A PROPERTY OF THE GROUPS Aut $P U\left(3, q^{2}\right)$

Peter Lorimer

Abstract

The automorphism group aut $P U\left(3, q^{2}\right)$ of the projective unitary group $P U\left(3, q^{2}\right)$ has a natural doubly transitive representation on $q^{3}+1$ symbols. If this group contained a sharply doubly transitive subset, it would serve to define a projective plane with $q^{3}+2$ points on a line.

However it is the purpose of this note to prove that Aut $P U\left(3, q^{2}\right)$ does not have such a subset when $q>2$.

The group $P U(3,4)$ is a sharply doubly transitive group and so forms a sharply doubly transitive subset of Aut $P U(3,4)$. This subset corresponds to the projective plane defined by the near field of order 9.

Our result is

Theorem. Let q be a power of a prime number, $q>2$. Then the group Aut $P U\left(3, q^{2}\right)$ represented in the usual way as a doubly transitive group of degree $q^{3}+1$ does not have a sharply doubly transitive subset.

If G is a group of permutations on a set Σ and R is a subset of G we call R sharply doubly transitive on Σ if

I $1 \in R$
II if $\alpha, \beta, \gamma, \delta \in \Sigma, \alpha \neq \beta, \gamma \neq \delta$ there is a unique member $r \in R$ with $r(\alpha)=\gamma, r(\beta)=\delta$.

III the relation \sim defined on R by $r \sim s$ if $r=s$ or $r(\alpha) \neq s(\alpha)$ for every $\alpha \in \Sigma$ is an equivalence relation. Each equivalence class is sharply transitive on Σ, i.e., if $\alpha, \beta \in \Sigma$ each class contains exactly one member r with $r(\alpha)=\beta$.

For the relation between projective planes and sharply transitive sets see [1, p. 140]. If Σ is finite III follows from II. The elementary properties of sharply doubly transitive sets are given by the following lemma which we state here without proof.

Lemma. Let G be a permutation group on a finite set Σ which has n members and suppose that G has a sharply doubly transitive subset R. Then
(1) R has $n(n-1)$ members
(2) The equivalence classes of R under \sim each contain n members
(3) R contains $n-1$ members which fix no symbol of R and $n(n-2)$ which fix one symbol. Only the identity in R fixes more than one symbol.
(4) If $r \in R, r^{-1} R$ is also a sharply doubly transitive subset of G.

If $q \geqq 5$ the theorem follows easily from the results of [3] but the cases $q=3$ and 4 must be treated separately. In $\S 1$ we gather the results that we need about the groups Aut $P U\left(3, q^{2}\right)$ and the following sections give the proofs necessary for the different cases.

1. The groups Aut $P U\left(3, q^{2}\right)$. In our discussion of these groups we will be guided by [2, pages 233-250]. The notations established in this section will be used in the rest of the paper.

Let q be a prime power, K the field of order q^{2} and τ the unique involutory automorphism of K. Let V be a 3-dimensional vector space over K and w_{1}, w_{2}, w_{3} a basis of V. Define a hermitian form on V by

$$
\begin{aligned}
& \left(w_{2}, w_{2}\right)=\left(w_{1}, w_{3}\right)=1 \\
& \left(w_{1}, w_{1}\right)=\left(w_{3}, w_{3}\right)=\left(w_{1}, w_{2}\right)=\left(w_{2}, w_{3}\right)=0
\end{aligned}
$$

Then we may take the unitary group $U\left(3, q^{2}\right)$ as the group of linear transformations of V leaving this form invariant.

The 1-dimensional subspaces of V form the points and the 2dimensional subspaces the lines of the projective plane $P\left(2, q^{2}\right)$ over K. $U\left(3, q^{2}\right)$ has its induced representation $P U\left(3, q^{2}\right)$ as a permutation group on the points and lines of $P\left(2, q^{2}\right)$ and we may take Aut $P U\left(3, q^{2}\right)$ as the normal extension of $P U\left(3, q^{2}\right)$ by the field automorphisms of K.

If $v \in V$ and $(v, v)=0, v$ is called an isotropic vector. The isotropic vectors form $q^{3}+1$ points of $P\left(2, q^{2}\right)$ and we will call these points isotropic points and denote the set of them by A. Aut $P U\left(3, q^{2}\right)$ acts faithfully and doubly transitively on A. This is the representation of Aut $P U\left(3, q^{2}\right)$ referred to in the theorem.

If $v \in V, v \neq 0$, we will denote the point of $P\left(2, q^{2}\right)$ which contains v by $\langle v\rangle$ and if $u \notin\langle v\rangle$ we denote the line of $P\left(2, q^{2}\right)$ which contains both u and v by $\langle u, v\rangle$.

If l is a line of $\operatorname{PU}\left(3, q^{2}\right)$ which contains 2 isotropic points then it contains exactly $q+1$. If L is the stabilizer of l in Aut $P U\left(3, q^{2}\right)$ L has a representation as a permutation group on the $q+1$ isotropic points of l and this representation may be taken as Aut $P U\left(2, q^{2}\right)$ acting on these points. The representation is thus permutation isomorphic to Aut $P G L(2, q)=P \Gamma L(2, q)$, see [2, p. 237].

It is now necessary to consider this representation in more detail. As Aut $P U\left(3, q^{2}\right)$ is doubly transitive on A it is sufficient to consider the line $l=\left\langle w_{1}, w_{3}\right\rangle$. We define the following subgroups of Aut $P U\left(3, q^{2}\right)$:
L is the stabilizer of l;
H is the stabilizer of both $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$;
M is the stabilizer of all isotropic points $\langle w\rangle$ with $\langle w\rangle \in l$.

In a straightforward manner we find that $M \subseteq H$ and that M is the kernel of the representation of L on the $q+1$ isotropic points of l. From the properties of the linear group $U\left(3, q^{2}\right)$ we also find that if $\langle u\rangle,\langle v\rangle$ are two isotropic vectors of l then L consists precisely of those members f of Aut $P U\left(3, q^{2}\right)$ with $f\langle u\rangle, f\langle v\rangle \in l$. In particular $H \cong L$ and L is doubly transitive on the isotropic points of l.

Considering now a possible sharply doubly transitive subset R of Aut $P U\left(3, q^{2}\right)$. We can prove the following.

Proposition. Let R be a sharply doubly transitive subset of Aut $P U\left(3, q^{2}\right)$. Then the members $r M, r \in R \cap L$, of L / M form a sharply doubly transitive subset of L / M in its representation on the isotropic points of l.

Proof. It is sufficient to notice that if $\langle u\rangle,\langle v\rangle$ are two isotropic vectors of l then $R \cap L$ contains all those members r of R with $r\langle u\rangle$, $r\langle v\rangle \in l$.
2. $q \geqq 5$. The results of [3] enable us to prove our theorem when $q \geqq 5$.

Suppose that Aut $P U\left(3, q^{2}\right)$ has a sharply doubly transitive subset R. Using the proposition in $\S 1$ we obtain a sharply doubly transitive subset of the group L / M. As this group is permutation isomorphic to $P \Gamma L(2, q)$ we obtain a sharply doubly transitive subset of $P \Gamma L(2, q)$. This contradicts the results of [3] when $q \geqq 5$.

As the groups $P \Gamma L(2,3)$ and $P \Gamma L(2,4)$ each contain a sharply doubly transitive subset this proof does not work for $q=3$ or $q=4$ and it is necessary to treat these cases separately. We do this in the next two sections.
3. $q=3$. In this section we treat the group Aut $P U(3,9) . P U(3,9)$ has order 28.27 .8 and has index 2 in Aut $P U(3,9) . K$ has 9 members and we may take them as the elements $a+i b$ where $a, b=0,1,-1$, the members of the field of order 3 and $i^{2}+1=0$. The one automorphism τ of K is given by $\tau(a+i b)=a-i b$ or equivalently $\tau(x)=x^{3}$ for all $x \in K$. The set A of isotropic points has 28 members.

The stabilizer of the two points $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$ of l has order 16. Thus Aut $P U(3,9)$ has 16 members which interchange $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$. Following [2, p. 242] we may take these as the transformations $T(\sigma, k)$, $\sigma=1, \tau, k \in K-\{0\}$ defined by

$$
(x, y, z) \longrightarrow\left(k z^{\sigma}, k^{2} y^{\sigma}, k^{-3} x^{\sigma}\right)
$$

Suppose now that Aut $P U(3,9)$ has a sharply doubly transitive subset
R. Then R contains exactly one member r which interchanges $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$. As the stabilizer of $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$ has order $16, r$ is a 2-element. If it fixed one member of A it would have to fix another as A has 28 members. From the lemma in the introduction it follows that r fixes no members of A, i.e., $r \sim 1$. Denote the class of 1 under this relation by R^{*}. R^{*} contains 28 members and because of the double transitivity of Aut $P U(3,9)$ the above shows that when we decompose the members of R^{*} into disjoint cycles we obtain ($1 / 2$)28.27 transpositions. Thus the 27 nonidentity members of R^{*} must all be involutions. In particular, r is an involution.

We now proceed to show that every involution interchanging $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$ fixes at least two isotropic points and hence show that r cannot exist.

Any involution interchanging $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$ is conjugate to one of $T(1,1), T(\tau, 1)$ or $T(\tau, 1+i)$. $T(1,1)$ fixes $\langle(1,-1,1)\rangle$ and $\langle(1,1,1)\rangle$, $T(\tau, 1)$ fixes $\langle(1,0, i)\rangle$ and $\langle(1,0,-i)\rangle$ and $T(\tau, 1+i)$ fixes $\langle(1-i, 1-$ $i, i)\rangle$ and $\langle(1-i,-1+i, i)\rangle$. In each case we have two isotropic vectors so that none of these can be r.

Thus no r interchanging $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$ can exist and this proves the result when $q=3$.
4. $q=4$. Finally we treat the case $q=4$.

The group Aut $P U(3,16)$ has order $65 \cdot 64 \cdot 15 \cdot 4$ and has $P U(3,16)$ as a subgroup of index 4 . In this case there are 65 isotropic points in $P(2,16)$ and we are interested in the representation on the set A containing these 65 points. We let w_{1}, w_{3}, l, H, L, and M be as in Section 1. The line l containing $\left\langle w_{1}\right\rangle$ and $\left\langle w_{3}\right\rangle$ contains 5 isotropic points and we will denote the set of them by l^{*}.
H has a normal Sylow 5-subgroup consisting of the transformations arising from the matrices $S(k, \alpha)$ in $U(3,16)$ for $\alpha, k \in K \alpha^{5}=k^{5}=1$ where $S(k, \alpha)$ is the matrix

$$
\left(\begin{array}{ccc}
k & \cdot & \cdot \\
\cdot & \alpha & \cdot \\
\cdot & \cdot & k
\end{array}\right)
$$

relative to the basis w_{1}, w_{2}, w_{3}. Such a matrix fixes every point on the (projective) line l and also fixes the point $\left\langle w_{2}\right\rangle$. Now consider the lines through $\left\langle w_{2}\right\rangle$ in $P(2,16)$. There are 17 of them and each meets l in a point fixed by $S(k, \alpha)$. Thus $S(k, \alpha)$ fixes each of these lines. If $w \in l^{*}, w+\alpha w_{2}$ has length α^{5} and so the line through $\langle w\rangle$ and $\left\langle w_{2}\right\rangle$ contains exactly one isotropic point, namely $\langle w\rangle$. As l^{*} contains 5 points the remaining 60 isotropic points are distributed among the other 12 lines through w_{2} and as no line can contain more
than 5 isotropic points it follows that each of these lines contains exactly 5 .

Now consider the Sylow 5 -subgroups of $P U(3,16)$. They have order 25 and so are abelian. As any 5 -element fixing 2 isotropic points is conjugate to a matrix $S(k, \alpha)$, such a 5 -element fixes exactly 5 isotropic points and moves the other 60 points in orbits of length 5. If $P U(3,16)$ contained an element of order 25 it would have to fix no isotropic point and yet have its 5 th power fixing exactly 5 such points. This is not possible so that the Sylow 5 -subgroups are elementary abelian.

If a is a 5-element of $M \cap P U(3,16)$ and b is a 5-element of $P U(3,16)$ it follows that a and b lie in a Sylow 5 -subgroup together if and only if $a b=b a$. Reference to the end of $\S 1$ shows that $L / M \cong P \Gamma L(2,4)$ and as L contains a Sylow 5 -subgroup of $P U(3,16)$ and M has order $5, L$ contains the same number of Sylow 5 -subgroups as $P \Gamma L(2,4)$, namely 6. Any two intersect in M so that each 5-element of M commutes with exactly 1245 -elements of L and clearly commutes with no other 5-element of $P U(3,16)$. Again let a be a 5-element of M. We showed in the last paragraph that a fixes 12 lines which contain 5 isotropic points each and it can clearly not fix any more such lines. Hence for 12 lines a lies in the normalizer of the stabilizer of the 5 isotropic points on the line. It thus commutes with each of the 45 -elements which fix all these points. Hence a commutes with $12 \cdot 4=485$-elements outside M which fix exactly 5 isotropic vectors and so commutes with $120-48=72$ 5-elements which fix no isotropic vector. As L contains 6 Sylow 5 -subgroups it follows that each Sylow 5 -subgroup contains 12 members which fix no isotropic point.

We now suppose that R is a sharply doubly transitive subset of Aut $P U(3,16)$. From the results at the end of $\S 1$ we see that $R \cap L$ contains 20 members and because $P \Gamma L(2,4)$ contains only one type of sharply doubly transitive subset, namely that corresponding to the set of semilinear transformation $x \rightarrow a x+b, a \neq 0$ over the field of order 5, it follows that $R \cap L$ contains 4 members which have in their decomposition into disjoint cycles, a cycle of order 5 on the isotropic points of l^{*}. If r is one of these and r fixes an isotropic point, say u, then r^{5} fixes 6 isotropic points, namely u and the 5 members of l^{*}. But only the identity in Aut $P U(3,16)$ fixes more than 5 isotropic points and so $r^{5}=1$. But each element of order 5 fixes either 5 or no isotropic points and as no member of R except 1 can fix more than one point we obtain a contradiction. Hence r fixes no isotropic points or $r \sim 1$. If we denote the equivalence class containing 1 by R^{*} it follows that we obtain $(65 \cdot 64) /(5 \cdot 4) \cdot 45$-cycles when we decompose the members of R^{*} into disjoint cycles. As R^{*} contains only 64 members apart from 1 each of these must decompose into 13 5-cycles, i.e., each
must be an element of order 5 and moreover the isotropic points in each 5-cycle which occurs must lie together on one line in $P(2,16)$.

Let r be a member of $R^{*}-\{1\}$ and denote the set of 5 -elements of Aut $\operatorname{PU}(3,16)$ which fix 5 points of A by Q. Suppose that r lies in α Sylow 5 -subgroups. The intersection of any two of them can only consist of r and its powers so that no member of Q lies in two of them. Each contains 12 members of Q so that r commutes with 12 α members of Q. On the other hand we have shown that r fixes 13 lines containing 5 isotropic vectors each and as $P U(3,16)$ is transitive on such lines it follows from the above analysis that r commutes with the 4 5-elements that fix the points of each line and r commutes with no other member of Q. Thus r commutes with 13.4 members of Q and so $13.4=12 \alpha$. As α is an integer we have a contradiction.

This establishes the result when $q=4$ and so proves the theorem.

References

1. P. Dembowski, Finite Geometries, Springer-Verlag, Berlin 1968.
2. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin 1967.
3. P. Lorimer, A Property of the Groups P$\Gamma L(m, q) . q \geqq 5$. To appear Proc. Amer. Math. Soc.

Received January 28, 1972 and in revised form June 22, 1972.
University of Auckland

