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THE DIOPHANTINE EQUATION x2 + D = pn

RONALD ALTER AND K. K KUBOTA

Let D = 3 (mod 4) be a positive square free integer
greater than 3 which is not a multiple of the odd prime p.
If d is the order of a prime ideal divisor of (p) in the class
group of the quadratic field Q(V—D), then in order for the
diophantine equation x2 + D = pn to have a solution in
integers, it is necessary and sufficient that (—D/p) = 1 and
that either (i) 4pd — D be a square and Spd — D = ± 2 or (ii)
pd — D be a square. Conditions which guarantee the uni-
queness of the solution are given. A linear recurrence is used
in the proof.

It is the purpose of this paper to examine the solvability in
positive rational integers x and n of the equation

(1) tf + D = p*,

where D = 3 (mod 4) is a positive square free integer.
Apery [2[ showed that if p \ D, equation (1) can have at most

two solutions. Special cases of this equation have been considered
by others. E. L. Cohen has shown in his thesis [3] that even when
D is not square free, equation (1) has no solutions if p — (D + l)/4,
where D Ξ> 19 satisfies D = 3 (mod 8). The authors [1] have com-
pleted this result by showing that the equation

x2 + 11 = 3n

has the unique solution (x, n) = (4, 3). The present paper generalizes
these results by proving necessary and sufficient conditions for the
solvability of equation (1) and by showing, at least in certain cases,
that the solution is unique. Since the case D — 3 is treated in Cohen
[3] it will not be discussed here, thus it shall be assumed throughout
that Ό > 3. In particular, it will be shown that when D is square
free and D = S modulo 8, then the equation has at most one solution.
The proof is similar to parts of Skolem, Chowla, and Lewis's treat-
ment [5] of Ramanujan's equation x2 + 7 = 2\ (For a more thorough
discussion of this last equation the reader is referred to Hasse [4].)

First note that one can reduce to the case where (D, p) — lo In
fact, suppose D = D'pr where {D\ p) — 1. There are no solutions when
n < r. Indeed, if (x, n) were such a solution, then pn \ x2 and so

x2/pn + D'pr~n = 1
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which contradicts Df > 0. If n ^ r, let k = [r/2] so that p2fc | #2 and

(2) (α?/p*)2 + D'pr~2k = p n ~ 2 k .

When r is even, r = 2k and so the solutions are in one-to-one
correspondence with those of y2 + Df = p w which was to be established.
When r is odd, equation (2) implies that there are no solutions with
n — 2k > 1. In fact, if there were, then p | (x/pk) and so

p21 JD'JΓ-2* = D'p

which is absurd. Since r — 2k = 1 > 0, there are no solutions with
w — 2k = 0. If there is a solution, then it follows that n — 2k = 1.
But then equation (2) reads (x/pk)2 + D'p = p and therefore D' = 1
and # = 0. Hence D = p2k+1 and there is only the trivial solution
(x, n) = (0, 2k + 1).

Henceforth it will be assumed that (D, p) = 1. If (αj, ̂ ) is a
solution to equation (1), then this equation can be factored as

in the ring of integers έ? of the quadratic field Q(V—D). Any
prime ideal of this ring which contains both

x 4- V — D and x — V — D

must also contain 2x, 2Λ/ — D, pn and so also p, V — D, and —D. Since
(D, p) = 1, we have a contradiction and so

(a + V^D) and (a? - V^^D)

are relatively prime ideals. Clearly neither is the whole ring. Now,
if (p) were prime in ^ , then

(x + V-D)(x - V-Ό) - (p)n

contradicts unique factorization of ideals in &. From the theory of
quadratic fields it follows that (-D/p) = 1 and (p) = 2)2)' where 2)
and 2)' are distinct conjugate prime ideals.

Equation (3) leads to the equation of ideals:

(x + V

Since the factors on the left are relatively prime, we have either
(x + V-Ό) = ψ or ψn. Fixing the notation so the first is true, it
follows that 2)% is a principal ideal and so n = dm for some m where
d is the order of 2) in the class group of ^ . By definition, 2)rf is
principal, say
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( 4 )

where a and 6 are integers with 6 ^ 0 . Thus

<β + v=S) = β- = («±SE5)

Since the only units of έ? are ± 1 , it follows that

bV^Dλ
/ 5

It is easy to verify that the dk = (2/l/I7) Im ((α + bV^
satisfy the linear recurrence:

(6 ) dk+2 = adk+ι - p d dk

with d0 = 0 and dx — 6. An easy induction on s using equation (6)
shows that the dk satisfy

( 7 ) dxdk+s = dk+1d8 - Pβdkd8^ .

From equation (6), it follows that dγ \ dr for all r > 0 and a simple
induction on r involving equation (7) shows that dk | dkr for all k, r ^ 1.
Now equation (5) together with the definition of the dk imply that
dm — ± 2 . Since b = dx | dw, 6 is either 1 or 2.

It has been shown that a necessary condition for the solvability
of equation (1) in the case (D, p) = 1 is that (-D/p) = 1 and that
6 = 1 or 2. In each of the cases 6 = 1 and b = 2, we will now try
to prove uniqueness of the solutions.

Suppose first that 6 = 1. Since (α + bV'i:D)/2 = (α + τ / ^ Γ

is an integer, a must be odd. By equation (7),

- (α3 -

ΞΞ ds (mod 2) .

Clearly dλ = 1 and d2 = a are odd and d3 — a2 — pd is even. Recalling
that dm = ± 2 , it follows that 3 | m and thus cί3 = ± 2 since d31 dm.
Note that since p^ = (a2 + D)/4, d3 = α2 — j>d = ± 2 is equivalent to
3 ^ — D = ± 2 . In the case of 6 = 1, this last condition is therefore
necessary and sufficient for solvability of equation (1).

Still supposing that 6 = 1, a technique from [5] can be used to
show that dsk Φ ±2 for any k > 1. Let ζ = ((a + t/^~D)/2)fc = e + fi
and £' = β — fi be the complex conjugate of ξ. By definition
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(g - £')(£*_+&' + n = ± 2 β

Now I f - £'| ^ 1 and | ζ2 + ζζ' + f'21 ^ 1 since these are integers in
έ?. So I ξ - ζ'\ ^ 2I/JD and | ί2 + ££' + f'Ί ^ 2τ/Ί). The first
inequality says | / | ^ τ/7) and the second says that | 3e2 — /21 ^ 2VT).
Hence

tll< 2V-P + D
3 3

and so

i- D + | -

Now ί> = 3ί>J+2 ̂  3j?* + 2 and so

p " ^ A (3P<« + 2) + — v/3?)'i + 2 ^ 5p" + 3 .
3 3

It follows that k = 2. But if k = 2, by equation (7), d6 = d3 (α
3 - 3pda) =

±2α(α2 - 3pd). If d6 = ±2, we would have a = ± 1 and 1 - 3 ^ = ± 1
which is absurd.

Note that the condition that D be square free was necessary
only to assure that 2)d could be expressed as in equation (4). But if
p = (D + l)/4 = (1 + V^Ί^β (1 - V^D)/2, then we have equation
(4) satisfied with a — b — d = l. In order for this to have a solution,
we need ±2 = dz = a2 — pd = 1 — p. So p = 3 and the solution is
unique. Thus previously mentioned results of E. L. Cohen [3] and the
authors [1] are reproved.

Now suppose 6 = 2. Since (a + 6i/:=ΓD)/2 = a/2 + l / " 1 ^ is an
integer which is not a multiple of 2, a = 0(mod4). All of the c^
are even; so we may consider the sequence ak = dk/2 which clearly
satisfies the same linear recurrence relation as do the dk. The uni-
queness proof depends on the following simple congruences.

L E M M A . ( i ) If 2r \\a and 2k\\n with k ^> 1 , then

an = 0 ( m o d 2 k + r ~ 1 ) .

( i i ) If 2 r | | α and 2k\\n - 1 with k^l, then

an = (-l)^-1)/2

:p^-^

Proof. ( i ) Since an is a multiple of a2k, it suffices to prove
part (i) for n = 2k. When k = 1, α2 = α = 0 (mod 2r). Now
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by equation (7). Since pd is odd and

a2k+1 = αα2fc — pda2k^1 = a2k_x (mod 2)

by equation (6), the result for n — 2fc+1 follows by induction from
that for n = 2k. The first assertion is proved,

(ii) First suppose k = 1 so that w = 4s + 3. α3 = α2 — pd = — pd

(mod22r). By equation (7),

Since a5 = a* - Spda2 + p2<* and α4 = α3 - 2pd, we have α4A;+7 = p2da4M

(mod22?*) as desired.
In general, suppose n = 2m + 1 where 2k \\ n — 1. Then 2&~11| m

and so by the induction hypothesis, αm + 1 = (-l)w/2pw d/2 (mod 2fc-1+2r"2)
and so (αm+1)

2 Ξ (-ΐ)mpmd (mod 2&+2r-2). By part (i) of the lemma,
am = 0 (mod 2*-1+r~1), and so α2

m = 0 (mod 22k+2r~i) which implies a
fortiori that α L ^ O (2fc+2r"2) since k ^ 2. By equation (7),

α2m+1 = α2

w+1 - p*al = (-l)™p™d (mod

as desired. This completes the proof of the lemma.

COROLLARY. / / n ^ 3 is odd, 2 r | | α, 2fc | | n - 1, p Ξ 2* - 1

(mod2 ί+1), and 2r - 2 ^ ί, ίAβ^ αn Ξ 1 + 2fc+ί~1 (mod2 fc+ί). ^ 2>αr-
tίcular, an Φ ± 1 /or % > 1 i/ 2 (r — 1) ^ ί.

Proof. This follows from part (ii) of the lemma and the fact
that if p = 2ι - I(mod2 ί + 1), / is odd, and s ^ 1, then

p2*/ Ξ 2

ί + s + 1 (mod 2t+s+1) .

To complete the argument, we need only find the values of p
and D which are not covered by the corollary. If 2r ~ 2 < t, then
2Ύ ^ t + 1. Since (p) = 2)2)', equation (4) implies that pd = (α/2)2 + Iλ
On the other hand, 2 r || α implies (α/2)2 = 22r~2 (mod22r+1). From these
results and the fact that p = 2ι — 1 (mod 2 ί+1), one concludes that
D = 2t — 22r~2 — 1 (mod22r). Thus the exceptional cases occur when

( p = 2 ι - l (mod 2ί+1)

( 8 ) J and

D = 24 - 22(ί-1} - l(mod 22r) for r < 1 ± J : .
~ 2

For example, this formula yields the following exceptional cases
for ί = 2, 3, 4, 5.
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p Ξ= 3 (mod 8) none

p = Ί (mod 16) D = S (mod 16)

p = 15(mod 32) D = ll(mod 16)

p = 31(mod 64) D = ll(mod 16) or D = 15(mod 64)

Since b = 1, 2 mean respectively that 4pd — D, pd — D are
squares, the results may be summarized as follows.

THEOREM. Let D ΞΞ 3(mod 4) be a positive square free integer Φ 3,

p be an odd prime which does not divide D, and d be the order of a

prime ideal divisor of (p) in the class group of the quadratic field

Q(\/—D). In order for

x2 + D = pn, x ^ 0, n ^ 0

to have a solution in integers, it is necessary and sufficient that
(—DIP) = 1 and that one of the following mutually exclusive conditions
hold:

( i ) Apd — D is a square and Zpd — D — ± 2 ,
(ii) pd — D is a square.

In case (i), n — 3d is the unique solution. In case (ii), n = d is a
solution and this solution is unique except possibly in the exceptional
cases, given in equation (8), where there are at most two solutions.
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