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ON THE FUNDAMENTAL UNIT OF A
PURELY CUBIC FIELD

RONALD J. RUDMAN

Let a = Z)3 + d, where α, D, d are rational integers
with Df a > 0, | d \ > 1, and d\ 3D2' It is proved that the
fundamental unit of the field Q(ω), where ω — V a, is (ω — D)z/d
with only six exceptions.

l Introduction* The purpose of this paper is to establish the
following result:

THEOREM 1. Let a = D3 + d, where a, D,deZ, with a, D > 0,
I d I > 1, and a cubefree. Then e = (ω — Dfjd, where ω = V α , is a
unit of K — Q((o) if and only if d | 3D2. Moreover, in this case ε =
-η, the fundamental unit of K, except for {D,d) = (2, - 6 ) , (1,3),
(2, 2), (3,1), and (5, —25), where e = r?2, αwd (2, - 4 ) , w&ere ε = rf.

Here, Z, Q denote respectively the rational integers and the
field of rationals.

Theorem 1 is an extension of a result of Stender [4], who showed
that when

( 1 ) α = Dz + d, d\D, d>l

( 2 ) a = D 3 + 3d , d | D, 3d ^ D, d > 0

( 3 ) a = D3 + 3D , D^2 ,

(4) a = Dz - d , d\D, 4 < 4d rg D ,

or

( 5 ) α - D3 - 3d , d | i), 12d £ D, d > 0

ε = (ω - D)3/(ω3 - D3) = 57, except for (2), d) = (2, 2) in (1), where
e = τy2. The case d = 1 in (1) and (4) had already been settled by
Nagell [2], who proved that ε = r? with the single exception of a =
28, when e = ^2. The method of proof used here follows [4]

2* Preliminaries* We now make the assumption that d | 3D2.
Since a is cubefree we put a = m%2 with m squarefree. Also,

d is cubefree, as d | 3α.

Let a = m2^, ω = v7"^, and ζ be the fundamental unit of the
ring R = [1, ω, ώ]. It is well known that if a Ξ£ ±1 (mod 9), an
integral basis for K is <1, co, ώ) (a field of the first kind). However,
if a == ± 1 (mod 9), an integral basis for K is given by
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<(1 + mω + nώ)/3, ω, ώ)

(a field of the second kind) and each integer of K is representable
in the form (x + yω + zώ)/S. If ζ Φ η then K is of the second kind
and ζ = γ [3].

Now, if ΰ- e K Π (0,1) and if ε = #*, U natural number, then it
is easily seen [4] that for ε', ε" the (complex) conjugates of ε,
# = (» + yo> + zώ)/3 implies that

'\x\ <σ

( 6 ) I y | < (7/ω

> I 2 I < σ/d) ,

where

σ = 1 + 2 I ε' | :/ ί .

3. We observe that ε = 1 + (3i)2/d)ω - (W/d)ω2 satisfies the
equation td - St2 + (3 + 27D3a/d2)t - 1 = 0. Hence ε is a unit of K
if and only if d2 \ 27Dza. Putting x = W3/d = p/q with (p, q) = 1,
we can write the quotient as 3x(x + 3), i.e., 3p(p + Sq)/q2. It follows
that ε is a unit if and only if q2 = 1, i.e., d | 3D3. But since a is
cubefree, this is equivalent to d \ 3D2.

LEMMA 1. // (D, d) Φ (2, -6) then

[6Dω2/d if d > 0

( 6 £ > 2 / | d | i / d < 0 .

Proo/. Since (ω - Df = d - 3Dω(ω - D), we see that (ω -D)*<d
if and only if d>0 and hence 0 < ε < 1. Therefore ε + 2 < 3 and
since ω > 3/2,

= 1/2 - - ^ + * ^ Y + AΓ
4 \ α d / 4 L

and the result follows.

PROPOSITION 1. If (D, d) Φ (2, -6), (1, 3) then ε is not a square
in R.

Proof. We first assume that d \ D2. This implies that d \ a and
hence we may write d = uv2 where u\m, v \n. Putting D2 = de,
n = vr and assuming that ε = (x + yω + zώ)2, we obtain, by equat-
ing coefficients in the basis <1, α>, ώ>,
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( 7) x2 + 2mrvyz = 1

( 8 ) az2/v2r2 + 2xy = 3e

( 9) rvy2 + 2as = -Sr(D/uv) .

Since (7) implies (α?, r) = 1 we see from (9) that r | 2z and hence
r2 ^ 4z2.

If d > 0, so that %, e > 0, (7) and (9) respectively imply that
yz ^ 0 and xz < 0. Since 7/ = 0 implies that r = 3r2(m/%), we con-
clude that xy > 0. It therefore follows from (8) that Du < 12. The
pairs (D, d) for which this inequality holds (and which are not con-
sidered in [4]) are seen to be (2, 4), (3, 9), (5, 25), (6, 4), (6, 9), (6, 36),
(10, 4), (10, 25), (10,100), and (11,121). In each case it is immediate
that (7), (8), and (9) cannot all be satisfied. We prove this for the pair
(6, 9), the other proofs being similar: here we obtain x2 + 30yz = 1,
z2jr2xy = 12, and 15y2 + 2xz = —30. These lead to xy<6 and hence
I SOyz I < 24.

If d < 0 then we see from (7), (8) that yz ^ 0 and xy < 0. Since
z = 0 implies that ddez = 16, we conclude that xz > 0. Hence \y\ <
(3D/\ d |)1/2, while (9) implies that 8\xy\^ (a/v2) - 12e. Combining
these with (6) and Lemma 1 and assuming that D >̂ 5 we obtain
after a straightforward calculation that (D — l)w < 13. It then
follows directly that none of the thirteen pairs {D, d) for which this
last inequality holds can satisfy (7), (8), and (9).

Considering separately D <£ 5, d < 0, we obtain η directly by
the algorithm of Berwick [1] which has been programmed by the
author. The results show that for (D, d) = (2, - 2 ) , (3, - 9 ) , (4, - 4 ) ,
and (4, -2) we have ε = ζ = η, for (2, - 4 ) ε = ζ3 = rf, and for (5, -25)
e — ζ = η2. The proposition is therefore true in these cases also.

In general, d | 3D2 but we may now assume d \ D2 so that d = 3d0,
where d01 D2. Replacing d by d0 and proceeding as before, we obtain
for d > 0, .DM < 4, and for <Z < 0, (D — Z)u < 9. Here it is easily
seen that only in the cases (D, d) = (2, —6), (1, 3) is ε a square in R.

PROPOSITION 2. If (D, d) Φ (2, —4) then ε is not a cube in R.

Proof. ε1/3 = (ω - D)/ V~deK if_and only if V~d e K. Since d
is cubefree, this would imply that V d generates K. It then follows
by considering traces that | d \ — a or α, which forces us to conclude
that (D,d) = (2, - 4 ) .

PROPOSITION 3. If (D, d) Φ (2, - 6 ) , (2, - 4 ) , (1, 3), or (5, -25),

ε = ζ.

Proof. Let ζ = (a? + s/ω + zώ) and suppose that ε = ζ*, £ > 1.
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By Propositions 1 and 2, t is not divisible by 2 or 3. Hence for
d> 0 we obtain from (6) and Lemma 1 that \y\ < 1/3 + 2/3 (6/D2d)115 <

1. For d < 0 the cases D ^ 5 have already been considered in the
proof of Proposition 1. We may therefore assume that D > 5 and
hence \y\<l/Z + 2/3 (6Z>2/| d |αω)1/5 < 1. Thus y = 0, and expanding
(x + zώy we find that

[ / ] / t

l = Σ LΣ
fco

and since each term in the sum is divisible by x, x = ± 1 . But
then 1 = JV(±1 + zώ) = ± 1 + az\ together with a > 2, yields a
contradiction.

4* Proo/ o/ Theorem 1. By Proposition 3 we may assume if is
of the first kind. Therefore it suffices to prove that 9s Φ (x + yω + zώ)2

for integral x, y, z. We see that here d\ D2, for otherwise a =
D3 + 3d0, where d01 D2, 3 |d 0 , and since D 3 Ξ 0 , ± 1 (mod 9), we have
α Ξ£ ± 1 (mod 9).

Proceeding as in the proof of Proposition 1 we obtain

(x2 + 2mrvyz = 9

(10) \az2/v2r2 + 2xy = 21 e

[rvy2 + 2xz = —Sr(D/uv) .

Since 3 | r implies that a = mn2 = 0 (mod 9) we again find that
(x, r) — 1. Here, we obtain for d > 0, Du < 108, while if d < 0 and
JD > 5 we have (D — ϊ)u < 123. The result now follows by individually
considering each of the fifty-three pairs {D, d) to which these in-
equalities give rise, the equations (10) having no solution in these
cases.
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