborhood of (x, p).
There are neighborhoods U and F i n I and Y respectively such that
(x, p) e U x Vd W. Let / : X-> [0, 1] be a mapping such that /1 (X -
U) = 0 and f(x) = 1. Let H be an isotopy of Y guaranteed by
Definition 2.2 for peV. Define an isotopy G o f l x Y by Gt(a, b) =
(α, Htf{a)(b)). It is a simple matter to verify that Go = IdxxY, G^x, p) Φ
(x, p) and that for all t e [0, 1], Gt e (X x Y - U x V)' c (X x Y - W)'.

COROLLARY 2.4. Let {Xa: ae Λ) be a collection of completely regular
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ίsotopy Galois spaces. Then x {Xa: ae Λ} is a completely regular
isotopy Galois space.

EXAMPLE 2.5. A metrizable Galois space X such that X x X is
not a Galois space. Let Q be the rational numbers with the usual
topology. Let ^ = {U x V: U is open in R and V is open in Q, and
OeF} and let ^ = {{x} xWixeR, W is open in Q, and θ£ W).
Let X = R x Q with the topology generated by ^ U . ^ .

We first show that X is a Galois space. Let (x, p) e X and let
B e ,ζiζ U .^2 such that (a;, p) e B. If p Φ 0, then we may assume
without loss of generality that 5 e , ^ 2 . Since Q is a Galois space,
there exists heH(X) supported on B such that h(x, p) Φ (x,p) If
p — 0, we may assume without loss of generality that there is an
open set U of R and an open and closed set V of Q such that B =
U x V. Since i? is a Galois space, there exists / e H(R) supported
on U such that f(x) Φ x. Define h: X—> X by h(y, q) = (f(y), q) if
(y, q) e B, and h(y, q) = (T/, g) if (y, q) ί B. Then h e H(X), h is sup-
ported on B and h(x> p) Φ (xy p).

Suppose that X x X is a Galois space. Let x, y eR and let π =
(#, 0) and v = (y, 0). Let i7L and U2 be connected open subsets of R
such that a; e Uλ and y e U2. Let F be an open subset of Q contain-
ing 0. Let B, = J7i x V and let B2 = U2 x V. There exists A e iϊ(X x
X) supported on BΊ x B2 such that A(%, v) Φ (U, V). Without loss of
generality we may assume that π2h(u, v) Φ v. Choose w = (y,r) e X
such that v Φ 0 and such that the first component of π2h(u, w) Φ y.
Let A = t/Ί x {0}. Then A(A x {w}) is a connected subset of X x X.
Let W be an open and closed set in Q containing r, but not containing
0. Then X x \{y] x W] and X x [X - ({T/} X W)\ separate h(A x {w})~
a contradiction.

The Sorgenfrey line (real line with the lower limit topology) is
a completely normal homogeneous Galois space which is not metrizable.
It follows from Theorem 2.4 that x {Ra: a e R) is a completely regular
homogeneous Galois space which is not normal and that x {S£: a e R}
is a normal homogeneous Galois space which is not completely normal.
We omit the straightforward argument needed to establish the first
of the following two examples.

EXAMPLE 2.6. A countable Hausdorff homogeneous Galois space
which is not regular. Let X be the points in the plane with both
coordinates rational and let JT~ be the topology relative to that of
the deleted diameter topology of the plane. Then (X, j?~) has the
desired properties.
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EXAMPLE 2.7. A connected Galois space which is not an isotopy
Galois space. Let A = {(x, y) e R x R: y = sin 1/x, 0 < x) and let B =
{(x, y) e R x R: x = 0, — 1 < y < 1 and y is rational}. Let X — A U B
with the usual subspace topology. Let xe X, let α, c, d, e e R such
that [{e} x (a, c ) ]ΠA= 0 and let Ϊ7 = (d, e) x (α, c) be an open set
containing x. H xe A, it is evident that there exists h e (X — U)' such
that h(x) Φ x. If x e B, we may assume that x = (0, b) and there is
a rational number p such that a < p < b < c.

Define / : 0 x [- 1, 1] — 0 x [- 1, 1] by

0, 1 °L{y -a) +a\ if a ^ y ^ p
p — a /

0, -?——(y - p) + b ), ifp^y^c
c — v /

P -

/(0, y) - -I
c — p

, (0, ?/) , otherwise .

Extend flB to h: X->X as follows. If ye An U, let Λ(i/) - π~ιfπ{y),
where π is the projection of R x R onto the second factor with the
domain restricted to that component of A Π [R x (— 1,1)] which
contains y. If j/eB, let h(y) = /(?/). Then Λ e ( X - Z7)' such that
Λ(l/) ^ y Thus X is a Galois space. On the other hand, no point in
B can be moved by an isotopy, since an isotopy leaves path components
invariant. Thus X is not an isotopy Galois space.

We observe that every topological vector space is an isotopy Galois
space. The proof of this result may be taken directly from the proof
of Theorem 3.1 of [5].

3* Minimal sets and orbit attraction spaces* In this section
we make use of the following notions from topological dynamics. Let
X be a locally compact metric space. Bγ a flow on X, we mean a
continuous map f: X x R—*X such that

( i ) f(x, 0) = x for each xe X, and
( i i ) f ( f ( x , t,)t2) = f ( x , t, + ί 2 ) f o r a l l x e X a n d a l l t l 9 1 2 e R .
When there is no danger of confusion, we write xt in room of

f(x, t), and if SczR and i c l we write AS in room of {αsiαeA
and seS}. For xeX, xR is called the orbit of x; x is called a fixed
point if xR = x, and x is called a periodic point if x is not a fixed
point but xt — x for some t > 0. The smallest such t is called the
period of x. If # is a periodic point, it is easy to see that xR is
homeomorphic to S1. A subset Ad X is invariant provided that AR —
A, and A is a minimal set provided that A is closed nonempty and
invariant and is minimal with respect to these properties. Evidently
the orbit of every point in a minimal set A is dense in A. We will
need the following theorem which follows from results of [2].
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THEOREM 3.1. Suppose that x e X, that x is not a fixed point and
that t is a positive number restricted only by t < α>/4 in the event
that x is a periodic point with period ω. Then there is an open subset
U and a set S with x e S c U such that U is homeomorphic to S x
(— t, t) under the mapping (x, t) —> xt.

DEFINITION 3.2. The topological space X is an orbit attraction
space provided that for each closed set Fa X and each xe X — F,
FΠ F'(x) Φ 0 .

THEOREM 3.3. Every representable continuum is a strongly 2-
homogeneous orbit attraction space, and every orbit attraction space
is a connected near homogeneous Galois space.

Proof. Let X be a representable continuum, let J P C X be a closed
set and let pe X — F. Let Fr have the discrete topology and let
π\Ff x X—> X be defined by π{h, x) = h(x). Then π defines an action
of Ff on the compact space X and it follows that F\p) contains a
minimal set A. There is z e A such that A = F'(z). If z&F, then
F'(z) is open so that F'(z) = X. Thus A Π F Φ 0 and it follows that
X is an orbit attraction space.

Let x, y, p, qe X. Since X is a connected representable space, X
is homogeneous [4, Theorem 2]. Thus p is a noncut point of X and
there is heH(X) such that h(x) = p. Since { ^ j ίi e l - {p}} is a
decomposition of the connected set X — {p} into disjoint open sets,
for x Φ p, p'(x) = X — {̂ }. Thus there is g e p' such that g(h(y)) = g,
and so #o/̂  is the homeomorphism needed to establish that X is strongly
2-homogeneous.

It is evident that every orbit attraction space is a connected near
homogeneous Galois space.

COROLLARY 3.4. Every representable plane continuum is homeo-
morphic to S1 [3, Theorem 10].

An argument similar to that of Theorem 2.4 gives the following
lemma.

LEMMA 3.5. Suppose that X is completely regular, that (a, b)
is an open interval, and that the following are given.

(1) p G X and U a neighborhood of p,
( 2 ) s, te (a, b) with s < t, and
( 3) η > 0 such that (s — η,t + η)c (a, b).
Then there is a homeomorphism h: X x (a, b) -» X x (a, b) such that
(a) h(p, s) = (p, t) and
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(b) he(Xx (a,b) -Ux (s-7],t + η))'

THEOREM 3.6. Every nondegenerate minimal set in a flow on a
locally compact metric space is an orbit attraction space.

Proof. Suppose that X is such a minimal set. Let d be the
metric on X guaranteed by the hypothesis of the theorem. Since S1

is an orbit attraction space, we may assume without loss of generality
that X contains no periodic points. Let FaX be a closed set and
let pe X — F. Let W be a neighborhood of F. Since pR = X, there
exist τ > 0 and η with - τ < yj < 0 such that pτ e W, but p[η, τ] Π
F = 0 . By Theorem 3.1, there exist an open set U and a set S with
SdU such that peS and such that U = S(— τ,τ) is homeomorphic
to S x (- τ, τ). Let a = d(p[rj, τ], F). Let δ > 0 such that if g e
[0, r], then diam [Sδ(p)q] < a/2 where U* = S*(— r, τ) is an open set
which is homeomorphic to S* x (— τ, r), and S*[0, r) Γl TF =£ 0 while
S* [97, r) n F = 0 . We apply Lemma 3.5 to Z7* in order to move p
into W with a homeomorphism which is supported on S*(η, τ) and the
theorem is proved.

The authors have been unable to find an example of an orbit
attraction space or a Galois continuum which is not an isotopy
Galois space. Since the pseudo-arc does not contain an arc, it is
clear that this space is not an isotopy Galois space; consequently it
is a natural candidate for one of the above examples. In any case,
it would be interesting to know which, if any, of the properties
discussed in this paper is possessed by the pseudo-arc.

Since every closed set in a metric space which admits a fixed
point free flow is the invariant set of some one-dimensional flow
[1, Corollary to Theorem 1], it follows that any space satisfying the
hypothesis of Theorem 3.6 is an isotopy Galois space. We are in a
position to establish this result directly.

THEOREM 3.7. Let X be a locally compact metric space and suppose
that X admits a flow without fixed points. Then X is an isotopy
Galois space.

Proof. By Theorem 3.1, each point of X has a neighborhood
homeomorphic to the product of a metric space with the isotopy Galois
space (0, 1). The result follows from Theorem 2.4 and Proposition 2.3.

EXAMPLE 3.7. A homogeneous isotopy Galois continuum which is
an orbit attraction space but which is not representable. In view of
Theorems 3.6 and 3.7 and [5, Theorem 4.4], it is evident that the
solenoid has the requisite properties.

It has been pointed out to the authors by Professor W. Gottschalk
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(private communication) that the standard construction for manufactur-
ing continuous flows out of discrete flows when applied to an example
of a nonhomogeneous minimal set under a discrete flow due to F. B.
Jones [9, Page 139] yields a non-homogeneous minimal set under a
continuous flow which is a metric continuum. Thus, although every
representable continuum is strongly 2-homogeneous, it follows from
Theorems 3.6 and 3.7 that the minimal set constructed from F. B.
Jones's example is an example of a nonhomogeneous orbit attraction
space which is an isotopy Galois metric continuum.

4* Topological groups* In light of Theorem 2.4, the results
of this section may be considered as immediate consequences of a
rather powerful result of V. M. Gluskov which we recall here.

THEOREM 4.1 [8, Theorem A]. For every locally compact group G
and every neighborhood U of its identity one can find an open neigh-
borhood V of the identity which is contained in U and which splits
into the direct product of a connected local Lie group, L and a compact
group. Moreover, if G is not totally disconnected, then the neighborhood
U can be chosen such that in every decomposition of this form the local
Lie group L has positive dimension.

COROLLARY 4.2 Every locally compact topological group which
is not totally disconnected is an isotopy Galois space.

COROLLARY 4.3. Every non-discrete locally compact topological
group is a Galois space.

Proof. Every totally disconnected locally compact topological
group is a homogeneous O-dimensional space. Such spaces are known to
be strongly locally homogeneous [7, Theorem 4.2].
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