A DECOMPOSITION FOR $B(X)^*$ AND UNIQUE HAHN-BANACH EXTENSIONS

JULIEN HENNEFELD

For a Banach space X, let B(X) be the space of all bounded linear operators on X, and \mathcal{C} the space of all compact linear operators on X. In general, the norm-preserving extension of a linear functional in the Hahn-Banach theorem is highly non-unique. The principal result of this paper is that, for $X = c_0$ or l^p with 1 , each bounded $linear functional on <math>\mathcal{C}$ has a unique norm-preserving to B(X). This is proved by using a decomposition theorem for $B(X)^*$, which takes on a special form for $X = c_0$ or l^p with 1 .

1. DEFINITION 1.1. A basis $\{e_i\}$ for a Banach space X having coefficient functionals e_i^* in X^* is called unconditional if, for each x, $\sum_{i=1}^{\infty} e_i^*(x)e_i$ converges unconditionally. The basis is called monotone if $||U_m x|| < ||x||$ for all $x \in X$ and positive integers m, where $U_m x = \sum_{i=1}^{m} e_i^*(x)e_i$.

PROPOSITION 1.2. If X has a monotone, unconditional basis $\{e_i\}$, then $B(X)^* = \mathscr{C}^* + \mathscr{C}^{\perp}$, where \mathscr{C}^* is a subspace of $B(X)^*$ isomorphically isometric to the space of bounded linear functionals on \mathscr{C} , and \mathscr{C}^{\perp} annihilates \mathscr{C} . Furthermore, the associated projection from $B(X)^*$ onto \mathscr{C}^* has unit norm.

Proof. If $T \in B(X)$, then $T(x) = \sum_{i=1}^{\infty} f_i^T(x)e_i$ for each $x \in X$, where $f_i^T \in X^*$. For each T and i, let T_i be defined by $T_i(x) = f_i^T(x)e_i$ for all x. Also, for each $F \in B(X)^*$, define $G \in B(X)^*$ by $G(T) = \sum_{i=1}^{\infty} F(T_i)$. Note that this sum converges. Otherwise, we have $\sum_{i=1}^{\infty} |F(T_i)| = \lim_{n \to \infty} F[\sum_{i=1}^{\infty} SgF(T_i) \cdot T_i] = +\infty$, and then

$$\lim_{n\to\infty} ||\sum_{i=1}^n SgF(T_i)\cdot T_i|| = \infty .$$

Then by using an absolutely convergent series, it is easy to construct an element $y \in X$: $\lim_{n\to\infty} || \sum_{i=1}^{n} SgF(T_i) \cdot T_i(y) || = \infty$. Therefore, $\sum_{i=1}^{\infty} f_i^T(y)e_i$ converges while $\sum_{i=1}^{\infty} SgF(T_i) \cdot f_i^T(y)e_i$ does not, which contradicts the fact that an unconditionally convergent series is bounded multiplier convergent. See [3], p. 19.

Note that the norm of G restricted to \mathscr{C} is equal to the norm of G on B(X), since by monotonicity $||\sum_{i=1}^{n} T_i|| \leq ||T||$ for each n and $T \in B(X)$. Also, F and G agree on \mathscr{C} , because \mathscr{C} is the closure of the set of all T for which only a finite number of the f_i^T are nonzero. Hence the projection defined by PF = G has unit norm, since $||F||_{B(X)} \ge ||F||_{\mathscr{C}} = ||G||_{\mathscr{C}} = ||G||_{B(X)}.$

COROLLARY 1.3. If X has an unconditional basis $\{e_i\}$, then there is a bounded projection from $B(X)^*$ onto a subspace isomorphic to \mathscr{C}^* .

Proof. Renorm X so that the basis $\{e\}_i$ is monotone. See [1], p. 73.

2. THEOREM 2.1. Let X have an unconditional, shrinking basis $\{e_i\}$, for which there is a function N of two real variables such that: (i) $N(a, b) \leq N(\alpha, \beta)$ if $0 \leq a \leq \alpha$ and $0 \leq b \leq \beta$;

(ii) N(||x||, ||y||) = ||x + y|| for which $x = \sum_{i=1}^{n} a_i e_i$ and $y = \sum_{n+1}^{\infty} a_i e_i$. Then for each $F \in B(X)^*$, ||F|| = ||G|| + ||H||, where F = G + H with $G \in \mathscr{C}^*$ and $H \in \mathscr{C}^{\perp}$.

Proof. Note that the existence of N implies that the basis is monotone, and so we have a decomposition for $B(X)^*$. The operators whose matrices have a finite number of nonzero entries form a dense subset of \mathscr{C} . Hence, for $\varepsilon > 0$, there exists an operator D of unit norm whose image lies in the subspace $[e_1, e_2, \dots, e_m]$, and whose kernel contains $[e_{m+1}, e_{m+2}, \dots]$: $G(D) > ||G|| - \varepsilon/3$. Also, there exists an operator $T \in B(X)$ of unit norm: $H(T) > ||H|| - \varepsilon/3$. Let Q_r be the projection onto $[e_{r+1}, e_{r+2}, \dots]$. Define $T^{(r)}x = \sum_{i=r+1}^{\infty} f_i^T(Qx)e_i$. Note that the matrix for $T^{(r)}$ is simply the matrix for T, with the first r-rows and r-columns replaced by zeros.

Then $\lim_{r\to\infty} G(T^{(r)}) = 0$. To see this, first note that the existence of N and the basis being shrinking imply that the functionals in \mathscr{C}^* with a finite number of nonzero entries form a dense subset of \mathscr{C}^* . See [2], Propositions 3.1 and 3.3. Thus, for any $\delta > 0$, $\exists J \in B(X)^*$, for which $||J - G|| < \delta$ and : $\lim_{r\to\infty} J(T^{(r)}) = 0$. Hence $\lim_{r\to\infty} G(T^{(r)}) = 0$.

Then pick r > m: $|G(T^{(r)})| < \varepsilon/3$. Observe that $||D + T^{(r)}|| = 1$, since and $z \in X$ can be written as z = x + y where $x \in [e_1, \dots, e_r]$ and $y \in [e_{r+1}, \dots]$. Then

$$egin{aligned} &||(D + T^{(r)})(x + y)|| = ||Dx + T^{(r)}y|| = N(||Dx||, ||T^{(r)}y||) \ &\leq N(||x||, ||y||) = ||x, y|| \ . \end{aligned}$$

Using the fact that H annihilates \mathcal{C} , we have

$$egin{aligned} F(D + T^{(r)}) &= G(D) + G(T^{(r)}) + H(T^{(r)}) > &||G|| - rac{arepsilon}{3} - rac{arepsilon}{3} + &||H|| - rac{arepsilon}{3} \ &= &||G|| + &||H|| - rac{arepsilon}{3} \,. \end{aligned}$$

Hence ||F|| = ||G|| + ||H||.

COROLLARY 2.2. If X is (c_0) or l^p with $1 , then, for each <math>F \in B(X)^*$, ||F|| = ||G|| + ||H||, where F = G + H with $G \in \mathscr{C}^*$ and $H \in \mathscr{C}^{\perp}$.

Proof. Let $\{e_i\}$ be the standard basis. Let $N(a, b) = [|a^p| + |b^p|]^{1/p}$ for l^p . Let N(a, b) = Max(|a|, |b|) for c_0 .

THEOREM 2.3. Each bounded linear functional on \mathscr{C} has a unique normpreserving extension to B(X) for $X = c_0$ or l^p with 1 .

References

1. M. M. Day, Normed Linear Spaces, Academic Press, New York, 1962.

2. J. Hennefeld, The Arens products and an imbedding theorem, Pacific J. Math., 29 (1969), 551-563.

3 J. T. Marti, Introduction to the Theory of Basis, Springer-Verlag, New York, 1969.

Received December 15, 1971. The author wishes to thank the referee for streamlining the proof of the basic result.

BOSTON COLLEGE