GENERALIZED SYLOW TOWER GROUPS, II

J. B. DERR AND N. P. MUKHERJEE

A well-known result of P. Hall shows that finite solvable groups may be characterized by a permutability requirement on Sylow subgroups. The notion of a generalized Sylow tower group (GSTG) arises when this permutability condition on Sylow subgroups is replaced by a suitable normalizer condition. In an earlier papar, one of the authors showed that the nilpotent length of a GSTG cannot exceed the number of distinct primes which divide the order of the group. The present investigation utilizes the 'type' of a GSTG to obtain improved bounds for the nilpotent length of a GSTG. It is also shown that a GSTG with nilpotent length n possesses a Hall subgroup of nilpotent length n which is a Sylow tower group.

Let G be a finite group with order $p_1^{a_1} \cdots p_r^{a_r}$, where p_1, \cdots, p_r are distinct primes and a_1, \cdots, a_r are positive integers. For each integer $i, 1 \leq i \leq r$, let G_i denote a Sylow p_i -subgroup of G. The collection of subgroups $\mathscr{S} = \{G_1, \cdots, G_r\}$ is then called a complete set of Sylow subgroups of G. If the elements of \mathscr{S} are pairwise permutable as subgroups (that is, if $G_iG_j = G_jG_i$ holds for all i and j) then \mathscr{S} will be called a Sylow basis for G. The notion of a generalized Sylow tower group arises when the permutability condition for a Sylow basis is replaced by a normalizer condition. Thus, we say that a finite group G is a generalized Sylow tower group (GSTG) if and only if some complete set of Sylow subgroups \mathscr{S} of G satisfies the normalizer condition (N): if G_i and G_j are distinct elements of \mathscr{S} , at least one of these subgroups normalizes the other. It should be noted that not every complete set of Sylow subgroups of a GSTG need satisfy condition (N).

A well-known result of P. Hall states that a finite group is solvable if and only if the group possesses a Sylow basis. If a complete set of Sylow subgroups \mathscr{S} of a group G satisfies condition (N) then any two elements of \mathscr{S} are permutable as subgroups and \mathscr{S} is a Sylow basis for G. Consequently every generalized Sylow tower group must be solvable.

A finite group G is called a Sylow tower group (STG) if every nontrivial epimorphic image of G possesses a nontrivial normal Sylow subgroup. Equivalently, the group G is a STG if the prime divisors p_1, \dots, p_r of the order of G can be labelled in such a way that a Sylow p_i -subgroup of G normalizes a Sylow p_j -subgroup of G whenever i > j. It is clear from this definition that a Sylow tower group is necessarily a generalized Sylow tower group. An example of a GSTG which is not a Sylow tower group was given in ([1]; p. 638).

In order to handle generalized Sylow tower groups it will be necessary to introduce the 'type' of a GSTG. Suppose G is some given GSTG and let \mathcal{T} be a Sylow basis for G. Since any two Sylow bases for G are conjugate ([3]; p. 665), \mathcal{T} satisfies the normalizer condition (N). Let R be a relation on the set of all primes with the property that either pRq or qRp (or both) holds for any primes p and q. If the Sylow p_i -subgroup of G in \mathcal{T} normalizes the Sylow p_j -subgroup of G in \mathcal{T} whenever p_iRp_j holds, then G will be called a GSTG of type R. It follows directly from the conjugacy of Sylow bases that the type of a GSTG is independent of the choice of a Sylow basis. It should be noted that a group can be a GSTGof more than one type.

It was shown in [1] that the class of all generalized Sylow tower groups of a given type R is a formation. In addition, any subgroup of a GSTG of type R was shown to be a GSTG of type R. We list the main results about GSTG's in [1] for easy reference.

THEOREM 1.7 [1]. If G is a GSTG then the nilpotent length of G does not exceed the number of distinct prime divisors of the order of G.

THEOREM 1.8 [1]. If G is a GSTG and the nilpotent length of G is equal to the number of distinct prime divisors of the order of G then G is a Sylow tower group.

All groups mentioned are assumed to be finite. The following notations will be used. For a group G

c(G) denotes the set of distinct prime divisors of the order of G $\pi(G)$ denotes the number of distinct prime divisors of the order of G $\swarrow(G)$ denotes the nilpotent (Fitting) length of G.

If H is a subgroup of G then $N_G(H)$ means the normalizer of H in G and $C_G(H)$ means the centralizer of H in G.

If p_i is a prime, G_i will denote a Sylow p_i -subgroup of G.

The following lemma will be used in several of our arguments.

LEMMA 1. If G is a nontrivial GSTG then at least one of the following holds:

(1) G contains a nontrivial normal Sylow subgroup P with $C_{G}(P) \subseteq P$

(2) G contains nontrivial normal subgroups having relatively prime orders.

Proof. Let G be a GSTG and suppose that $\mathscr{S} = \{G_1, \dots, G_n\}$ is a Sylow basis for G. Since a GSTG is necessarily solvable, G possesses a nontrivial minimal normal subgroup M with order a power of some prime q. Let Q denote the maximum normal q-subgroup of G and suppose that G_1 is the Sylow q-subgroup of G belonging to \mathscr{S} . Since \mathscr{S} satisfies the normalizer condition (N), either

$$G_1 \subseteq N_G(G_k)$$
 or $G_k \subseteq N_G(G_1)$

must hold for each integer $k, 1 \leq k \leq n$. We distinguish two cases.

First suppose that $G_1 \subseteq N_G(G_k)$ holds for some $k, 1 < k \leq n$. Since Q is normal in G and has order prime to the order of G_k, G_k centralizes Q. Hence $C = C_G(Q)$ is not a q-group. Set $Q_0 = Q \cap C_G(Q)$ and consider the factor group C/Q_0 . Since C/Q_0 is a nontrivial solvable group, C/Q_0 contains a nontrivial minimal normal subgroup L/Q_0 with order a power of some prime p. Let T/Q_0 be the maximum normal p-subgroup of C/Q_0 . Since Q is the maximum normal q-subgroup of G it follows that $p \neq q$. If N is a Sylow p-subgroup of Tthen T is the direct product of N and Q_0 . The normality of T in G then implies the normality of N in G. Therefore G has nontrivial normal subgroups with relatively prime orders.

Now suppose that $G_1 \not\subseteq N_G(G_k)$ holds for all integers $k, 1 < k \leq n$. Since \mathscr{S} satisfies the normalizer condition $(N), G_k \subseteq G_G(G_1)$ must then hold for all integers k. Thus G_1 is a normal Sylow q-subgroup of G. Then $G_1 \cap C_G(G_1)$ is a normal Sylow q-subgroup of $C_G(G_1)$ and $C_G(G_1)$ has a normal q-complement W. If W is nontrivial then W is a normal subgroup of G having q'-order and (2) holds. If W is trivial then $G_1 \cap C_G(G_1) = C_G(G_1)$. In this case $C_G(G_1) \subseteq G_1$ and (1) holds.

THEOREM S. Let G be a GSTG. If H_1, \dots, H_n are pairwise permutable Hall subgroups of G with $G = H_1 \dots H_n$, then the nilpotent length of G does not exceed the sum of the nilpotent lengths of H_1, \dots, H_n .

Proof. (By induction on the order of G.) Since the product $H_2 \cdots H_n$ is a Hall subgroup of G permutable with H_1 we may assume that n = 2. First suppose that G possesses nontrivial normal subgroups A and B with $A \cap B = 1$. Then G is isomorphic to a subgroup of the direct of G/A and G/B. Hence

$$\mathscr{C}(G) = \max \left\{ \mathscr{C}(G/A), \mathscr{C}(G/B) \right\}$$

and it suffices to show that

$$\mathscr{L}(G/A) \leqslant \mathscr{L}(H_1) + \mathscr{L}(H_2) \quad \text{ and } \quad \mathscr{L}(G/B) \leqslant \mathscr{L}(H_1) + \mathscr{L}(H_2) \;.$$

Since G/A is the product of the permutable Hall subgroups H_1A/A and H_2A/A of G/A, the induction hypothesis gives

$$\mathscr{C}(G/A)\leqslant \mathscr{C}(H_{\scriptscriptstyle 1}A/A)+\mathscr{C}(H_{\scriptscriptstyle 2}A/A)$$
 .

Since H_1A/A and H_2A/A are epimorphic images of H_1 and H_2 (respectively), we know that $\swarrow(H_iA/A) \leq \checkmark(H_i)$ for i = 1, 2. Therefore $\measuredangle(G/A) \leq \checkmark(H_1) + \checkmark(H_2)$. The same argument applied to G/B will show $\checkmark(G/B) \leq \checkmark(H_1) + \measuredangle(H_2)$. This verifies the theorem in this case.

Now suppose that G possesses a unique minimal normal subgroup. Then Lemma 1 shows that G contains a nontrivial normal Sylow subgroup P with $C_G(P) \subseteq P$. Since the theorem is trivially true if G = P we may assume this is not the case. Set

$$ar{G} = G/P, \, ar{H_{1}} = H_{1}P/P, \, ar{H_{2}} = H_{2}P/P$$

and consider the nontrivial $GSTG \ \overline{G}$. The induction hypothesis applied to $\overline{G} = \overline{H}_1 \overline{H}_2$ gives $\mathscr{L}(\overline{G}) \leqslant \mathscr{L}(\overline{H}_1) + \mathscr{L}(\overline{H}_2)$. We first observe that $\mathscr{L}(G) = \mathscr{L}(\overline{G}) + 1$. Since P is a nilpotent normal subgroup of G, P must lie in the Fitting subgroup F of G. If $P \neq F$ then Fcontains a nonidentity element of order prime to the order of P which belongs to the centralizer in G of P. This contradicts $C_G(P) \subseteq P$. Therefore P = F and $\mathscr{L}(G) = \mathscr{L}(\overline{G}) + 1$.

Since H_1 and H_2 are Hall subgroups of G satisfying $G = H_1H_2$, the Sylow subgroup P must lie in H_1 or H_2 . We may suppose that H_1 contains P. If $P = H_1$ then $\overline{G} = \overline{H_2}$ and so $\ell(\overline{G}) = \ell(\overline{H_2}) \leq \ell(H_2)$. Then $\ell(G) = \ell(\overline{G}) + 1 \leq \ell(H_2) + \ell(H_1)$, which is what we wanted to show. If $P \neq H_1$ then the argument used in the preceding paragraph can be repeated to show $\ell(H_1) = \ell(\overline{H_1}) + 1$. It follows from this that

$$\mathscr{L}(G)=\mathscr{L}(ar{G})+1\leqslant \mathscr{L}(ar{H}_{\scriptscriptstyle 1})+1+\mathscr{L}(ar{H}_{\scriptscriptstyle 2})\leqslant \mathscr{L}(H_{\scriptscriptstyle 1})+\mathscr{L}(H_{\scriptscriptstyle 2})\;.$$

This completes the argument.

It seems interesting to ask if this theorem has a converse, in the following sense. Does a GSTG G necessarily possess pairwise permutable proper Hall subgroups H_1, \dots, H_n satisfying $G = H_1 \dots H_n$ so that $\mathcal{E}(G) = \mathcal{E}(H_1) + \dots + \mathcal{E}(H_n)$ holds? The answer is obviously no, since any nilpotent group is a GSTG. If we insist that the group G not be nilpotent, the answer to the question is still no. This can easily be verified using the example of an N-group which is not a Sylow tower group (see [1]; p. 638). We now mention some consequences of the theorem. Let G be a GSTG and suppose that $\mathscr{G} = \{G_1, \dots, G_n\}$ is a Sylow basis for G. Since G_1, \dots, G_n are pairwise permutable Sylow subgroups of G satisfying $G = G_1 \dots G_n$, Theorem S gives

$$\mathscr{C}(G) \leqslant \mathscr{C}(G_1) + \cdots + \mathscr{C}(G_n) = \pi(G)$$
.

Consequently Theorem 1.7 [1] follows from Theorem S.

Now we show how the type of a GSTG can be used to improve the bound on the nilpotent length of a GSTG given by Theorem 1.7 [1]. It will be helpful to first introduce some terminology. Let Rbe a relation on the set of all primes and let σ denote some given set of primes. Then σ will be called a complete R-symmetric set provided both pRq and qRp hold for all primes p and q belonging to σ . If σ contains a single prime then σ is (trivially) a complete Rsymmetric set. It is clear from this that any set of primes can be written as a union of complete R-symmetric subsets. The set σ will be called an R-cyclic set if σ contains distinct primes p, q, and wsuch that pRq, qRw, and wRp hold.

COROLLARY 1. Let G be a GSTG of type R. If $\sigma_1, \dots, \sigma_d$ are complete R-symmetric subsets of c(G) such that the union of the σ_i is c(G) then $\checkmark(G) \leq d$.

Proof. Let $\mathscr{T} = \{G_1, \dots, G_n\}$ be a Sylow basis for G. For each $i, 1 \leq i \leq d$, define the subgroup H_i of G to be the product of all Sylow p_k -subgroups G_k for which $p_k \in \sigma_i$. Since pRq and qRp hold for all distinct primes p and q from σ_i , each H_i is seen to be a nilpotent Hall σ_i -subgroup of G. Since the union of the σ_i 's is c(G), clearly $G = H_1 \cdots H_d$. The theorem then shows that

$$\mathscr{C}(G)\leqslant \mathscr{C}(H_{\scriptscriptstyle 1})\,+\,\cdots\,+\,\mathscr{C}(H_{\scriptscriptstyle d})\,=\,d$$
 .

COROLLARY 2. Let G be a GSTG of type R. If $\sigma_1, \dots, \sigma_d$ are disjoint R-cyclic subsets of c(G) then $\checkmark(G) \leq \pi(G) - d$.

Proof. Let $\mathscr{S} = \{G_1, \dots, G_n\}$ be a Sylow basis for G. For each integer $i, 1 \leq i \leq d$, define the subgroup H_i of G to be the product of all Sylow p_k -subgroups G_k for which $p_k \in \sigma_i$. It is clear from the definition that the H_i are pairwise permutable Hall σ_i -subgroups of G. Since the product $H = H_1 \cdots H_d$ has a Hall complement in G, it suffices to show that $\mathscr{L}(H) \leq \pi(H) - d$. Since the σ_i 's are disjoint sets, this will follow if $\mathscr{L}(H_i) \leq \pi(H_i) - 1$ holds for each $i, 1 \leq i \leq d$. Let p, q, and w be distinct primes in σ_i satisfying pRq, qRp and wRp. Consider a Hall $\{p, q, w\}$ -subgroup T of H_i . If T has a normal Sylow p-subgroup then pRq shows that T has a nilpotent Hall

 $\{p, q\}$ -subgroup. Then Corollary 1 shows $\checkmark(T) \leq \pi(T) - 1$. It now follows from Theorem S that $\checkmark(H_i) \leq \pi(H_i) - 1$. Consequently we may assume T has no nontrivial normal Sylow subgroup. By Lemma 1, T then has nontrivial normal subgroups A and B with $A \cap B = 1$. Since T/A and T/B are GSTG's of type R, induction shows that $\checkmark(T/A) \leq 2$ and $\checkmark(T/B) \leq 2$. Using the fact that T is isomorphic to a subgroup of the direct product of T/A and T/B we obtain

$$\mathscr{L}(T) \leqslant 2 = \pi(T) - 1$$
.

Theorem S applied to H_i now gives $\angle(H_i) \leq \pi(H_i) - 1$. Therefore we have shown that $\angle(H_i) \leq \pi(H_i) - 1$ holds for arbitrary *i* and the assertion follows.

The next consequence of the theorem is Theorem 1.8 [1].

COROLLARY 3. Let G be GSTG with $\angle(G) = \pi(G)$. Then G is a Sylow tower group of exactly one type R, in the sense that the relation R is uniquely determined for pairs of primes p, q in c(G).

Proof. Let $\mathscr{S} = \{G_1, \dots, G_n\}$ be Sylow basis for G. Define the relation R on the set of all primes as follows: R is reflexive and for distinct primes p and q, pRq holds if and only if either p or qdoes not divide the order of G or both p and q do divide the order of G and the Sylow p-subgroup of G belonging to \mathcal{S} normalizes the Sylow q-subgroup of G belonging to \mathcal{S} . Clearly G is of type R. Since $\mathcal{L}(G) = \pi(G)$, Corollary 1 shows that both pRq and qRp hold for no distinct primes $p, q \in c(G)$. In addition, Corollary 2 shows that pRq, qRw, and wRp hold for no distinct primes p, q, and w from c(G). Since either pRq or qRp holds for any primes $p, q \in c(G)$, the restriction of R to c(G) must be a linear order. Therefore G is a Sylow tower group of type R. Suppose that G is also a STG of type S and the restriction of S to c(G) differs from the restriction of R to c(G). Then G would necessarily have a nilpotent Hall $\{p, q\}$ subgroup for some distinct $p, q \in c(G)$. The conjugacy of Hall $\{p, q\}$ subgroups in G then implies that $\mathcal{L}(G) \leq \pi(G) - 1$, a contradiction. Therefore G is a STG of exactly one type, in the sense mentioned.

We next give an example to show that the nilpotent length of a GSTG cannot be found from the type alone. Let A be the holomorph of a cyclic group of order 7 and let B donote the Hall {7, 3}-subgroup of A. Define the group G_1 as the direct product of A and a symmetric group of degree 3 and define G_2 as the wreath product of B by a cyclic group of order 2. Both G_1 and G_2 are Sylow tower groups of type 7 < 3 < 2 and no distinct Sylow subgroups of G_1 or G_2 centralize one another. Hence, for a given relation R on the set

of all primes, G_1 is a GSTG of type R if and only if G_2 is a GSTG of type R. Yet the nilpotent length of G_1 is 2 and the nilpotent length of G_2 is 3.

THEOREM T. Let G be a GSTG with nilpotent length k. Then G contains a Hall subgroup which is a Sylow tower group and has nilpotent length k.

Proof. By Theorem 1.8 [1] it is sufficient to show that G contains a Hall subgroup L with $\ell(L) = \pi(L) = k$. We proceed by induction on the order of G.

Suppose G contains a proper subgroup W with $\mathscr{L}(W) = k$. The induction hypothesis then shows that W contains a Hall subgroup T with $\mathscr{L}(T) = \pi(T) = k$. Choose a Hall subgroup L of G with $T \subseteq L$ and c(T) = c(L). Then $\mathscr{L}(G) = k = \mathscr{L}(T) \leq \mathscr{L}(L) \leq \mathscr{L}(G)$ shows that $\mathscr{L}(L) = \pi(L) = k$. This proves the theorem in the case where G contains a proper subgroup with nilpotent length k. Now suppose that every proper subgroup of G has nilpotent length strictly less than k.

Since G is a GSTG, either G possesses nontrivial normal subgroups A and B with $A \cap B = 1$ or G contains a nontrivial normal Sylow subgroup P with $C_G(P) \subseteq P$. We consider these possibilities separately. First suppose that A and B are distinct minimal normal subgroups of G. If the Frattini subgroup ϕ of G is trivial then G contains a maximal subgroup M_1 not containing A and a maximal subgroup M_2 not containing B. Then M_1 complements A in G and M_2 complements B in G. Since we have assumed that all proper subgroups of G have nilpotent length less than k, the isomorphism of G/A and M_1 gives $\angle(G/A) < k$. Similarly one sees that $\angle(G/B) < k$. Since G is isomorphic to a subgroup of the direct product of G/A and G/B, it follows that $\angle(G) = \max{\{\angle(G/A), \angle(G/B)\}}$ is less than k, a contradiction. Therefore G has nontrivial Frattini subgroup. Since $\angle(G/\phi) =$ $\angle(G) = k$, the induction hypothesis shows that G contains a Hall subgroup L satisfying $\angle(L\phi/\phi) = \pi(L\phi/\phi) = k$. Now

$$k = \mathscr{L}(L\phi/\phi) \leqslant \mathscr{L}(L) \leqslant \mathscr{L}(G) = k$$

shows $\checkmark(L) = k$. Hence L = G. Since the Frattini subgroup of G contains no Sylow subgroup of G, $\pi(G) = \pi(L) = \pi(L\phi/\phi) = k$. Therefore $\checkmark(G) = \pi(G) = k$, which completes the argument in this case.

Now suppose G contains a nontrivial normal Sylow subgroup P with $C_G(P) \subseteq P$. It follows that P must be the Fitting subgroup of G. Therefore $\mathcal{L}(G) = \mathcal{L}(G/P) + 1$ or G = P. In the latter case the theorem is trivially true. If $\mathcal{L}(G) = \mathcal{L}(G/P) + 1$, the induction hypothesis shows that G/P contains a nontrivial Hall subgroup L/Psatisfying $\swarrow(L/P) = \pi(L/P) = k - 1 = \measuredangle(G/P)$. Clearly L is then a Hall subgroup of G with $\pi(L) = k$. Since $C_G(P) \subseteq P$, P must be the Fitting subgroup of L. Hence $\measuredangle(L) = \measuredangle(L/P) + 1$. Therefore

$$\mathscr{L}(L) = k = \pi(L)$$
.

This completes the proof of the theorem.

Let G be a given GSTG and suppose \mathscr{S} is a Sylow basis for G. Define the relation R on the set of all primes as follows: for any primes p and q (possibly equal), pRq holds if and only if $p \notin c(G)$ or $q \notin c(G)$ or both p and q belong to c(G) and the Sylow p-subgroup of G in \mathscr{S} normalizes the Sylow q-subgroup of G in \mathscr{S} . Clearly G is a GSTG of type R. If H is a Hall subgroup of G which is a Sylow tower group and H satisfies $\mathscr{L}(H) = \pi(H) = \mathscr{L}(G)$, then the restriction of R to c(H) is a transitive relation (see the proof of Corollary 3). This leads to the following bound for the nilpotent length of G in terms of the relation R defined above. The nilpotent length of the GSTG G cannot exceed n, where n is the largest integer such that the restriction of R to some subset of c(G) having n elements is a transitive relation.

References

1. J. B. Derr, Generalized Sylow tower groups, Pacific J. Math., 32 (1970), 633-642.

2. A. Fattahi, On generalizations of Sylow tower groups, Pacific J. Math., (to appear).

3. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin/New York, 1967.

Received February 29, 1972 and in revised form June 19, 1972.

WEST VIRGINIA UNIVERSITY