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FACTORED CODIMENSION ONE CELLS IN
EUCLIDEAN #-SPACE

ROBERT J. DAVERMAN

Seebeck has proved that if the m-cell C in Euclidean n-space
E™ factors k times, where m < n — 2 and n = 5, then every
embedding of a compact k-dimensional polyhedron in C is tame
relative to £*. In this note we prove the analogous result
for the case m +1=n7=5 and n» — k = 3. In addition we
show that if C factors 1 time, then each (n — 3)-dimensional
polyhedron properly embedded in C can be homeomorphically
approximated by polyhedra in C that are tame relative to E".

Following Seebeck [8] we say that an m-cell C in E™ factors k times
if for some homeomorphism % of E™ onto itself and some (m — k)-cell
B in E** h(C) = B x I*, where I* denotes the k-fold product of the
interval I naturally embedded in E* and where

Bx I*c B~ * x E* = E»

is the product embedding.

In another paper [6] the author has studied results comparable to
Seebeck’s for factored cells in E*, but the techniques employed here
differ slightly from those used in [6] and [8]. The main result
generalizes work of Bryant [2], and the final section here expands on
his methods to obtain a strong conclusion about tameness of all sub-
polyhedra in certain factored cells.

1. Definitions and Notation. For any point p in a metric space
S and any positive number o, N;(p) denotes the set of points in S
whose distance from p is less than 6.

The symbol 4* denotes a 2-simplex fixed throughout this paper,
04* its boundary, and Int 4* its interior.

Let A denote a subset of a metric space X and p a limit point
of A. We say that A is locally simply conmnected at p, written 1-LC
at p, if for each ¢ > 0 thereis a ¢ > 0 such that each map of 74* into
A N Ni(p) can be extended to a map of 4% into A N N.(p). Furthermore,
we say that A is uniformly lecally simply connected, written 1-ULC,
if for each ¢ > 0 there is a § > 0 such that each map of 64* into a
o-subset of A can be extended to a map of 4* into an e-subset of A.
Similarly, we say that A is locally simply connected in X at p, written
1-LC in X at p, if for each ¢ > 0 there is a 6 > 0 such that each
map of 04* into A N N,(p) extends to a map of 4* into N.(p), and we
say that A is uniformly locally simply connected in X (1-ULC in X)
if the corresponding uniform property is satisfied.
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Suppose f and ¢ are maps of a space X into a space Y that has
a metric p. The symbol o(f, g) < ¢ means that o(f(x), g(x)) < & for
each z in X.

A subset S of a metric space is called an e-subset if the diameter
of S, written diam S, is less than e¢.

A compact 0-dimensional subset X of a cell C is said to be tame
(relative to C) if X N oC is tame relative to dC and X N Int C is tame
relative to Int C. In addition, a 0-dimensional F, set F in C is said
to be tame (relative to C) if F can be expressed as a countable union
of tame (relative to C) compact subsets.

For definitions of other terms used here the reader is referred to
such papers as [3, 8].

2. Tame polyhedra in factored cells. The goal of this section
is to show that for any k-dimensional polyhedron P in a cell C that
factors & times, E* — P is 1-ULC. However, instead of arguing this
directly, we prove first that £ — C is 1-ULC in E" — P.

ProposiTiON 1. If Cis an (n — 1)-cell in E™ that factors k times
(k £ n — 8) and P a k-dimensional polyhedron (topologically) embedded
an C, then E® — C s 1-ULC in E™ — P.

Proof. Suppose C = B x I"< E"* x E*. Define a subset Z of
P as the set of all points p of P for which there exist a neighborhood
N, of p (relative to P) and a point b in B such that N,c {b} x I,
and define Q@ = P — Z. We prove first that, for each point ¢ in C,
E"— Cis 1-LC in E* — @ at c.

Consider ¢ to be of the form (b, %), where be B and ye Int I*
(the case yedl* is similar and easier). Suppose N is a neighborhood
of (b, y) such that NN (B x o0I*) = @. There exist an open subset U
of E** and a contractible open subset V of I* such that (b, y)e U x
V< N. By the construction of @ there exists a point ¥’ € V such
that (b, ¥') ¢ Q. Let U’ be an open subset of E** such that

beU'cUand (U X{WHNR =0 .

Now we obtain an open subset W of E™* such that be W< U’ and
the inclusion map 7: W — U’ is homotopic to a constant map.

Let L be a loop in (W x V) — C. Since V is contractible to y’, L
is homotopic in (W x V) — C to a loop L’ in W x {y'}. But L’ is
contractible in

U x{y}jcN—-Q.
Thus, F* — C is 1-LC in E" — @ at c.
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The definition of Z implies that P is locally tame at each point
of Z. Hence, if f: 4*— E* — @ is a map such that f(04)C E" — P,
then f can be approximated arbitrarily closely by maps ¢:4*— E*
such that ¢|04* = f| 04* and g(4*) < E® — P. Thus, E* — C is 1-LC
in E* — P at each point ¢ of C. Since C is compact, the correspond-
ing uniform property holds as well.

There may be some value in observing that this argument also
gives the following result.

PROPOSITION 2. Let B x I*c E** x E*¥ = E" be an m~cell
m<n, k<n—38) and X a compactum in B X I* such that
dim (X N (b} x I*)) < k for each b in B. Then E™ — (B X I*¥) is 1-ULC
wm B — X.

THEOREM 3. If C is an (n — 1)-cell in E™ that factors k times
(k<n —3) and X s either a k-dimenstonal polyhedron or a (k — 1)-
dimensional compactum in C, then E™ — X is 1-ULC.

This theorem follows immediately from [1, Prop. 1] and either
Proposition 1 or Proposition 2.

COROLLARY 4. If C is an (n — 1)-cell in E™(n = 5) that factors
k times (k <n — 3), then each k-dimensional polyhedron P in C is tame.

The corollary is a straightforward application of the Bryant-
Seebeck characterization of tameness [3] for codimension 3 polyhedra
in terms of the 1-ULC property.

3. Approximations in cells that factor 1 time. This section
contains a proof of the analogue of Seebeck’s Corollary 5.1 [8] for
codimension one cells.

ProposiTiON 5. If Cis an (n — 1)-cell in E™ that factors 1 time,
then there exists a tame 0-dimensional F, set F in Int C such that, for
each point ¢ of Int C, E» — C is 1-LC in (E* — C)U F at c.

Proof. Assume C=B X ICE"' x E'=E". Let ¢ = (b, t) be
a point of Int C and U a neighborhood of ¢ such that Un C < Int C.
We assume further that U is a product neighborhood U = U’ x J,
where U’'c E™* and Jc E*. Corresponding to U is a neighborhood
V of ¢ such that any map f’: 04*— V — C extends to a map f:4*— U
such that f~'(f(4*» N C) is 0-dimensional ([4, Cor. 2C, 2.1] or [5, Th.
3.2]). We can change this map f near C, altering only the E' coordi-
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nates of points in the range, so that in addition f(4*) N Cc< Bx{t}.
We shall obtain a map g:4*— U satisfying

(1) glod =flos =f",

(ii) g(4) N Cisatame (relative to C) 0-dimensional subset of Int C.

Let € be a positive number such that if ¢g:4*— E" and o(f, g) < ¢,
then g(4*) c U.

Cover f~'(f(4°) N C) by the interiors of a collection of small,
pairwise disjoint 2-cells ,D,, ,D,, -+, D,y in Int 4* Slide the sets
JF(D;) vertically to define a map g¢,: 4*— E™ satisfying

(Al) g | 4 — U.D; :fldz_ UlDi’

(B) plg:, 1) < ¢/2,

(C) a.(D)NCc B x {it;}, where ,t; # ,t; whenever ¢ = j,

(D) ¢74(9.(4) N C) is 0-dimensional.

The ,D;’s must be chosen with sufficiently small diameters that
each set f(,D;) N C is contained in the interior of a small (n — 2)-cell
in B x {t}. Thus,

(E)) there exist pairwise disjoint (n — 1)-cells ,K,, K, +--, Ky in
Int C, each of diameter < /2, such that | Int .K; D g,(4*) N C.

The remaining approximations g; will be so close to g, that |J Int
1Ki ) gj(Az) n C.

Let ¢, = min {¢/4, 1/20(g,(4»H N C,C — U .K;)}. To repeat this
process, cover g;Y(g.(4) N C) by the interiors of a collection of a very
small, pairwise disjoint 2-cells ,D,, ,D,, «+-, D, in U Int D, c Int 42
Slide the sets ¢,(,D;) vertically to define a map g¢.: 4*— E* satisfying

(4) ¢ | L = U:D; = g.| £ — U.D,,

(By)  0(9s, ) < &,

(C)  ¢.:D;) N C B x {,t;}, where ,t; # ,t; whenever ¢ = j,

(D,)  97'(9:(4») N C) is 0-dimensional.

The ,D/s must be chosen with sufficiently small diameters
that each set g¢,(.D;) is contained in a small (n — 2)-cell in some
(Bx{it;h N (U Int .K;). Thus,

(F,) there exist pairwise disjoint (n — 1)-cells ,K,, .K;, -+, K0
in U Int K;, each of diameter < ¢,, such that U Int.K; D g,(4* N C.

By continuing in this manner we construct a sequence of maps
9.: 4 — E™ gatisfying analogous conditions (A4,) — (B,) and an associ-
ated sequence of collections {,K;} of » — 1 cells in C satisfying an
analogous condition (£,). The restrictions of condition (B,) guarantee
that g = lim g, is a continuous function of 4* into U, and the restric-
tions of (F,) guarantee that

9PN Cc ﬁ (k(:j Int, K) )

Thus, g(4) N C is a tame (relative to C) 0-dimensional subset of C
[7, Lemma 2].
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To prove the theorem from this fact, observe that for each ¢ > 0
there exists a countable collection {V;} of open sets covering Int C
such that any map f': 04*— V; — C extends to a map g of 4* into an
e-subset of E™ such that g(4*) N C is a tame 0-dimensional subset of
Int C. Since there are only countably many homotopy classes of maps
of 04* into V; — C, the desired set F' can be defined as the countable
union of sets g(4* N C.

THEOREM 6. Suppose C is an (n — 1)-dimensional cell in E™ that
factors 1 time, P is an (n — 3)-dimensional polyhedron properly em-
bedded in C, and € > 0. There exists an e-push h of (C, P) such that
h(P) is tame relative to E".

Proof. The case n =4 is trivial, and no push is needed [6];
hence, we assume n = 5. By [8, Cor. 5.1] there exists an ¢/2 push
h, of (C, P) such that 2(PnNoC) is tame. Let F denote the 0-dimen-
sional F, set of Proposition 5. There exists an ¢/2 push A, of (C, h,(P))
such that 2h(P)NF = @ and h,|0C = 1. Let h denote the e-push
k. It follows that E" — C is 1-LC in E™ — h(P) at each point of
Int C, and in stronger form, as shown in § 2, that E* — a(P) is 1-LC
at each point of Int C. The tameness of A(P) N dC then implies that
E™ — w(P) is 1-LC at every point of h(P). Thus, h(P) is tame [3].

COROLLARY 7. Let S denote an (n — 2) sphere in S, the
(n — 1)-sphere, and X the suspension of S im S*, the suspension of
S™'. Then there exists a tame (relative to X) 0-dimensional F, set F
wn 3 such that S™ — ¥ 4s 1-ULC in (S® — 2) U F. Furthermore, if
P is an(n — 3)-dimensional polyhedron in 3 and € > 0, there exists
an e-push h of (&2, P) such that h(P) is tame relative to S™.

4. Factored cells in which all lower dimensional compacta
are locally nice. Let C=Bx I*C E~* x E* = E* be an r-cell
(r < m). Although the low dimensional polyhedra in C are nicely
embedded, some (k + 1)-cell in C may be wild. In this section we
mention a propsrty of certain cells B that implies every (r — 1)-dimen-
sional polyhedron in C is nicely embedded.

THEOREM 8. Let B denote an m-cell in E"(m < n — 2) such that,
for each (m — l)-dimensional compactum Xc B, E* — X s 1-ULC,
and let C denote B X I*, contained in E™ x E* = E"*, Then, for
each (m + k — 1)-dimensional compactum Y < C, E** — Y 4s 1-ULC.

Proof. It suffices to consider only the case k =1. Let ¢ >0
and weInt I. We shall costruct an e-push % of (E*", Y) such that
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(B X {w}) — (Y) is 1-ULC. Let V denote the e-neighborhood of
Y, {b;}7 a countable dense subset of B, and 7 the natural projection
of E™ = E™ x E' onto the first factor. For any open subset N of
E" containing (b, w) € B X I there exists a point (M, w)e NN (B x
I—Y). If N is a connected open set of the form N = W x J, then
there exists a homeomorphism g of E"*' onto E™" such that
(@) g| E**' — N = identity, (b) g((t/, w")) = (¥', w), (¢) g(C) =C and
(d) 7g = g. Consequently, there exist a sequence {h;} of homeomor-
phisms of E"*' onto itself and a sequence of points {b;} in B such
that for ¢ =1,2, ---

(0) px, hi(x)) < /2 for all x in E",

(1) o(b;, b)) < 1/i,

(2) (b, w)& hioh;_o - ol (Y),

(3)  hik((V;, w) = (b, w) for all k>0,

(4) m(C)=C

(5) zh; = h;.

(6) h;| B~ — V = identity.

Furthermore, using Condition (a) and careful epsilonics we can con-
struct the sequence {h;} so that the function A = lim,_, A,c -+ oh, is
an e-homeomorphism of E"™ onto itself. Then Condition (6) implies
that 2 is an e-push of (E"", Y).

Condition (1) implies that {b;} is a dense subset of B, and Condi-
tions (2) and (8) yield that (b, w)¢h(Y) (¢=1,2, -..). Thus,
MY)N (B x {w}) is nowhere dense in B X {w}. Consequently, E” X
{w} — k(YY) is 1-ULC by hypothesis (since A(Y)cC B x I), and we
obtain the desired conclusion by appealing to Theorem 1 of [1].

We exploit the construction of the push % a second time in
proving the following:

THEOREM 9. Let B denote an (n — 1l)-cell in E™ such that, for
each (m — 2)-dimensional compactum XC B, E*— B 1is 1-ULC 1in
E" — X, and let C denote B x I*, contained tn E™ x E*. Then for
each (m + k — 2)-dimensional compactum Y < C, E** — C is 1-ULC
wn Bk — Y.

Proof. Simplifying as before, we consider k£ = 1 and ce C a point
of the form (b, w), where be Band we Int I, and we shall show that
E" — Cis 1-LC in E** — Y at ec.

Let ¢ > 0. Choose a countable dense subset {b;} of B. Then
reapplying the techniques found in the proof of Theorem 8, we find
an (¢/6)-homeomorphism % of of E"*' onto itself and a sequence {b;} of
points in B satisfying Conditions (0)-(6) stated there. Let U denote
the ¢/6-neighborhood of b in E” and V the (¢/3)-neighborhood of w in
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Int I. Then both (b, w) and A((b, w)) are contained in U X V, and
diam (U x V) < ¢/2. Since B is an (n — 1)-cell there exists a neighbor-
hood U’ of b in E" such that be U’ U and each map f of d4* into
U’ — B can be extended to a map F of 4 into U such that
F~(F4) N B) is 0-dimensional.

In this paragraph we prove that U’ x V is a neighborhood of
h{c) such that any loop in (U’ x V) — C is contractible in an ¢/2-subset
of B~ — h(Y). If f:04*— (U’ x V) — C, f is homotopic in (U’ x V) - C
to a map 04— U’ X {w}. Let F:4*— U x {w} be an extension
of f’ such that F~'(F(4*) N (B x {w}) is 0-dimensional. Once again
MY)N (B x {w}) isnowhere dense in B x {w}, which means that (E"— B) x
{w} is 1-ULC in (E") x {w}) — h(Y). Cover F~'(F(4) N (B x {w}) by
finitely many pairwise disjoint 2-cells D,, ---, D, in Int 4* such that
F| 6D, can be extended to a map G; of D; into (U X {w}) — (Y). By
redefining Fas G;on D;(t =1, --+, t) one can easily see that /| 04% 04* —
(U xV)— h(Y) is homotopic to a constant map.

Because h7' is an (¢/6)-homeomorphism and diam U x V < ¢/2,
diam 27(U x V) < e. In addition, A7 (U’ X V) is a neighborhood of
¢ such that any map g: 04*— (U’ X V) — C can be extended to a
map G:4*— h (U xV) — Y. This completes the proof.

COROLLARY 10. Let B denote an m-cell in E™(m < n) such that,
for each (m — 1)-dimensional compactum X< B, E* — B is 1-ULC n
E" — X. Then each p-dimensional polyhedron P in B x I*C E™ X E*
(Pp+3=n-+kp<m-+k is tame.
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