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FIXED POINT AND MIN-MAX THEOREMS

D. G. BOURGIN

The unifying: idea in this paper is the existence and
uniqueness of cohomology homomorphisms in an admissible
range of dimensions, induced by suitable restricted upper semi-
continuous homotopies. One consequence of this underlying
homotopy result is a fixed point theorem for multiple valued
self maps of an n-ball which allows nonacyclic images of
points. Another consequence is a min max theorem for a con-
tinuous real valued function on a product of finite dimensional
compact convex bodies where the usual min and max sections
are no longer required to be either convex or acyclic.

An appraisal of the exact contributions in the areas considered
and the different approach begun in this article is in point. Thus
the algebraic topological development of the fixed point theory of set
valued maps has been restricted almost entirely to restraining con-
ditions of convex or certainly acyclic point images following the basic
paper of Eilenberg and Montgomery [2]. Presentations of a Lefschetz
number or numbers algorithm do exist [3], [4] where the acyclicity
conditions have been waived, but effectively assume families of ho-
mology group homomorphisms in all dimensions and constitute formal
but hardly applicable existence theorems. A similar situation main-
tains for the so-called min max or saddle point theorems which are
the backbone of game theory. Indeed for these only the convex or
possibly acyclic point images seem to have been considered.

In another study [1] the writer has obtained results which inter
alia include set valued fixed point theorems for which the image
sets, f(x), need not be acyclic. However these latter results as they
stand are not applicable to the min max case. In the present paper
by reason of compactness assumptions somewhat stronger fixed point
conclusions are available which are adequate for the formulation of
min max results.

1* Preliminaries• We assume X and Y are paracompact. Let
/ be an upper semi continuous or use surjection taking compact sets
of X into compact sets of Y. The graph of / is

Γ(f) = {{x,y)\yef(x)}c:Xx Y.

Denote by px and by p2 the projections of Γ(f) onto X and onto Y respec-
tively. Denote point set boundaries by a dot, thus X. We understand
the reduced Alexander cohomology groups over the rationals. In order
to make contact with the notation in our antecedent papers we use
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Dn+1 and ί)n+1 indiscriminately to denote the closed simplex and its
boundary or the unit ball and the ^-sphere. The set valued trans-
formation / of J to 7 where X and Y are paracompact is upper semi-
continuous use if the antecedent of a closed set is closed and because
of complete regularity this is equivalent to the assertion of a closed
graph for /. We write /*(m) = (p1(m)*)"1292*(m) for the induced homo-
morphism Hm(Y) —>Hm(X) if p^ra)* is an isomorphism on Hm{X) to
Hm(Γ(f)).

Let the singular set S be defined as the union of the singular
components μr with

(ΛΛ

dr — dim μr

where dim μr is the maximum covering dimension of sets Ad X,
closed in Y and contained in μr. For some assigned q,

(1.2) P = 1 + sup μ^0, r<q(r + dr) .

For the case of a use homotopy h, X is replaced by X x /.

Specifically

h:Xx I • Y

with I = {s I 0 ^ s ^ 1} and h(x, s) is closed. The graph of h is

Γ(h) - {(x9 s,y)\ye h(x, s)} c X x I x Γ

and is often written

Γ(h) = {x, β, λ(», «)}

The projections of /̂ (A) on X x / and on F are denoted by Pt and p2

respectively. Moreover

Vr = {(x, 8)H'Hx, s) * 0}
( 1 ' 3 ) δr = άimVr.

(1.4) Π = 1 + sup (r + δr)
r<q

We shall also use the notation p and /7 in the sequel for integers at
least as large as those defined in (1.2) and (1.4). If Pf(m) is an
isomorphism on Hm(X x /) to Hm(Γ(h)), then we write

(1.5) h{mγ = {P*{m))-ιp*{m): Hm{Y) • Hm{X x /) .

Let / and g be use transformations on X to Y. Then using the
notations (1.3) and (1.4),
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/ /-v^ g if there is a use transformation h: Y x
pΠq

DEFINITION 1.6.

I—*Y said to describe the homotopy with Vr = 0 , p ^ r ^ g and
p S H < q where / = h( , 0) and g — h{ ,1). If g = °o we write
/ s-*^s g. (Unless p is the lowest dimension for which Vr — 0 in the

pΠ

range pq, 11 could be inferior to p, but we ignore this situation.)

2* Homotopy. Our results implicitly involve analysis of use
homotopies through their graphs. We demonstrate a key homotopy
theorem. Transformations can be viewed as the special case of in-
dependence of the parameter s, sel. However, it is to be observed
that if (x0, 0) is a singular point then (x0, s) is singular, sel, for the
case h(x, s) is independent of s and so dr of (1.1) as related to / =
h( , 0) is δr — 1.

THEOREM 2.1. // / ^^-y g and h describes this homotopy, with
pΠq

/, g, and h use, then if q ^ Π + 2, h*(m) exists and f*(m) = #*(m) /cr
/7 + l^m<q.

This result is similar to a previously obtained conclusion under
somewhat different hypotheses [1] and in the case of greatest interest
to us here, namely that of compact metric spaces it is more general
than that of [1].

Our first concern is the closure of Px. The demonstration is es-
sentially that occurring in the course of the proof of Theorem 10.7
of [1]. Accordingly [5] and (1.5) now ensure that P*{m) is an iso-
morphism and that λ*(m) exists for Π + 1 <J m <Z q. Let e(s), sel,
be the family of maps on X to X x I denned by

e(s)(x) — x x s .

Consider the set valued map

he(s): X- Y.

This is use as a composition of a continuous single valued map and
a use map. The basic diagram of commutative triangles is

Γ(h) Γ(he{s))

rJs)

where he(s) = h(x, s),



β(0)*Λ*(m) - (Ae(0))*(m) - /(m)*

e(l)*h*(m) =
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Γ(he(s)) = {(x, y)\ye h(x, s), s fixed}

a n d

ry{s)(x9 y) = x

n{s){χ, y) = y .

Again as a consequence of [5] r1(s)*(m) is an isomorphism for r + 1 rg
m ^ q where r < 77 (1.2). Hence with e(s)* written for e(s)*(m)

(he(s))*(m) = (r1(β))*-1(m)r8(β)*(m) Π + 1 ^ m ^ g

and

In particular

It is standard that e(s)* is independent of s on H*(X x /) to H*(X).
Accordingly

/(m)* - flf(m)* Π + l^m^q .

3. Fixed points* The following results stated for compact
metric spaces are true generalizations of corresponding results in [1].
They are perhaps better evaluated in context with the following
example: Consider the unit ball Dn+ι of even dimension. If x Φ 0,
the ray through x intersects the boundary Sn in the point x\ Define
g(x) as xf and #(0) as Sn. Let r be a fixed point free, self mapping
of Sn. Then / = rg is on Dn+1 to Dn+1 and is use. The singular set
consists of the one point 0 and /(0) has co-dimension 1. Evidently /
has no fixed point. (Compare a somewhat similar example in [6]
where / is both use and lsc and yet has no fixed point.) It was the
fruitless search for an example of a fixed point free use self map /
of Dn+1 with f(x) of large co-dimension for xe S, that led to the main
theorems in this paper.

LEMMA 3.1. There is no set valued use transformation f of the
n + 1 disk Dn+1 onto Sn if (a) f(x) n ~x = 0 (b) μr is empty for
r^n - 2 and (c) p ^ n - 2 (1.2).

Let i be the inclusion Sn = ΐ)n+1 —> Dn+ι and denote by g the
transformation of Sn to Sn obtained by following i with /. We shall
show g is n — 2 n — 1 homotopic to the identity. Let d indicate arc
length. Since / and therefore g are use, (3.1a) guarantees that
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inf d(g(x), - x) ̂  ε > 0 .

Define C(x) as the closed subset of Sn

C(x) = {y\d(y, -x) £ e} .

Any p Φ —x is on some semi great circle T(x) through x and — x with
d(p, —x) = t. Let h(x, p, s) sel be the point on T(x) of arc length
s + (1 — s)t from —x. A triangle inequality argument shows that
h( ) is continuous on

(Sn x S " - U M C(x)) x I to Sn .

We assert

h'(x, s) = h(x, g(x), s)

is use. Indeed with the notation w e h'(x, s), suppose wn e h'(xn, sn)
where

xn >x

sn >s

w% > w .

Then for some zn e g(xn), wn e h(xn, zn, sn). By compactness some subse-
quence again denoted by {zn} converges. Since g is use,

zn > z G g(x) .

The continuity of h implies h{xn, zn, sn) converges to h(x, z, s), that is
to say

wn > w = h(x, z, s) c h(x, g(x), s) — h'{x, s) .

Evidently for fixed x and all s < 1, the sets h'(x, s) are homeo-
morphs (and for s = 1, there are no singular sets since h'( 1) is the
identity map). Accordingly, (cf. 1.3), Vraμr x [0,1] and

(3.1.1) δr^dr + l

while Vr is empty for τ^n — 2. Hence by Hypothesis (c) and (3.1.1),
Π <£ n ~ 1 so g ^ ^ l . The hypotheses of Theorem 2.1 are therefore
satisfied whence

(3.1.2) 0 Φ l{nT = g{ri)* = (if)*(n) .

We now establish the existence of f*(n). Take X = Dn+\ Y = Sn and

PT'x = x xf(x)eΓ(f).



408 D. G. BOURGIN

The proof that pι is closed is of the same type as that for the closure
of P l β Hence p1 satisfies the conditions in [5] with p ^ n — 1. Ac-
cordingly pf(m) is an isomorphism for m > n — 1. Therefore (if)*(n) =
f*(n)i*(n). Since i*(n) = 0 this is out of accord with (3.1.2).

If / is use on X to X, x is a ./ί̂ βd point if x ef(x).

L E M M A 3.2. There is no set valued use transformation f on Dn+ί

to Dn+ι x I with f(x) = x, x e Dn+1 and p ^ n - 1 .

The argument is similar to that for the latter part of the proof
of (3.1) deriving from (3.1.2). Thus let px and p2 be the usual pro-
jections on Γ(f) to Dn+1 and to Dn+1 x I respectively and write A —
Imp 2 . Then by interpreting (2.1) for transformations (or by first
noting as in [1, Theorem 10.7] that pι is closed and then appealing to
[5]) we infer pΐ(n) is the trivial isomorphism. The purported com-
mutativity in

Γ(f)

Γ
where k is inclusion and j = pjί9 with j inclusion of ί)n+1 in Dn+1,
yields

k*(n) = j*(n) pϊ{n) .

Since p*(n) is trivial so is jf(n) while k*(ri) is obviously a non trivial
epimorphism.

THEOREM 3.3. Let f be a use transformation on Dn+1 to Dn+1. Let
S be the singular set with dim S = d. Let μr — 0 for r ^ n — 1 —
d = r. Then f has a fixed point.

Suppose there is no fixed point. The cone C+(x) is generated by
lines from points of f(x) through x and intersects Dn+ι in a set F(x).
Write d(x) for d(x, Dn+1). Identify ί)n+1 with ί)n+1 x 0 and denote a
generic point by x". Define the homotopy on Dn+1 to the annulus
Dn+1 x I by

Λ(α?,8)= U z(x,x')((l-s)/\\z\\ + s)
(3.3.1) x'ef{x)

z(x, xr) = x"{x, x') + d(x)(x - xf) .

where a?", a?' and x are collinear, the addition is, of course, vector
addition, and h(x, s), s Φ 0, xΊΓΪ)n+1, is a homeomorph of f(x) in C+(α;).
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We show h is use on Dn+1 x I to Sn x I and so in particular
Γ(h) is compact. For simplicity we assume s fixed. Thus suppose
xn —>x and zn —>z. Continuity guarantees dxn—+d(x). By (3.3.1) xn"
and xr

n are determined by zn. Suppose x" —> x"', x'n —• x\ The use pro-
perty for / guarantees xf ef(x). The demonstration of (10.9) in [1]
establishes that F is use so x"eF(x) Hence by (3.3.1)

z = x" + d(β){x — xr)

or h is use for each fixed s. It is now trivial to show that h remains
use when s varies.

A homotopy argument based on (2.1) would entail a study of S
for F. Such complications can be avoided by noting h yields a de-
formation retraction of Im h{ ,1) onto ί)n+1. Since the retraction
induces the identity homomorphism, existence of h{ , l)*(n) implies
that of h( , 0)*(n) and we then need show h(ΐ)*(ri) Φ 0 whence
h(0)*(n) Φ 0. Thus just as in (3.2) a contradiction would be reached.
However our main conclusion already follows on considering h(ϊ) — Ff

alone. The singular set for Fr is at most that for /. Accordingly p
for Ff is given by

p ^ 1 + sup (dr + r) ^ d + r = n — 1 .

Thus F' satisfies the hypotheses of (3.2) in contradiction to the con-
clusion of that lemma. Hence fix) admits a fixed point since Fix) does.

The ball may be replaced by a somewhat more general set. Thus

COROLLARY 3.4. Let E be a retract of Dn+1 and suppose f is
a use self map of E. Let its singlar set SΛ_! be finite and disjunct
from E. Then f admits a fixed point. If the singular set is not
required to be away from E there is nevertheless a fixed point if
μr = 0, r ^ n — 2.

Denote the retracting function on Dn+1 to E by r. Then / extends
to / ' on Dn+1 to E and therefore to Dn+ι by

(3.4.1) f'(z) - f(rz), z G D*+1 .

Let zn converge to z. Write xn for rzn. Since r is continuous xn

converges to x where x = rz. Let wnef'(zn). Then wnef(xn)(zE.
Hence wn converges to wef(x) = firz) = f\z). Thus / ' is ucs. The
singular set for / ' is again Sn^. Hence by (3.3), / ' admits a fixed
point, z, which obviously must lie in E. Thus z is a fixed point of / .

Suppose
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Then the singular set S' for / ' is

S . - ι U { r t < [ i = 1, •••,&}.

Therefore dim S' = 1 and again (3.3) applies.

4* Min max results* The results above have immediate applica-
tion to the central theorem of game theory, namely the saddle point
theorem or min-max theorem. We estalish a wide generalization
which, as in the case of Theorem 3.3, breaks through the usual
restriction to point-convex set or point-acyclic set maps.

Let X and Y be compact convex bodies in Rk and Rι respectively
and let / be a real valued continuous map on X x Y. A saddle
point (x°, y°) is defined by

Min/(α?°, y) = f{%\ y°) = Max/(α?, y) .
yeY xeX

Let

M(y) = {x\f(x, y) = Max/fo y)} c X
xeX

N(x) = {y \f(x, y) = Min/(a>, y)}aY.
yeY

Thus M is a set valued function on 7 to I and N is a set
valued function on X to Y. Define the set valued function g on
IxFtoIxYby

g(x, y) = M(y) x N(x) .

Since X x Y can be identified with Dk+ι the analogues of the
transformations introduced in § 3 are immediate. However for clarity
of exposition we state the definitions. We shall sometimes write z for
the point (x, y). Thus let dz be d(z, (X x F) ) and write C(z)+ for
the forward cone with base g(z)(z~eg(z)), passing through z = (x, y).
Then G(z) is C(z)+ n ( I x Y)\ Each generator of C(z)+ meets (X x Γ)
in a unique point z" = «"(«; «'), z' e g(z)

i.e. G(», y)= \J z"{x, y; x', yf) .
x',y' eg(x.y)

Define

G'(z) = U {*"{*, *>') + d(z)(z - z')
z'eg(z)

where z = (a?, y) and «' = (a?', y') and vector difference is intended
in the last parentheses.

In the finite dimensional case the classical min-max theorem
states that for X, Y, M(y) and N(x) convex (acyclic) compacta there
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is a saddle point. The following theorem initiates a fundamental
advance.

THEOREM 4.1. Suppose the set valued functions M and N defined
above are use. Two singular sets S(X), S(Y) of dimensions d(X) and
d(Y) are defined as in (1.1) and for N and for M respectively by

S(X) = u μ λ x ) , S(Y) = u μr{Y) •
r r

Assume that for x e S(X), y e S(Y), H*(N(x), Q)(H*{M{y), Q) is finitely
generated. Suppose that μr{X) — 0 for r ^ p and that dX ̂  k — p — 2.
Suppose too that μr{Y) = 0 for r^q with dY ^ I — 2 — q. Then
there is a saddle point.

Assume for all x,yeX,Y there is no saddle point i.e. x, y~eg{x,y).
Write

tG{x,y)Φ 0}
S(X, Y) = \J L(t)

t

dt = dim L(t)

d = dim S(X, Y) .

Our concern is with an upper bound for t deriving from the hypothes-
es of the theorem. Evidently, g is use as a product of use transfor-
mations. It can then be established that Gr is use also. Moreover
the singular set for g includes that for Gf since no point on (Xx Y)
can be singular for Gr. The Kunneth theorem applies to give

(4.11) H\M(y) x N(x)) ̂  0 HaM(y) (x) HbN(x) .

The assertion of (3.3) requires only that p tS n — 1. If then k + I is
taken as n + 1 we need merely establish that t the correspondent of
p is at most n — 1 where

t = 1 + sup (t + dt) .

L(t)=£0

There are three situations to consider

(4.1.2) xeS(X),yeS(Y)

(4.1.3) xeS(Y),yTS(Y)
(4.1.4) xΎS(X),yeS(Y) .

For (4.1.2) the sup is taken for t at most p + q — 2. Thus
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t = 1 + sup (t + dt) <^1 + p + q - 2 + d

^ p 4- dX + q -

= n — 4

For (4 1.3) an upper bound ensues if S{YY is replaced by R\ thus

ί = 1 + sup (ί + dt) ^ p + dX + I
L(t)¥>0

(4,1.6) 's*-1 ^ Λ + i - 2

= ^ — 1
By symmetry the same bound covers (4.1.4). Hence the upper

bound required is given by (4.1.6). Then by (3.3.1) for some x, y

χ,yz g(%, y)

i.e. x e Max f(x, y)

y e Min f(x, y)

that is to say, x, y is a saddle point.
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