THE LEVI PROBLEM FOR A PRODUCT MANIFOLD

Yasuo Matsugu

Let S be a Stein manifold, T a one dimensional torus, π a projection of the product $E=S \times T$ onto S and D a subdomain of E. The main object of this paper is to prove that D is a Stein manifold if and only if D is pseudoconvex in the sense of Cartan and $\pi^{-1}(x)$ is not contained in D for any point x of S.

1. A subdomain D of a complex manifold M is called pseudoconvex if, for any boundary point x of D in M, there is a Stein neighborhood U of x in M such that $U \cap D$ is also a Stein manifold. A pair (B, β) is called a domain over M if β is a locally biholomorphic mapping of a complex manifold B in M. A domain (B, β) over C^{n} is called a domain of holomorphy if there exists a holomorphic function f in B such that the radius of convergence of f at any point x of B is just the boundary distance $d(x)$ of x.

Moreover we recall another definition. Let $\varphi_{i}: M_{i} \rightarrow N_{i}$ be two mappings of a set M_{i} into a set $N_{i}(i=1,2)$. Then we define the product mapping $\varphi_{1} \times \varphi_{2}$ of the product set $M_{1} \times M_{2}$ into the product set $N_{1} \times N_{2}$ by putting $\left(\varphi_{1} \times \varphi_{2}\right)(x, y)=\left(\varphi_{1}(x), \varphi_{2}(y)\right)$ for $(x, y) \in M_{1} \times M_{2}$.

The proof of our theorem falls into two parts. We first prove it in the case of $S=C^{n}$, where we construct a strongly plurisubharmonic function by means of Hörmander [2] and reduce it to a result of Narasimhan [3]. In general case, using the imbedding of Docquier-Grauert [1], we reduce the theorem to the case of C^{n}.
2. Let (B, β) be a domain of holomorphy over C^{n}. In the complex plane C select any two complex numbers ω_{1}, ω_{2} which are linearly independent over the real number field R. The numbers ω_{1}, ω_{2} generate a subgroup Γ of C, namely

$$
\Gamma=\left\{m_{1} \omega_{1}+m_{2} \omega_{2} ; m_{1}, m_{2} Z=\text { addtive group of integers }\right\}
$$

The quotient $T=C / \Gamma$ is a one dimensional torus. T has a natural complex structure and is a compact Riemann surface. The natural map $\tau: C \rightarrow T$ is a locally biholomorphic map. We denote by $E=$ $B \times T$ the product of two complex manifolds B and T, and by $\pi: E \rightarrow B$ the projection.

We first prove the following lemma:
Lemma. Let D be a pseudoconvex open subset of E such that $\pi^{-1}(x)$ is not contained in D for any point x of B. Then D is a Stein manifold.

Proof. Let $1 \times \tau$ be the product map of the identity 1 of B and the map τ. The map $1 \times \tau$ is a locally biholomorphic map $B \times C$ onto E. If we denote by A the inverse image $(1 \times \tau)^{-1}(D)$ of D, A is pseudoconvex, because D is pseudoconvex. A is Γ-invariant, that is, for any fixed point $\gamma \in \Gamma, A$ is invariant under the transformation of $B \times C:(y, z) \mapsto(y, z+\gamma)$. Let α be the restriction to A of the product $\operatorname{map} \beta \times 1$ of the $\operatorname{map} \beta$ and the identity map 1 of C, that is, $\alpha(y, z)=(\beta(y), z)$ for $(y, z) \in A . \quad \alpha$ is a locally biholomorphic map of A into $C^{n} \times C=C^{n+1}$ and (A, α) is a pseudoconvex domain over C^{n+1}. The distance function $d(y, z)$ of the domain A over C^{n+1} induces the function $d(y, t)$ in D. Indeed, for any point $(y, t) \in D, y \in B, t \in T$, select two representatives $z, z^{\prime} \in C$ of the equivalence class t. Then there is $\gamma \in \Gamma$ such that $z^{\prime}=z+\gamma$. But A is Γ-invariant, and so $d\left(y, z^{\prime}\right)=d(y, z)$. Since A is pseudoconvex, by Oka [4], the function $-\log d(y, z)$ is a continuous plurisubharmonic function in A. The function $-\log d(y, t)$ is therefore a continuous plurisubharmonic function in D, and so is the function

$$
1 / d(y, t)=e^{-\log d(y, t)} .
$$

On the other hand, since B is Stein, there is a real analytic strongly plurisubharmonic function $q>0$ with the following property: for any real number $c>0$,

$$
B_{c}=\{y \in B ; q(y)<c\} \Subset B .
$$

The function

$$
\gamma(y, t)=\frac{1}{d(y, t)}+q(y)
$$

defined in D is a continuous plurisubharmonic function. It holds that

$$
\begin{aligned}
D_{c}= & \{(y, t) \in D ; \gamma(y, t)<c\} \\
& \subset B_{c} \times T \cap\left\{(y, t) \in D ; d(y, t)>\frac{1}{c}\right\} \Subset D
\end{aligned}
$$

for any real number $c>0$.
Since $D=\bigcup_{c>0} D_{c}$, if we show that D_{c} is a Stein manifold, we know by Docquier-Grauert [1], that D is itself a Stein manifold.

Fix an arbitrary real number $c>0$. For any point $y \in B$, we set

$$
A(y)=\{z \in C ;(y, \tau(z)) \in D\}
$$

By the hypothesis of the lemma, it follows that $A(y) \subsetneq C$. Select a complex-valued measurable function $a(y)$ in B such that

$$
a(y) \in C-A(y) \text { for any point } y \in B
$$

For sufficiently small number ε with $0<\varepsilon<1 /(c+1)<1 / c$, we define the function $s(y, t)$ in D_{c+1} as follows:

$$
s(y, t)=\frac{1}{\varepsilon^{2 n}} \int_{\xi \in B} \rho\left(\frac{y-\xi}{\varepsilon}\right)_{m_{1}, m_{2}=-\infty}^{+\infty} \frac{d \lambda(\xi)}{\left|z-a(\xi)-m_{1} \omega_{1}-m_{2} \omega_{2}\right|^{2}},
$$

where ρ is Friedrichs' modifier, and z in the summation \sum is a representative of t. Clearly the sum \sum converges uniformly, and does not depend on any choice of representative z.

Moreover, we define a function $p(y, t)$ in D_{c+1} by putting

$$
p(y, t)=s(y, t)+K q(y)
$$

where K is a sufficient large constant. Since $D_{c} \Subset D_{c+1}$ and q is a strongly plurisubharmonic function in B, it follows that the function $p(y, t)$ is strongly plurisubharmonic in D_{c}. By Narasimhan [3], we can conclude that D_{c} is a Stein manifold.
3. Now we shall prove our main theorem.

Theorem. Let E be the product $S \times T$ of a Stein manifold S and a complex torus T, and π be the projection $E \rightarrow S$. Let D be an open subset of E. Then D is a Stein manifold if and only if D is pseudoconvex and $\pi^{-1}(x)$ is not contained in D for any point $x \in S$.

Proof. By Docquier-Grauert [1], there are a biholomorphic map σ of S onto a regular analytic set of a domain of holomorphy (B, β) over C^{n} and a holomorphic mapping ρ of B onto $\sigma(S)$ such that the restriction $\rho \mid \sigma(S)$ is the identiny of $\sigma(S)$. We define a mapping ξ of the product $G=B \times T$ onto $E=S \times T$ by putting $\xi(x, t)=$ $\left(\sigma^{-1}(\rho(x)), t\right)$ for $(x, t) \in G$. The inverse image $\xi^{-1}(D)$ of D under the map is a pseudoconvex open subset of G and satisfies the hypothesis of the lemma. $\xi^{-1}(D)$ is therefore a Stein manifold. Since D is a regular analytic subset of the Stein manifold $\xi^{-1}(D), D$ is also a Stein manifold.

References

1. F. Docquier und H. Grauert, Levisches Problem und Rungerscher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140 (1960), 94-123.
2. L. Hörmander, An Introduction to Complex Analysis in Several Variables, D. Van. Nostrand (1966).
3. R. Narasimhan, The Levi problem for complex spaces II, Math. Ann., 146 (1962), 195-216.
4. K. Oka, Sur les fonctions de plusieurs variables. IX. Domaines finis sans point critique interieur, Japan J. Math., 23 (1953), 97-155.

Received February 1, 1972 and in revised November 13, 1972.

